
Woodside Offshore Petroleum is the operator in the development of
new gas fields in Australia's North West Shelf project. Sequencing
the development of new gas fields in this project is a key determi-
nant of its return on investment. This development sequence has
constraints imposed by infrastructure and contractual obligations as
well as natural features. The determination of an optimal or very
good solution may involve a number of techniques from operations
research.

The study group attempted several approaches to the problem, prin-
cipal amongst them being mathematical programming and dynamic
programming. A few other heuristic approaches were also consid-
ered. The mathematical programming approach was able to yield
solutions to small instances of the problem. The group was able to
identify several avenues for further research and work on the problem
is ongoing.

This problem was presented to the MISG by Woodside Offshore Petroleum
(WOP), the operator in the consortium of companies which is spending $25 bil-
lion over about 40 years developing gas fields off the West Australian coast near
Dampier. The project, called the North West Shelf Project (NWSP), includes
a large number of separate fields, each differing in size, development cost and
hydrocarbon mix. Finding and developing a new field can cost upwards of $2
billion and it can take 5 to 10 years before production can commence.

The problem facing WOP is to find the best feasible development sequence
of the fields and the most efficient rate of their exploitation which ensures that
existing contracts are satisfied and the overall return on the large investment is
maximised.

The fields produce a variety of low rank hydrocarbons with other gases
(mainly nitrogen and carbon dioxide) which are combined in different mixtures to
produce natural gas (piped directly to the Western Australian domestic market
as DOMGAS, and liquefied natural gas, for export to Japan as LNG), liquefied
petroleum gas (LPG, a valuable by-product) and a light oil condensate (STe,
stock tank condensate). In addition one of the fields at least (labeled D in this
report) has conventional oil reserves. The hydrocarbon mix of individual fields



determines the relative amount of each of these by-products that are produced.
Long term contracts have already been agreed with buyers for DOMGAS and
LNG sales. These contractual obligations have to be met.

Each potential field has a different character, in terms of gas composition.
The composition of fields will change as they are produced (due to phase change
behaviour), and the development costs for each field are different. The character
of the fields that have been currently assessed is given in Table 1.

At present two fields have already commenced production. These are labeled
A and C. Two more (labeled Band D here) are due to start in the next two
years. In the future, there may be more than twenty fields, a number of which
have already been identified.

Field
Label

Gas
Reserves
(109sm3)

182
56
15
7
27
52
16
54
13
5
21
12
10
18
28
28
23
57
28

Condensate
Reserves
(106sm3)

21
25
2
1
6
10
2
13
7
3
5
3
3
2
6
6
5
11
6

(m3/106sm3
)

130
522
220
157
258
258
220
292
674
674
258
365
393
168
280
280
280
280
280

(m3/106sm3
)

101
371
47
129
186
127
30
189
403
526
218
135
207
54
149
149
155
106
149

LPG
Content

(Tonnes/106sm3)

51
175
69
459
106
106
69
99
145
222
106
106
106
71
141
117
117
117
117

Gas processing facilities have been installed on the Burrup Penninsula to
treat gas from the field labeled A, which is situated 134km offshore. The facilities
remove impurities from the gas, such as carbon dioxide and water. Valuable by-
products such as LPG and condensate are also removed. The processing plant is
limited by the amount of sales gas products, condensate and LPG it can produce.

As can be seen from Table 1, the gas from the second field (labeled B) is much
richer in LPG and condensate than gas from A. Hence, liquid production will



increase substantially when field B is started. The problem becomes more critical
as more fields are added to the project; each field with a different characteristic,
gas composition and exploration cost. Moreover, the choice of development
may not be limited to the fields shown in Table 1. Choices could come about
through new discoveries in exploration permits or production licences. An added
complication could arise if we include the possibility of purchasing third party
gas, from parties not directly involved in the NWSP. Hence, the sequencing of

/ developments and the extent of exploration in each of the developed fields will
become very critical to the return on investment.

The gas and condensate reserves and the LPG content for the already iden-
tified fields are shown in Table 1. This information is used in determining the
product yields for various mixes of field development. One factor affecting the
solution is the steady reduction over time in the proportion of STC obtained
from a field even though the field's gas yield stays constant. This is revealed in
Table 1 which shows the disparity between the condensate to gas ratio (CGR)
initially and finally (respectively, CGRinit and CGRfin). The figures in Table 1
also reveal the STC-rich fields.

The CGR for any given stage in the life of a field can be found from the
formula:

Here, CumulativeProduction represents the total amount of production up
to that stage in the life of the field.

The capacity of a field is determined by the capacity of individual wells and
the number of wells installed. Clearly, the capacity of a field can increase or
decrease depending on the number of wells installed, which is a decision to be
made in the case of fields that have not yet been developed. The capacity of the
wells in each of the fields and their costs are supplied in Table 2. Until 70% of
the reserves in a field are exhausted, the capacity of a field is found from the
formula:

The field capacity then declines linearly until all the reserves are effectively
depleted. (The field is terminated when a minimal uneconomic level of 3 million
standard cubic metres per day is reached.)



The overall field development cost can be found from the data on startup
and running costs (factors CosLA and CosLB, respectively) in the last columns
of Table 2.

The development cost is then given by the formula:

DevCost = WellCost * N 00 fWells + CosLA + CosLB * Capacity (3)

Field WeliCapacity WeliCost Cost-A CosLB
Label (106sm3/day) (Au$ m) (Au$ m) (Au$ m)

A 51
B 25
C 5
D 3
F 2.0 16 1 0.0
H 2.0 16 196 41.9
I 1.5 25 77 17.3
J 1.5 24 84 28.9
K 1.5 17 95 20.1
L 1.5 19 16 29.1
M 2.0 25 77 17.3
N 1.5 20 98 19.4
0 1.5 24 112 22.6
P 1.5 21 107 25.5
Q 1.5 24 139 26.9
R 1.5 26 155 28.7
S 1.5 20 128 9.8
T 1.5 24 82 15.0
U 1.5 26 155 28.7

Table 2: Well capacities and development costs

Note that, in the above table, WellCost, CosLA and CosLB for the fields
labeled A, B, C and D have not been given. These fields have already been
developed (or are under development). Also, the WellCapacities for fields A, B,
C, and D represent the overall capacities, while the figures against the remaining
fields represent the capacities per well. The overall capacities for the remaining
fields will be determined by deciding how many wells to install.

The first constraint to consider is the contract constraint. This fixes the net
output of natural gas until the year 2009; the year until which long term gas
contracts have already been signed. There are also upper limits on annual pro-
duction of LPG and condensate related to export limits and processing facilities.
The maximum condensate production rate is 16000 cubic metres per day and the
maximum LPG production is 2.67 million tonnes per year. An additional long
term constraint is that DOMGAS has priority over LNG and the production of



the latter can only be wound down at a few stepped values: 31.8, 21.2, 10.6 or
0.0 million standard cubic metres per day.

Transporting the gas and oil to the marketplace involves a complex net-
work of primary production points, interconnecting pipelines and drill platforms,
points from which ships may be directly loaded at sea and on-shore processing
facilities. One set of physical constraints is that gas flowing upstream through
this network cannot exceed the capacity of the next installation in the chain.
Clearly a precedence constraint dictates that a downstream facility cannot be
exploited unless all links to the primary processing or loading points are opera-
tional. The links planned or possible in the currently identified fields are given in
figure 1. The solid lines represent mandatory links and the dotted lines represent
alternative links, which the model will choose in an optimal manner.
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The present sequencing algorithm is a 'greedy' algorithm which ranks the
exploitation order according to the Unit Technical Cost, or UTC, which is the
present value of the development costs for the field, divided by the present value
of the production. To maximise the return on the investment, it is necessary to



use the Net Present Value, or NPV, instead. This accounts for the discounted
cash flow of the collective investment over the lifetime of the project (about
40 years). This is a function of revenue and costs, which themselves depend
on the individual field characteristics, tax rates, royalties and the capital cost
environment.

The relevant prices for the products DOMGAS, LNG, Condensate and LPG
are, respectively, $70,300 per million standard cubic metres, $110,900 per million
standard cubic metres, $148 per cubic metre and $163 per tonne exported. The
calculations assume a tax rate of 33%, a royalty of 12.5%, inflation of 5% and
asset depreciation at 22.5% reducing balance.

The development expenditure is phased in over a six year period. 5% is
spent in year 1, 10% in year 2, 20% in year 3, 25% in year 4, 25% in year 5 and
15% in year 6. Production starts in the fifth year and operational expenditures
from then on are assumed to be 5% of the total capital expenditure.

The study group attempted two approaches to solve the problem, namely,
mathematical programming and dynamic programming. In the former, the prob-
lem as stated above can be formulated as a large nonlinear mixed-integer pro-
gram (NLMIP). Such problems are difficult to solve and solvable instances of
such programs are small. Hence some simplifying assumptions are made to
render the problem tractable. We describe the mathematical programming ap-
proach in Section 3. A dynamic programming approach formulated is described
in Section 4. A few other approaches were also suggested, namely, neural net-
works, genetic algorithm, and interactive approaches. These are described in
Section 5.

In the problem as given the formulation is deterministic but the data is
subject to some uncertainty, so the sensitivity of solutions to data perturbations
will be an issue. This avoids the formulation in stochastic terms which would
most likely be intractable.

Let I denote the set of gas fields, I = {i1i = 1, ... , M}, and J the set of
years in the planning horizon, J = {jli = 1, ... , N}. For each field i, define
the ancestor set , a( i), where a( i) == {i'l field i' must be in operation prior to
developing field i}. Likewise, for each field i, define the descendent set d( i),
such that d( i) == {i'li E a( i')}.



Let 'Xij denote the fraction of gas field i E I extracted in year j E J.
Oij = 1 if field i is operational in year j

= 0 otherwise
Wij = 1 if field i starts production in year j

= 0 otherwise.

The primary decision variables 'Xij implicitly specify whether a field is oper-
ational or not. The secondary decision variables, Oij and Wij depend on 'Xij and
are used in the evaluation of cost and revenue streams.

The original statement of the problem included the issue of determining
the number of wells to operate in a field. This issue was not addressed by the
mathematical programming formulation, because the resulting problem would
become a nonlinear program. Nonlinear problems are generally difficult to solve.

We used an upper bound on the number of wells for the purpose of evalu.ating
the development cost of a field, (DevCost) as given by (3).

gi
R( 'Xij)

D(Wij)

O( Oij)

T

GasDemj
LPGmax

LPGi
CGRi
CONmax

'Xij

Initial Gas reserve in field i
Revenue from extracting 'Xij percent of field i in year j
Development cost if field i starts in year j - defined by (3)
Operating cost accrued if field i is operational in year j
The annual discount rate
Annual scheduled demand for gas in year j
Maximal permissible annual output of LPG
Percentage LPG content of gas extracted from field i
Condensate to Gas Ratio of field i
Maximal permissible annual output of condensate
Maximal permissible extraction from field i in year j

The revenue from a field i in a particular year j is dependent only on 'Xij,

the percentage of gas extracted from it in that year. The development cost of a
field i is dependent on the year j in which it becomes operational. This will be
indicated by the value Wij, which will take the value 1 when the field is started
up. The operational cost for a field i in a year j is assumed to depend only
on whether or not the field is operational in that year. This is determined by
the value of Oij. For the sake of simplicity, we assume that all development
expenditures are incurred in the year production commences. Moreover, we
ignore, in this preliminary model, the impact of tax and depreciation.



Then our problem is to maximize the net present value of operations, N PV:

N M

max NPV L L ((R(:Cij) - D(Wij) - O(Oij)) /(1 + r)j
j=1 i=1

N

L :Cij < 1 (4)
j=1

M

L :Cijgi > GasDemj, Vj E J (5)
i=1

M

L 0.3LPGi gi :Cij < LPGmax, Vj E J (6)
i=1

M

L CGRi gi :Cij < CONmax, Vj E J (7)
i=1

:c .. < Oij, Vi E I, j E J (8).)
:Cij > -(1 - Oij) + E, ViEI,jEJ (9)
Wij > Oij - Oij-ll ViEI,jEJ (10)

M

LWij < 1, (11)
i=1

:Cij > 0, ViEI,jEJ (12)
:c .. < Zij, ViEI,jEJ (13).)
Oij E {O, I}, Vi E I, j E J (14)

Wij > 0, Vi E I,j E J (15)

:Cij < M * '£1~i:Ca(i)/, Vi, a( i), j such that a( i) ::I 0 (16)

L :C/jg/ + :Cij < Zijgi, Vi,j (17)
/Ed(i)

Constraint (4) ensures that the total gas removed from any field doesn't
exceed the total amount of gas present in the field. Constraint (5) ensures
existing contracts are met. Note that we use inequality rather than equality
constraints in (5). The optimal solution will result in more gas being produced
if it is economically more attractive. Otherwise, the equality relationship wi!
hold. Constraint (6) imposes an upper bound on the amount of LPG that may
be extracted in a given year. Note that this constraint implicitly includes WoP's
system constraint that not more that 30% of the gas extracted from fields in a
particular year can be converted into LPG. Constraint (7) bounds total annual
condensate production.



Constraints (8) and (9) define whether a given field is operational in any
particular year. The value f is some small value, which may be used as a lower
operational bound for the variables Zij' Clearly, if Zij is positive in a particular
year, the value of 6ij will be 1, if 6ij can only take the values 0 or 1. This value
can then be used in the objective function to determine the relevant operational
cost of field i.

Constraint (10) checks whether a field is started in any particular year. IT
so, the corresponding value of Wij becomes 1, if Wij can only take the value 0 or
1. This can then be used to identify the relevant development cost of field i in
the objective function. Constraint (11) forbids more than one startup per field.

Constraints (12) to (15) define the upper and lower bounds of the decision
variables. Note that, the variables Wij need not be explicitly defined as 0-1. The
constraints (10) and (11) ensure that Wij will always take the value 0 or 1.

Constraint (16) represents the network link constraint: a field may only be
started if its predecessor (assuming it has one) is already in existence and is
operational. The constant term M rv 10 is present so as to prevent an artificial
upper bound from being imposed.

Constraint (17) represents an upper bound on capacity handling: The sum
of a given field i and its predecessors' total annual gas production must be less
than the processing facility of field i.

A number of features are apparent in this formulation of the problem. Here
the issue of setting up individual wells is not addressed. Information regarding
the scheduling of well set-ups may be inferred from the optimal Zij values.

The objective function represents a somewhat simplified and linearized ver-
sion of the net present value of the project. It was, however, considered an
adequate representation of the project.

Two important physical features have not been modelled. Firstly, it is as-
sumed that the condensate to gas ratio remains constant for each field over the
duration of extraction. In other words, the CGR, as defined by (1) was not
modelled. Equation (1) involves CumulativeProduction, which is a function of
Zij' The inclusion of this formula in (7) would make the problem nonlinear. One
possible approximation could be the inclusion of a piece-wise linear form of (1).
However, we chose a constant CGRi.

Secondly, as mentioned previously, the model does not consider the schedul-
ing of wells and the well capacity. These simplifications ensured that the result-
ing model was linear and solvable.



The formulation, as presented above (i.e., without the nonlinear constraints)
is a mixed integer linear program (MILP). The model was coded in the GAMS
modelling language (see Brooke, Kendrick and Meeraus, 1988) and was solved
using ZOOM, the integer programming solver.

The full problem, solved for M = 19 fields over an N = 40 year planning
horizon, results in 760 boolean variables, 1341 continuous variables and 2860
constraints. Since it was not possible to solve such a large MILP using ZOOM,
we relaxed the 0-1 integer restrictions on 6ij and solved it as a relaxed mixed
integer linear program (RMIP). Thus, 6ij could take on a continuum of values in
[0,1]. This relaxation has implications for the nature of the solutions obtained,
and will be discussed later.

Moreover, if we considered the costs as they are given, we found that the
sequence contained what we describe as holes. Holes in a sequence represent
a start-stop'-start feature of production in a field. Clearly, this is undesirable.
This is due to the relaxation of the 0-1 constraint on 6ij. As a result, the Wij

variables also take on continuous values, hence permitting a number of start-ups
to occur for the one field.

In order to avoid this, we impose an artificial penalty in the objective function
in the term associated with the initial development cost. The resulting solution,
presented in figure 2(a) and figure 2(b), does contain some holes. Also there is
a tendency for a few fields to start up simultaneously (in the same year). For
example, fields M, Nand R commence production in the year 2012. This is
due to the relaxation of the binary restriction and would disappear in the MILP
solution.

As a further extension, it was desired to see the effect of modelling declining
gas-condensate ratio upon the solution. That is, CGRi in constraint (7) was
evaluated using (1), thereby turning the problem into a mixed integer nonlin-
ear program (MINLP). The integer restrictions were relaxed and the resulting
MINLP was solved using GAMS-MINOS. The solutions produced were not too
dissimilar to that depicted in figure 2(a) and figure 2(b).

Dynamic programming (DP) offers an exact method algorithm to determine
the global optimum to the deterministic problem of sequencing the start-up
times for each of the 19 fields, while simultaneously determining the production
capacities for each field in each year of the planning horizon. The problem lends



itself to a natural division into stages (years) where each stage can be determined
uniquely from the previous stage only. Therefore, a DP approach is suited to
this problem.
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The main aims for each year (stage) of operation are to determine the fraction
of each site's gas reserve to produce in that year, and the number of wells that



must be drilled (if any) to meet the production capacity for that field in each
year so as to maximize the NPV.

The number of wells required at each field in each year is determined uniquely
by the production capacity of each field. It is important to keep track of the
number of wells already existing at each field so that we do not double or triple
cost the development of that well. For example, the production at field i (say)
may require the following number of wells for 3 years of the planning horizon:
(4, 3, 5). It is important to note here that in the third year we only need to
cost the drilling of 1 well and not 2. The decision relating to wells is the only
complicating factor in the DP formulation of this problem.

The main advantage of the DP method over all other methods studied is
that it has no difficulty handling any of the nonlinearities in the profit functions,
or any of the nonlinearities in the constraints on the operation of the gas fields.
For example, it can easily handle the nonlinearities resulting from the accurate
representation of CGRi in constraint (7).

For use as the state variable for the DP we will introduce a new variable,
Yij, the total fraction of gi produced up to and including the jth time period.

J

Yij = L Xik
k=O

The decision at each stage (year) of operation is the amount of each field i
to produce. Our decision variable is a vector X, again with time j suppressed,

IT we let FJ[Y] represent the total (best) NPV from period 0 to J with a
total fraction Y of gas reserve used then this problem can easily be modelled as
a DP. The functional equation being,

FJ [Y] = miX { (1 ~ r) J-1C F + F J - dY - X] }



STEP 1: Input required data, ego gas reserves at each field, upper bounds
on condensate and LPG production etc.

Loop through all possible state vectors (ie. all feasible
combinations of the vector V).

11 Loop through all possible decision vectors.

Hi Check feasibility of the Y, X combination.

• Check Y - X does not result in any element being less
than O.

• Check to see if gas reserves are less than 3.
• Check constraints on maximum condensate and LPG

production.
• Check the precedence relationships
• Check that the capacities of each platform ie. field

capacities A,B,C,D have not been exceeded.

iv Calculate the benefit of this combination if feasible, if the
combination is not feasible then assign a large negative
benefit.

v Goto ii) if there are more decision vectors to consider.

VI Select maximum benefit for this Y combination, goto i) if
more state vectors to consider.

STEP 4: Move to year J + 1, goto Step 3 until the end of the planning
horizon has been reached.

This formulation is very simple but we have a problem with the size of the
state space. If we consider potential increments for each element in Y of 0.001
then for the 19 field problem the number of potential states is



The main method of dealing with this problem is to reduce the size of the
state space. The following are four potential methods for achieving this.

1. Instead of considering all possible combinations of the vector Y at each
time period, we can make use of the conditions of the problem to consider
only the feasible state vectors Y in each time period.

2. Reduce the number of fields by grouping together fields with similar char-
acteristics into one field, thereby reducing the problem to, say, a four field
problem. This can be optimized using DP. Then, with the known pro-
duction requirements for each of the sites optimize within each site to
determine the production capacities of each field.

3. The most promising method is to use the corridor method. This method
involves starting with an initial feasible solution (possibly the one WOP
already have) and to consider a region of perturbation around this (defined
as a corridor). The state space can be defined as this region. Carry out
DP in this space and look for improvements. Repeat the process until
no further improvements can be found, and a local maximum has been
located.

4. Another promising method that should be investigated is the application of
nons erial DP to this problem (see Nemhauser, 1966). Nonserial methods
provide for situations involving a number of serial subprocesses that are
linked in a variety of combinations. For the WOP problem, we can see
from the facility tree that there are essentially two main regions: Region 1
containing fields A,C,D,I,J,P,Q,U and Region 2 containing all other fields.
Nonserial DP will determine the optimal method for producing 0,1,2, ...
units of gas in each region in each year. The regions are then combined to
meet, optimally, the requirements of the onshore plant. This problem may
require the use of more than 2 regions, but the method explained above
remains the same.

Methods 2 and 3 do not guarantee a global maximum but they may generate
a solution which is better than the one WOP have at present.



The first of these is an interactive LP approach. In Section 3, the math-
ematical programming formulation to the problem led to a MILP with many
0-1 variables. The complexity introduced by these variables can be handled by
interactive use of a LP package. Consider fields A, B, C, ... , with A already
operating. A setup cost is incurred in the first year of operation of fields B, C,
.... Denote by ZAj, ZBj, ••• , the amount of gas extracted from fields A, B, ... ,
in year j. Let CAj, CBj, ••• , be the marginal costs. Suppose that an LP calcu-
lation (without the setup costs) starts B, say, in year k and let the total cost
be Fl. This may be compared with another LP calculation with CBk replaced
by CBk + SB/ZBk, if SB is the setup cost. Let the cost of this solution be F2.
This may defer startup of B to a later year, say I. Startup of B in year k would
be preferred if Fl < F2 + SB. If not, another calculation has to be made with
modified CEl, with the possibilities of startup in earlier years excluded by intro-
ducing penalty costs. Note that benefits would enter here as negative costs. On
the assumption that extraction from a field becomes somewhat less profitable in
later years, extraction would start in the first year indicated as profitable by the
interactive calculation, and then continue for an uninterrupted period of years,
till supply runs out in the field. However, a global optimum is not guaranteed
by this procedure.

This approach is related to separable programming, where a nonlinear func-
tion of a single variable is approximated by a piece-wise linear function. To treat
setup costs in this way, the variable Z ~ 0 is replaced by a special ordered set of
three variables to describe a cost function graphed by two line segments, with
two specified variables not allowed to occur together in a basis. This requires
some modification to an LP code - see Beale (1970). But the computation
is much the same as that described for the interactive LP approach described
above. Moreover, as the model is non-convex, the approach is likely to stick to
a local optimum, unless some assumptions are made about costs as a function
of time.

There are probably additional constraints for the real problem that have
not been featured in the mathematical programming and the DP approaches.
Namely, limits on resources would ensure that only a few fields were started up
or run at the same time. With this in mind, only small regions of the solution
space need to be explored at anyone time. This suggests an interactive use
of GAMS (or any other MILP package that is used). So we could perform a
GAMS run with fields A and B open, another with just A and C open, and so
on. After examining the results, we could pick out several candidate fields, say
X,Y,Z, for exploitation. Earlier startup years can be excluded by penalizing the
marginal costs, so only a few 0-1 variables (corresponding to startup years) need



enter the next round of calculation, say, considering A,X,Y or A,X,Z. The above
interactive approaches would stand a better chance of solving the entire problem
along with all the complicating system constraints. Firstly, it allows input of
practical wisdom. Secondly, it escapes potential computational problems.

Two other heuristic solution approaches were considered. The first of these
was neural networks. However, the solution of the problem via this approach
requires good sample solutions to enable the network to learn and adapt and
optimize when faced with new situations. Although it was thought that the
neural network would work reasonably well, the absence of good initial solutions
precluded the use of this approach. The second approach involved genetic algo-
rithms (GA). However, it was soon found that it would be very difficult to obtain
an efficient representation of the problem, which is crucial to the success of any
GA approach. Moreover, it was felt that the calculation of the objective value
after each successive iteration of the GA would be computationally expensive.
Hence, these novel approaches were not explored further.

The study group identified several approaches for solving the problem of
sequencing field start up times for WOP. Of the approaches that were suggested,
the mathematical programming approach achieved maximum progress, although
only a simplified version of the problem was solved. The full model would include
the declining gas-condensate ratio feature, the tailing off behaviour and the
phase change behaviour in the gas reserves, and an accurate representation of
cost streams. Such a model would turn the problem into a MINLP which is
difficult to solve. The problem would then require specially tailored solution
procedures and special-purpose codes would need to be written. This would
take the solution procedure out of the domain of GAMS solvers. However, the
GAMS approach has yielded prototype solutions that look promising.

Further work needs to be done in order to determine appropriate solution
approaches. Moreover, we need to address the issue relating to well capaci-
ties and well start-up times. A good understanding of decomposition solution
methods can be useful in solving the large MINLP without having to resort to
methods that relax the integer restrictions. The problem shows a great deal of
parallelism, with blocks of constraints of similar structure appearing for each
field. Advantage could be taken of this correlation via decomposition methods.
Also, the expected highly correlated nature of the bij variables suggests that
an intelligent branch and bound procedure may be developed that exploits the
structure of the problem.



The DP approach was formulated and refined to a great extent. However,
not much progress was made due to the lack of computing resources and to the
curse of dimensionality. Several interesting modifications and approaches have
been highlighted and further work in this area is definitely possible.

Constrained Logic Programming (CLP) is one approach that was not con-
sidered by the study group. This method performs a systematic search of the
problem's feasible space to obtain solutions. The problem and the search space
can often be specified in a simple and elegant manner. The ease of applicability
of this approach to the Woodside problem is an open question and needs to be
investigated.

There are several promising approaches, highlighted in Section 5, which can
be followed up to produce good interactive LP-based heuristic solutions.
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