
MANAGING WAITING LISTS AND THEATRE SCHEDULING
FOR SURGICAL PROCEDURES

"The issue of waiting lists for surgical procedures is not only highly
political but of significant concern to the general public. In addi-
tion, in acute-care hospitals, large amounts of money are consumed
by the theatre units, which is a key feature in the surgical waiting
lists problem, so there are important financial issues associated with
waiting lists." Watson and Landman (1994).

One of the problems facing hospitals is scheduling planned operations to pro-
vide effective utilisation of the hospital's facilities. This problem involves trying
to meet a number of different goals such as maximising the occupancy of beds
(and concurrently reducing the variability in the use of beds) and minimising
overtime payments to hospital staff. It is also desirable to reduce the need to
change operating schedules once patients have been notified of a day for their
operation.

The problem is complicated by the fact that there is uncertainty in the
duration of operations and also in the recovery times following operations. In
addition, the hospital needs to allow for unplanned emergency operations.

Planning the operating schedule over a week, for example, is constrained
by the way in which the surgeons draw up their patient lists. Typically, a
surgeon will have a weekly booking for a specified number of hours in one of the
operating theatres. Patients are initially referred to a surgeon who prepares a
list of operations. As they add patients to their lists, the surgeons notify the
hospital of the associated operations planned for their booked theatre time. The
hospital receives this information weeks or perhaps months in advance.

The scheduling problem of interest here begins when the hospital starts to
plan the allocation of staff, to support the operations and provide post operative
care for the patients, for the coming week. At this stage, the hospital may
negotiate with the surgeons to change their supplied operating lists.

As well as cateringfor planned operations, the hospital will also have to carry
out emergency operations. These emergencies require the use of the operating
theatres and of beds in the hospital wards.

A major problem associated with scheduling operations is the availability of
beds for the patients. If all the beds are occupied by recovering patients then



operations have to be postponed. Patients often receive only very short notice
that their operation has been cancelled. It is also possible (though perhaps
unlikely) that more patients than expected will be discharged over a few days
and that more operations than planned could be carried out. One of the goals
of scheduling operations is to achieve a consistently high utilisation of hospital
beds.

Hospitals are also constrained to working within a budget. A further goal is
to schedule the operations so that overtime payments to staff are kept as small
as possible.

In this section we look at methods for determining appropriate distributions
for operating times based on data for operations by different surgeons.

Suppose that we have data for the times that different surgeons require for
different operationsl, and that we have a proposed list of patients scheduled for
surgery.

If we take Xi as the length of time required for an operation on patient
i, with i = 1, ... , N, then the total theatre time associated with the list is
W = L:~lXi. The data gives us an empirical distribution of the Xi, however
our real requirement is for a distribution for W so that it is possible to calculate
quantities such as

where 'available time' is some value such as the total duration of a surgical block
(for example, 4 hours).

These probabilities could be used by:
• the doctor, for example the chief anaesthetist in some hospitals, responsible

for fitting the lists submitted by surgeons to available theatres,
• surgeons when compiling their lists for submission to the hospital,
• hospital staff charged with developing improved theatre scheduling methods.

Basically, in order to improve theatre schedules, we need to model and determine
theatre times appropriately, and establish unacceptable probability levels for
time overruns 2 •

1There may also be useful covariate information, but trying to include it may subdivide the
data too thinly.

2We could possibly consider standby lists here, though at most hospitals, given current
scheduling methods, it appears that limited bed availability is the critical factor.



While it is possible to fit distributions to the data for each operation/ surgeon
combination, it is unlikely these will convolve nicely, which is what we require for
a simple calculation of the distribution of W. Since each Xi 2: 0, either Gamma
or Lognormal distributions are the likely candidates for the distributions. If
Xl! X2 are (independent) lognormals, then W = Xl + X2 does not have a
nice distributional form. If XI, X2 are (independent) gamma, then W has
a reasonable form only if they have the same scale parameters3• However, it
would be unusual to obtain such tractable forms and it seems unlikely that
exact analytical methods will playa significant role. Given this situation, there
are two possible approaches we could take.

We could rely on the Central Limit Theorem, that is, assume W is approxi-
mately normal with, from data on surgeon operation times,

N
mean = LE(Xi)

I

N

and Var =LVar(Xi).
I

This approach should be investigated, but our guess is that N will be too small
and the individual distributions too heavy-tailed for this to work reliably. Fur-
thermore, any attempts at corrections (using Edgeworth series for instance)
require estimations of higher-order moments which are notoriously unreliable.

Alternatively, we could use an empirical approach. For each Xi, use the
data to calculate lij = Prob[Xi < tj], where the time sequence {tj} increases
monotonically to 00, say each tj+l = tj + 15 minutes. Since tj -4 00, Lj lij = 1
for each i. Then we have

These calculations appear very practical for small N, although a large amount
of data storage (for the lij) may be required.

Suppose that E patients are admitted as urgent emergency cases needing
operating theatre time. We assume that E is a random variable with E[E] = IlE,
Var[E] = 01, and that typically E I"V Poisson[IlEl. We further assume that the
E patients can be regarded as a random sample from a population of patients
requiring random operating times X with distribution Ix (;c) [this entails no loss
of generality], with E[X] = Ilx and Var[X] = a}.

3For example, if Xi ~ Gamma(ai, A;) (i = 1,2), and if At = A2 = A say, then W will have
the form: W ~ Gamma(at + a2, A).



Then the total operation time required is the random sum, including the
possibility that E = 0 and hence T = 0, given by

If we add W, the operating times for planned surgery, and T the operating
times for emergency surgery, to obtain a total time Z, then assuming indepen-
dence of Wand T, we have

E[W] and Var[W] can be determined from historical data relating to the cat-
egories of the scheduled patients and a sensible criterion would be to ensure
that

where a: = 0.05, say, to allow for gaps between operations and so on. The
patients to be rescheduled are then selected, as far as possible, to ensure that
this constraint is satisfied. Essentially, (4) is an extension of (1) to include both
scheduled and emergency operations.

In the above calculations we have estimated only the mean and variance of
(T and) Z and not the entire distribution, which would be needed to evaluate
(4). The issue of finding such a distribution is looked at in the next section. In
the meantime we note a heuristic, based on the normal distribution, that says
95% of the time, the observed data lies within ±2uz of J.Lz.

Data (See Table 1) suggest that the number of emergency patients, E, ar-
riving each day is a Poisson process with an approximately constant arrival rate
J.LE (Sunday is the exception).



Sun Mon The Wed Thu Fri Sat
N 119 119 117 118 121 119 119
Mean 6 7 7 7 7 7 7
Std Dev 3 3 3 3 3 3 3
Sum 730 821 808 846 804 847 811

If we assume that each emergency patient stays in hospital for a random
length of time, and that these lengths of stay are independent and identically
distributed random variables with means JLs then the process of emergency ar-
rivals is an M/G/oo system. This has the nice property that the number in the
system (in equilibrium) at any time is a random variable with a Poisson distri-
bution and mean JLEJLS' Thus it is possible to predict, with stochastic error, the
number of beds occupied by emergency cases at an arbitrary time.

However, we are probably more interested in predicting how many beds will
be occupied by emergencies in t days time (t = 1,2, ... ), given the current state
of the system. We mention two possibilities.

We could use clinical information about current (today's) patients to assess
their chances of being in the system in t days time and then add an estimate
of the number of new arrivals who will still be in hospital in t days time. The
latter component is Poisson with mean JLEProb[length of stay 2 t]. Hopefully
the former component will be known with a reasonable degree of accuracy.

A second possibility is to use statistical, rather than clinical, information on
the current patients. That is, consider the question: 'Given the M/G/oo model,
what is the distribution of bed occupancy in t days given bn patients here today?'

Let Bn be the number of beds occupied on day n by emergency cases and
assume that the patients' lengths of stay are given by independent and identical
geometric distributions, that is,

Prob(length of stay = k days) = lp, k = 0,1,2, ...

The mean length of stay is JLs = q/p. (This results from determining discharge
each day by independent Bernoulli trials, where p is the probability of discharge).

If we assume no control, complete independence and Poisson emergency
arrivals En on day n with mean JLE and standard deviation (TE, then



where the operator St(N) denotes the number of patients, out of an initial
population of size N, who remain in hospital after t days, and

where the lower case bn denotes the number of occupants at day n. That is, bn
is known at day n + 1. Equivalently, we seek E[Bn+1 I Bn = bnJ.

Now, Var[Bn+1J = pqbn + q2uJ;; + pqPE and the probability of surviving t
days is qt (t = 1,2,3, ... ). So Bn+2 = S2(bn) + S2(En) + Sl(En+d, and

qtbn + PE(q + q2 + ... + l)
qtbn + PE(qjp)(l _ qt)

lbn + PBoo(1- qt),

where PBoo is the mean occupancy in the stationary state, namely the product
of the emergency arrival rate PE and the mean length of stay PS.

E[Bn+tl - PBoo as t - 00.

and can also write, Var[Bn+tJ = bnqt(l - qt) + PBoo(1- qt).

The above approximation of the variance of the bed occupancy (5) can be
generalized to allow for an arbitrary probability distribution of the length of stay.
Note that in the following equations we are working with continuous time. A
discrete time approach can also be developed.



IT, as previously, we assume a Poisson arrival process of patients with mean
JLE, and write the length of stay as a cumulative distribution function F with
mean JLs, then by reasoning similar to the above, we obtain

The quantity on the right is zero at t = 0, and tends to JLEJLS as t ~ 00,

as expected. Furthermore, (6) seems to show that the variance is remarkably
insensitive to the actual form of F.

C = constant distribution (length 5)
U = uniform distribution (on (0,10))

Exp = exponential distribution
G2 = gamma distribution of index 2

(F'(z) = (1/5)e-x/5)
(F'(z) = (2/5)2ze-2x/5 )

that appears in (6) (the proportion of ultimate variance for a t days ahead
prediction), we obtain the following values for q(t).

Distribution Length of stay (t)
t = 1 t = 5

C 0.36 1.00

U 0.34 0.94
Exp 0.33 0.86

G2 0.35 0.93

We conclude that the prediction of bed occupancy looks, in principle, like a
fairly well organized and stable mathematical/statistical problem.



Scheduling operations involves both planning and operational factors. Here
we look at an initial model for planning a schedule of operations over a pe-
riod such as a week. We assume that the hospital has been presented with
the surgeons' lists and wishes to investigate how to best arrange the proposed
operations, bearing in mind that emergency operations must be allowed for.

In practice, the operation and recovery times are stochastic, they are not
known exactly until the operation is completed and until the patient is dis-
charged. However, when planning for the coming week, the hospital staff need
to estimate the time that a particular surgeon will require for a given operation
and the number of days for which a recovering patient will need a bed.

With respect to the planned operations, we assume that all the variables are
deterministic in the sense that we have a specified duration and recovery time
for each nominated operation. These times correspond to the average values as
estimated by the hospital staff. Essentially, we consider a single, averaged, sce-
nario for the planned operations. At this stage we make no attempt to optimise
over a number of different planned operation scenarios.

We allow for emergency operations by including a number of randomly gen-
erated operations on each day. Each emergency operation has an operating
and recovery time generated from appropriate random distributions. We do not
consider different emergency scenarios.

The general optimisation strategy is to generate the random emergency op-
erations and treat them as 'fixed' operations on each day. We then reschedule
the planned operations in an attempt to obtain an improved utilisation of the
hospital's resources and facilities.

In this section we define a series of parameters and variables which we use
to model the movement of patients presenting for surgery, through the hospi-
tal. We use these terms to develop a set of equations for different performance
measures related to the staff resources and facilities available in the hospital.
These equations form the basis for a heuristic scheduling algorithm based on a
simulated annealing approach.



't patient index, i = 1, ... , P2

The patients for planned operations are represented by the indices
i = 1, ... , Pl. We can reschedule these operations.
Emergency operations are represented by i = PI + 1, ... , P2• We gen-
erate these operations and their characteristics using random distri-
butions drawn from existing hospital data. Once assigned, the emer-
gency operations cannot be rescheduled.

J operating theatre index, j = 1, ... , M
n a day in the planning horizon, n = 1, ... , N
B the number of beds available in the ward

Cn the existing bed occupancy from previous operations
Ti operating theatre for patient i
Si scheduled day of operation for patient i
Di duration (in hours) of operation on patient i
Ri days of recovery for patient i

Zi the actual (possibly rescheduled if i 'S PI) operation day for patient i
bn the number of beds occupied on day n
en the number of beds in excess of B on day n

Ojn the hours of overtime needed in theatre j on day n

With these variables and parameters, we can calculate the following terms
related to the utilisation of facilities in the hospital ward.

Patient i will occupy a bed between days Zi and (Zi + Ri), and if we define

U. - {1 for Zi 'S n 'S (Zi +Ri), i= 1, ,P2 (7)
m - 0 otherwise, n = 1, , N

then the number of beds occupied on day n is
P2

bn = L Uin + Cn ,

and the mean and variance of the bed occupancy are

E~=I bn and 2 E~=I b;' 2
J-Lb = N (Tb = N - J-Lb •

The excess bed requirement on each day is

en = { bn - B for bn > B ,
o otherwise.



The planned operation on patient i:S PI involves rescheduling by (Zi - Si)
days.

P2
hjn = L {Di : Tj = j, Zj = n}.

i=1

ITwe set 8 hours as the normal working hours each day in an operating theatre,
then the overtime worked in theatre j on day n is given by

O"n = { hjn - 8 for hjn > 8, (12)
J 0 otherwise.

There are a number of factors that need to be balanced in order to obtain a
good operating schedule. The particular factors and their relative weights will
depend largely on the systems used in a particular ward. In general however,
we are looking for an optimal balance of some or all of:

• high bed occupancy with hopefully a low variation in this occupancy,
• a low need for overtime during the planning horizon,
• minimum deviation from scheduled operation times.

Considering each of these items in turn, we could develop an objective func-
tion, to be minimised, consisting of the following terms. In the discussions of
these terms, the weights Wv, Wm, We, Wo, Wr ~ 0 indicate the relative impor-
tance we give to each of: the variation in bed occupancy, the level of bed util-
isation, the use of excess beds, payment of overtime and rescheduling planned
operations.

The factors relating to bed occupancy can be expressed as

N

wvo-l- WmJLb+ We L en·
n=1

The third term in (13) indicates that we are penalising the use of excess beds
rather than enforcing a hard constraint such as



This allows for a situation in which a hospital may choose to pay for the transfer
of recovering patients to beds in another hospitaL It also simplifies the devel-
opment of a simulated annealing algorithm for the optimisation problem. By
incorporating the excess bed factor as a penalty term in the objective we remove
the need to maintain feasibility (at least for this factor) as candidate solutions
are generated. If necessary, we can effectively prevent excess bed use by setting
a very high penalty for en > O.

The contribution to the objective from overtime worked during the planning
period is given by

N M

WaLL Ojn.
n=lj=l

If necessary, we could allow for an overtime budget of say $Y and use a term of
the form

N M

W~{p L L Ojn - Y } ,
n=lj=l

where p is some mean overtime payment rate. We could also formulate the
overtime factor in terms of a hard constraint.

We use the expression e1xi-s;I to penalise a change in the operation for
patient i from day Si to day Zi. The exponential function is used here to try and
discourage shifting operations by too many days. The particular changes allowed
to Si will depend on hospital policies. In particular, they will need to reflect the
arrangements that the surgeons have with the hospitaL The contribution to the
objective from rescheduling operations is

PI
Wr L elXi-Sil .

i=l

N N M PI

WvO"~- WmfLb+ WeL en + WaL L Ojn + WrL eIXi-Sil. (16)
n=l n=l j=l i=l



We have written the operation scheduling problem as an objective function
with a series of weighted penalties. The terms for excess bed use and over-
time could be treated as hard constraints by using suitably large weights in the
objective function.

As formulated, we have a mixed Non-Linear Integer Program (NLIP) prob-
lem to solve. Given the complexity of the objective, a heuristic approach, such
as simulated annealing (SA), is probably the most appropriate method to apply
to the problem.

We developed a computer program to solve the mixed NLIP minimisation
problem given by (16) and describe some ofthe factors involved in implementing
the algorithm below. We also discuss some of the results obtained from the
program.

There are two major aspects associated with developing the SA code for our
problem.

1. The first is reasonably straightforward and involves writing a set of house-
keeping subroutines to calculate each of the terms in the objective for a
given candidate solution of:l:i values.

2. The second is a little more complicated. It involves setting up suitable
transitions for moving from one candidate solution to another. Essentially
we want to explore the near neighbourhood of the current solution. To
restrict major changes to a solution we employed the following two transition
operations:

• a pairwise interchange of the operating days for two patients, that is,
swap the values of:l:i and :l:kfor randomly chosen i and k,

• a shift in the day of operation for a patient, that is, :l:i t-- :l:i± d for a
randomly chosen i, with d a random number of days.

In practice, these transitions will be restricted to a set of allowed moves that
reflect the arrangements that surgeons have with a given hospital. Patients
will need to be rescheduled to other days (and possibly time periods) on
which their surgeon has time booked in the operating theatres.

At the time of writing, we did not have the data needed to set up a rule base
which ensured that patients are rescheduled to other days on which their surgeon



operates. In order to test the program, we allowed operations to be rescheduled
to any other day in the planning period. Essentially this gives us a relaxed
problem that should give 'better' solutions with respect to factors, such as bed
utilisation and overtime, which are of interest from the viewpoint of hospital
administrators.

In the absence of data from hospital records, we used a small test problem in
which 40 patients are scheduled for planned operations in 4 theatres over a one
week (5 day) period, 45 beds are available in the ward for recovering patients.

The emergency operations for each day are generated from a Poisson dis-
tribution with a mean of 4 operations per day. For the test case, a total of
21 operations were generated. The operation durations and recovery periods
are taken from exponential distributions with means of 0.6 hours and 5 days
respectively. The emergency operations are spread evenly among the operating
theatres. We obtained the 'known' bed occupancy for the current week, result-
ing from operations carried out during the previous week, from a prior run of
the program with a similar set of operation data.

Table 3 gives a summary of the some of the performance measures obtained
from the program before the optimisation process starts. These values were
calculated from the initial list of planned operations, together with the expected
emergency operations.

Operations on each day 6 4 15 22 14

Overtime 1.6 6.4 1.4

Beds occupied on each day 36 38 38 51 58

Bed occupancy: Average 44.20

Variance 95.20

From Table 3 we note that there are a large number of operations on the last
3 days and that we need more beds than are available (45) on the last 2 days.



Running the program with weights4: Wv = 0.3, Wm

Wo = 1.0and Wr = 0.0,gave the following results.

Operations on each day 12 5 15 16 13
Overtime 1.8 0.4 2.3 0.1
Beds occupied on each day 42 45 45 45 45
Bed occupancy: Average 44.40

Variance 1.800

The results in Table 4 were obtained with Wr = 0.0, that is, there is no
penalty if operations are rescheduled. The total overtime has been reduced from
9.4hours (see Table 3) to 4.6hours. Bed occupancy never exceeds the maximum
number of beds available and is more evenly spread across the week. These
results have been obtained by rescheduling operations as shown in Table 5.

Patients 1-10 2 1 -2 -2 1
Patients 11-20 -1 -3 -2 -1 2
Patients 21-30 -1 -2 -3 -1 -1 -2 -3 1
Patients 31-40 -1 -1 2 -3 -2 -2 2 1

If we use a value Wr = 0.3 to restrict the extent to which operations are
rescheduled then we obtain the results shown in Tables 6 and 7. The effect is to
reduce overtime from 4.6hours to 4.3,there is a slight decrease in the average
bed occupancy5 and an increase in its variance.

Operations on each day 10 7 15 14 15
Overtime 2.2 0.4 1.7
Beds occupied on each day 40 45 45 45 45
Bed occupancy: Average 44.00

Variance 5.000

4 Note that these weights do not in themselves give a direct idea of the relative contribution
of each term in the objective function, we also need to look at the relative magnitudes of the
terms /Lb, CT~, en and so on.

sIt is often difficult to predict how changing the weights in an objective function such as
that given by (16) will affect the solution.



For the case with Wr = 0.0,26 out of 40planned operations are rescheduled.
The average change to the schedule, for those patients affected, is 1.7 days. With
Wr = 0.3, the number of rescheduled operations has decreased to 15 with an
average shift of 1.3 days.

Patients 1-10 -1 -1 -2 -1
Patients 11-20 -1 -1 -2 1
Patients 21-30 -1 -2 -2 -1
Patients 31-40 -1 -1 -1

The models described here are simplified representations of patient behaviour
and hospital processes, and the systems used to organise surgical procedures in
a hospital. Nevertheless, we feel that these provide a reasonable starting point
for developing an optimisation procedure for planning theatre schedules.

There is a wealth of data already available on hospital patients, such as
information on arrivals, surgery times, and recovery times. This can provide the
basis for the application of often straightforward statistical techniques not only
to estimate, for instance, bed occupancy the day after tomorrow, but to give
measures of accuracy of such estimates. These predictions can be implemented
in the short term (in a computer system), and used in a systematic way to assist
human schedulers. An eventual goal may be to use such predictive technology
to produce partial inputs for an automatic but interactive scheduling program
based on optimization techniques (§3).

Individual hospitals have their own systems for allocating surgeons to the-
atres and rostering the support staff for operations. As well, different perfor-
mance measures may be used in different hospitals. With regard to optimizing
theatre schedules, any further work probably needs to concentrate on developing
the model to meet the needs of a particular hospital. The most practical initial
steps would be to:

• Adapt the different terms in the objective to reflect the performance mea-
sures used at the hospital.

• Incorporate the rules needed to ensure that the transitions used to generate
solutions in the SA reflect the arrangements that the surgeons have with
the hospital. Essentially, the association of patients with surgeon theatre
times constrains the possible values for each :l:j.



• With the search space constraints for the hospital implemented, optimise
the various SA control parameters.
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