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MODELLING THE COOKING PROCESS OF A SINGLE
CEREAL GRAIN

Four models are developed to assist with the uniform and accurate
cooking of whole grains for Uncle Tobys breakfast cereals.

1. Heat satisfies a linear conduction equation and is found to rapidly
penetrate the grain.

2. Moisture satisfies a non-linear diffusion equation, and is found
to penetrate the grain more slowly than heat. The more so-
phisticated moisture diffusion model is solved by numerical and
analytic techniques for spherical and ellipsoidal grains.

A vital role is played in the moisture diffusion model by the con-
cept of the mean action time for wetting a grain.

These first two models are used to determine sensitivity to key
cooking parameters, and to calculate the degree of over-cook in
the existing batch steam process. Recommendations are made
for improving and speeding up the cooking process.

The last two models are modifications of the nonlinear moisture
penetration model 2. above. The results of these improved models
have the potential to provide finer adjustments to estimates of
wetting times.

3. A cereal grain swells significantly during wetting. A model that
takes this into account is developed and solved approximately.

4. Another wetting model describes the effect of the gelatinisation
reaction, slowing moisture penetration, and leading to a sharp
front entering the grain. The effect of gelatinisation on the speed
of moisture penetration is expected to be more important for the
present high-temperature cooking process, than when soaking a
grain at a lower temperature. This model is also developed and
solved approximately.

1. The problem

Whole cereal grains of corn, wheat, oats and rice are cooked at Uncle Tobys
Wahgunyah Plant in a rotating steam pressure-cooker, in one tonne batches.
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Cooking depends on two concurrent processes, heating the grain to a high enough
temperature, and hydrating the grain to a high enough moisture content. After
cooking, the grains are dried, flaked, toasted and coated before packaging as a
finished breakfast cereal product.

The breakfast cereal manufacturing line currently installed at Uncle Tobys
Wahgunyah Plant is now running near full capacity, and the rotary cooking
operation is known to be the bottle-neck in the line capacity.

An idea proposed by Uncle Tobys is to separate the wetting and heating pro-
cesses, installing additional equipment to wet the grains, and using the existing
rotary batch pressure cookers to heat them. If the time required in the cookers
could be reduced, throughput could be increased.

Besides speeding up the cooking process, Uncle Tobys also mentioned the
importance of being able to ensure a uniformly cooked product. Under-cooking
of part of the grain produces a raw taste and poor binding; and over-cooking
produces a sticky dough that is difficult to process, and a product that goes
soggy too quickly in milk.

Uncle Tobys has asked specifically for two mathematical models:

1. one predicting the moisture content of a single cereal grain as a function
of some grain property, grain size, process temperature, process pressure
and time, and

2. one predicting the internal temperature of a single cereal grain as a function
of some grain property, grain size, process temperature, process pressure
and time.

Ideally, the models could be extended to cover the present process where
both mechanisms occur together.

2. Background

Cooking involves gelatinising the starches present. It is desirable to retain
the longer-chain starches, which give a product that retains its crispness when
put into milk. This is one reason that whole grains are cooked - if grains are
physically broken up first, too much of the starch is broken down to shorter
chains, giving the over-cooking problems mentioned above.

Gelatinisation is the process whereby water and heat cause starch granules to
swell, and eventually burst at the gelatinisation temperature Tgel. The swelling
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is reversible up to a temperature somewhat below the bursting temperature,
TgeJ, and irreversible beyond it. Water is taken up by the grain, which swells
by a volume equal to that of the water taken up. The water bonds with the
starch, although there is evidence that there is still freedom for bonded water to
interact with neighbouring dry starch.

Gelatinisation occurs over a temperature range of about lOoe, at a tem-
perature that depends on the moisture level. The relationship is illustrated in
Figure 1. If moisture content is too low, it is thought that gelatinisation cannot
occur at all. The higher the moisture content, the lower the temperature at
which gelatinisation occurs. Moisture content is here the dry ratio, the ratio of
the mass of water to the mass of dry grain. Another measure of moisture content
commonly used is the wet ratio, the ratio of the mass of water to the mass of
water plus grain.
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Figure 1: A sketch indicating gelatinisation temperature versus moisture content
(dry ratio).

A thermodynamic treatment of the gelatinisation process is consistent with
the observed inter-dependence of Tgel and moisture levels. In this, the starch
is treated as a melting crystalline polymer, with water the dilutent. The latent
heats of melting obtained experimentally are tabulated in Table 1.

call gm dry starch JIgm dry starch
Corn 4.1-4.9 17.2-20.5
Wheat 2.5-3.3 10.5-13.8
Rice 3.4-3.9 14.2-16.3

Table 1: Latent heats of melting.
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Grain structure and properties are summarised in Figure 2 and Table 2. Two
major parts of the grain are identified in a simplified view of the actual grain, the
outer cellulose skin or pericarp, and the inner region filled with starch granules.

2.5mm

5mm

Figure 2: Sketch of a simplified rice grain.

Properties Cellulose Corn Starch units
specific heat Cp 2500 2160 Jj(kgOK)
density p 950 1400 kgjm3

thermal conductivity .oX 0.15 0.26 W j(m OK)
thermal diffusivity aa 6.3 X 10 8 8.6 X 10 -8 m2js
moisture diffusivity D
at 40°C
(Syarief et al. (1987)) 6 X 10-12 e8.6M 1.5 X 10-11 e8.6M m2js
lengthscale 0.1 - 0.15 1.25 mm

Table 2: Some properties of whole grains.

3. Heating

The linear diffusion equation for temperature T(z, t) at time t and at location
z in the grain is

aT _ T"72T--aavat (1)

with initial temperature T(z, 0) = Ta, and T = T} at the grain surface for t > O.
This has solutions that depend on the grain shape.

Two different measures of time to heat or wet are used here, t" the time for
the temperature at the centre of the grain to move to 90% of its final value, and
a mean action time t"' (McNabb, 1975, and McNabb and Wake, 1991), which is
particularly useful for the nonlinear wetting problem. These time measures are
illustrated in Figure 3.
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Figure 3: Sketch showing the locations of the time t" to reach 90% of the final
temperature, and of the mean action time t'" at a point.

3.1 Mean action time

A solid theoretical basis for heating time is given by McNabb (1975) and
McNabb and Wake (1991), and is outlined briefly here. A mean action time t**
is defined at each point in the grain by

"( ) _ 1000
t~~ (z, t) dt -1000 Tl - T(z, t) dt z - 00 aT - t.10 8t"(z, t) dt 0 Tl - To

We define ~(z) by setting t**(z) == ~(z )/ao. Then substitution into the diffusion
equation gives the result that ~ satisfies a Poisson equation,

(2)

(3)

inside the grain, with ~ = 0 on the grain surface. The largest value of ~, ~G,

gives the mean action time for heat to penetrate to the centre of the grain. A
graphical interpretation is given in Figure 3. The areas shaded on either side of
the mean action time are equal, showing how it corresponds to locating a front in
shock theory. With a sharp front, as occurs in nonlinear diffusion problems like
the wetting problem introduced later in this report, there is very little difference
between t* and t/": With a more diffuse front, like the present linear problem,
t" can be up to twice as large as t"",

3.2 Sphere

For a sphere of radius R, reference to the solution plotted in Figure 4 shows
that

r = 0.3R2
/ ao. (4)
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The leftmost curve is the relevant one when temperature is fixed at the surface
of the grain, which is the boundary condition used in this report. For the mean
action time, the Poisson equation has solution

t**

(R2 _ r2)/6,
R2/(600).

(5)
(6)
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Figure 4: Solutions to the linear diffusion problem in temperature for a sphere.

3.3 Ellipsoid

For an ellipsoid
:z:2 y2 Z2

2" + b2 + 2" = 1a c
the solution to the Poisson equation is

(7)

(8)

where

(9)
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The penetration of heat then follows ellipsoids, successively smaller and
smaller as time progresses, like onion skins. The mean action time for heat
to penetrate to the center of an ellipsoidal grain is

t** = _----,;--_1 ~
200 (a\ + ~ + c\ )

(10)

and t* is approximately twice this.

The pericarp, which has a slightly different thermal diffusivity to the inner
part of the grain, is so thin that it is of no consequence.

4. Time scales for wetting and heating - linear models

The times t* to heat and wet in Table 3 are calculated assuming linear
diffusion occurs. This is a good assumption for heating, and a poor assumption
for wetting. It gives a first approximation to the times involved. It is immediately
clear that a grain heats right through in a much shorter time than it takes to
wet.

Times t* Cellulose Corn Starch units
timescale - linear heating 0.05 5.4 seconds
timescale -linear wetting (M=0.15) 2 145 minutes
timescale -linear wetting (M=0.5) 0.1 7 minutes

Table 3: Some timescales for heating and wetting whole grains.

This puts an entirely new picture in place for the existing batch steam pres-
sure cooking process. Uncle Tobys had originally modelled the thermal front as
following the wetting front, linking them by an Arrhenius law. Now it is clear
that the present process is moisture-limited, and most of the hour or more of
cooking time is spent waiting for moisture to penetrate the hot grain. It also
means, given that the temperature is well above Tgeh that much of the grain is
over-cooked.

Already this indicates that separating the processes is a good idea, particu-
larly that it is a good idea to wet the grains before heating.

Mathematically, we can separate the heating and wetting processes because
the timescales are so different, irrespective of whether the processes are separated
in practice.
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5. Wetting the grains - a nonlinear model

A variety of models was investigated. Convection models considered the
possibility of modelling moisture penetration as flowin a porous medium, driven
by capillarity or swelling. These were rejected as they do not fit with what is
known about the grains. There is no air in the grain before hydration, and
hence no surface tension to drive a capillary pressure. Water enters the grain
by sorption processes, driven by a chemical potential called water affinity. The
amount of grain swell is equal to the volume of water absorbed.

Such a process leads naturally to a nonlinear diffusion equation for moisture
content. The paper by Syarief et al. (1987) is the best reference we found to
the way grains take and lose water, below Tgel. Syarief et al. present the results
of careful experiments on the uptake and loss of moisture from various parts
of a corn kernel, and they fit the experimental results with a fully nonlinear
numerical finite element model. They find that the following nonlinear diffusion
equation accurately describes the uptake of moisture at 40°C:

aM = V.(DVM)
at' (11)

where M is the ratio of the mass of water to the mass of dry starch, and the
nonlinearity comes from the dependence of D on M,

D == Doexp(8M),

where Do and 8 are positive real constants. For corn starch, the values they
find for Do and 8 are tabulated above in Table 2. The initial value Mo of M
is typically about 0.15, and the desired final moisture content, Mt, is usually
about 0.6.

We non-dimensionalise and re-scale equation (11) by choosing

M-Ml
(12)m = Ml-Mo

t
Doe6ML ,

(13)= R2 t

where R is a lengthscale in the problem, so that the diffusion equation becomes

(14)

where (3 = 6(Ml - Mo), with initial condition m = -1 everywhere in the grain,
and boundary condition at the grain surface m = 0 for t > o.



122 Uncle Tobys

Some typical values for parameters are h = 8.6, /3 = 3.9.

This nonlinear diffusion equation (14) has been solved numerically and ana-
lytically, as described in Sections 5.1 and 5.2 respectively. Swelling effects, and
gelatinisation at the wetting front, are modelled later, in Sections 8 and 9.

5.1 Numerical solutions

The finite element package called FastFloTM was used to solve equation (11)
accurately with ellipsoidal geometry. FastFlo™ was developed by CSIRO Di-
vision of Mathematics and Statistics; it is finite-element based and has the ca-
pability to deal with a range of element types on structured and unstructured
meshes. Due to symmetry, only one quarter of the ellipsoid is shown. Figure 5
shows snapshots of the contours of constant moisture content, at times 2, 10
and 20 minutes after beginning to soak the grain. Contours are evenly spaced
in moisture content, with some values indicated directly on the plots. The con-
tours at 10 minutes illustrate the sharpness of the wetting front, in the clustering
near 38% moisture. After 20 minutes most of the grain is close to 37% moisture
content.

.61

lIfter 2 m1ns lIfter 10 m1ns lIfter20mlns

Figure 5: Numerical solutions to the nonlinear wetting problem for an ellipsoid,
using FastFloTM.

Another numerical approach used was to program a finite difference solution
using the NAG package, for a spherical grain. The sphere radius was taken to
be 1.6 mm, and the diffusivity was taken as 1.5 X 10-11 exp(8.6M). Moisture
content profiles are shown in Figure 6 at 3 minute intervals, showing the grain



Modelling the cooking process of a single cereal grain 123

to be very close to equilibrium moisture levels after 21 minutes. These profiles
are in good agreement with the FastFlo™ results.
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Figure 6: Numerical solutions to the nonlinear diffusion equation, for a sphere,
using NAG.

5.2 Analytic solutions - mean action time

Following McNabb and Wake (1991) (see also McNabb, 1975), we define a
mean action time at each point x in the grain for equation (14) as follows:

**( ) _ Jooo t[ft J~ e{js ds] dt
t z = r= [a Jm (j •

JO at -1 e If ds] dt

The integrals can be simplified to give

(15)

**() JoOO(1 - e{jm) dt
t z = 1_ e-{j . (16)

Note that as {3 - 0 the definition in equation (16) is the same as that in the
linear definition equation (2).

IT we define

(17)

so that
** {3f!P

t = {j'1-e- (18)
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then substitution into the nonlinear diffusion equation reveals that ~ satisfies a
(linear) Poisson equation inside the grain:

V2c) = -1, (19)

with boundary condition c) = 0 on the surface of the grain. This Poisson equa-
tion can be solved for an ellipsoidal shaped grain,

:c2 y2 z2
2" + b2 + 2" ~ 1. (20)a c

Here, (:c,y, z) and (a, b, c) are the non-dimensional variables and semiaxes ofthe
ellipsoid. The same equation for the ellipsoid applies, when (:c, y, z) and (a, b, c)
have dimensions. The analytic solution ~ is given in equations (8) and (9).

The largest value of c) is at the centre of the grain. This gives the maximum
mean action time, so that

C)C 1
(21)(t 1 1)'2 a2 + b2 + c2

ta {3
(22)= 1 _ e-f3 c)c·

The term c)c can be seen to be a shape factor, dependent on grain shape,
in the expression for the maximum mean action time ta. The expression for
maximum mean action time in seconds is then

, R2e-liM1 (3c)c
tc(s) = Do(l- e-(3) • (23)

Using the properties tabulated for corn starch in Table 2, and the grain shape
illustrated in Figure 2, leads to a wetting time ta = 18 minutes. Note that while
this falls between the extreme values of 7 minutes and 145 minutes calculated
using linear theory in Table 3, it is closer to the value of 7 minutes calculated
using M = 0.5. Note also the excellent agreement with numerical results for
spherical and ellipsoidal shapes.

5.3 Log mean diffusivity

A significant way to rewrite the maximum mean action time is as

, R2c)C
tc(s) = --,

Dequiv

where the equivalent diffusivity is the log mean of the extreme values taken by
the nonlinear diffusivity,

(24)

(25)
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where
D - D eliM! D - D eliMo

wet= 0 , dry= 0 .

125

(26)

Even though the moisture penetration problem is a nonlinear diffusion one,
the definition used for mean action time justifies the treatment of the diffusion
of moisture as an equivalent linear diffusion problem, at least in terms of the
times taken to wet grains. That is, the form of equation (24) is the same as the
time scaling obtained with a linear diffusion equation with a diffusion equal to
Dequiv.

5.4 Degree of over-cook for the present process

The present cooking process at Uncle Tobys involves high temperature steam
pressure-cooking. The grains quickly establish a constant temperature, and
gelatinisation depends on the penetration of the moisture front. In this section
we give a formula for calculating how the degree of over-cook varies with time
and temperature for a single grain, for this process. The first step is to calculate
the volume of grain that has been cooked.

The volume that has been gelatinised can be calculated using the mean
action time to locate the wetting front as it enters an ellipsoidal grain. First
we calculate the volume that is not yet cooked. After t' seconds, assuming the
mean action time gives the front location, the moisture front has penetrated to
e, y, z values satisfying

, R2e-liM! {3~(z,y, z) td~(z, y, z)

t = Do(1 - e-.8) =. ~G •

Substituting for ~G and ~ from equations (21) and (8) gives

~G z2 y2 z2

~ = 1- a2 +b2 +c2•

Hence, after t' seconds, all points inside the ellipsoid

z2 y2 z2 t'(,,)
-+-+-=1---
a2 b2 c2 td(")

are not yet cooked. This ellipsoid has semiaxes (Ba, Bb, Bc), where

eB2 = 1--.
td

The volume uncooked is the volume inside this ellipsoid,

4 ( , ) 3/2
-1rabc 1-~
3 t'G

(27)

(28)

(29)

(30)

(31)



126

Hence the volume overcooked is

4 [ ( t' ) 3/2]V = -7rabc 1- 1- - .
oc 3 t'

G

Uncle Tobys

(32)

This volume is sketched in Figure 7. It has been normalised on the total grain
volume, and the time variable has been divided by the mean action time,

i = t' /t'c.

1

,.,.

Vac
Vtotal

,.,.

o
o

t
1

Figure 7: A sketch of the calculated volume (over)cooked, for an ellipsoidal
grain. The dashed line is a straight line of slope 1, for comparison.

The degree of over-cook might usefully be defined to be

f Voc(t')
1)oc == eTexce •• 10 t'dv, (33)

where Texcess is the excess temperature above the gelatinisation temperature for
the equilibrium moisture content of the grain. Transforming the integral so that
everything is in terms of the time variable t', and dropping the primes for the
remainder of this section, gives

27rabc lot ( t ) 1/21) = eTexc ••• -- t 1 - - dt
oc tt'G 0 G

(34)
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for t ::; ta, and

21\"abcr ( t ) 1/2 4
'Doe = eTexce•• -- t 1- - dt + -31\"abc(t- tG)

to 0 tc

for t ~ tG, when all of the grain is cooked, and it continues to over-cook at a
rate proportional to time. These integrals are evaluated by elementary methods
to give in explicit form

(35)

{
[

2 1 ( t ) 5/2 1 ( t ) 3/2]T. 41\"abctG - + - 1- - - - 1- -
'Doe = e exce.. 15 5 tG 3 to '

87rabctG + i1\"abc(t - t )15 3 G ,

t ::;to,

t ~ tG.
(36)

The way that the degree of over-cook depends on time is illustrated in Fig-
ure 8. The value plotted on the y axis is a normalised degree of over-cook,

D' _ Voe
oe - 4 b T. '31ra ctGe exce ••

and the variable along the i-axis is a normalised time,

- t
t= -.

tG

0.8

0.4

O-""'--- .....•...---..&....-----L..
o 0.5 1 1.5

t

Figure 8: A sketch of the normalised degree of over-cook against a normalised
time, for an ellipsoidal grain.
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6. Temperature dependence of wetting times

This is adequately incorporated into the model by taking the well-known
Arrhenius dependence of Do on temperature T,

Do = K eEa/(RT), (37)

where K and Ea are constants, R is the gas constant, and by allowing for the
dependence of M} on temperature. Uncle Tobys is already well aware of these
dependencies, obtained through experiments. M}, the final stabilised value of
moisture content, increases with temperature. However, Do decreases rapidly
with increasing temperature, slowing the time to wet. So the optimum temper-
ature at which to wet the grains fastest is that which is just hot enough to raise
M} to the desired moisture level before cooking.

7. Sensitivity analysis

The previous analytical studies lead to Table 4 identifying the sensitivity of
the wetting time to parameters such as variations in grain size, diffusivity, and
final moisture content.

I Sensitivity of r: to: I Linear Model I Nonlinear Model

R R2 R2

{3 = 6(M} - Mo) none {31(1 - e-.B) "" {3, {3 ~ 00

Do uo; ito;

M} none e-liM1

Table 4: Sensitivity of wetting times to model parameters.

8. Swelling of the grain due to moisture absorption

In the previous Section 5, a model has been examined which considers the
motion of the water into the grain interior due to gradients in water affinity but
excludes the effects of swelling of the grain. In this section we shall consider
how the swelling may be incorporated into the model and outline the solution
structure in the case where the water diffusion in the original grain is much less
than the diffusion at the surface during hydration.
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8.1 A grain swelling model

Swelling of materials as fluids are absorbed has been considered in several
situations such as soil wetting and absorption of solvents in polymers. We shall
give an outline derivation of the underlying equations indicating the approxima-
tions made.

The basis of the model will be that at any point in the grain we can consider
the water to occupy a volume fraction tP and that the remaining volume fraction,
1 - tP, is completely taken up by the solids of the grain. As water moves through
the grain it is assumed to displace the solids on an equal volume basis. Taking
Us to be the actual velocity (m3 / (m2 8» of the solid at any point, Uw as the
actual velocity of the water and assuming each material has constant density we
can consider the conservation of solid and of water at each point in the grain to
give

(38)

(39)

For the purposes of analysis it is easier to work with these in a slightly different
form, representing total conservation and a relative change. We add and subtract
them to give

(40)

(41)

We take the velocity of the water to be driven, as before, by gradients in the
water affinity. Equation (11), for the case when the solid is stationary and no
swelling is accounted for, is

(42)

where M is the mass fraction of water on a dry basis, 5 is a constant with a
value around 8.6 and Do is also constant. This definition corresponds to

(43)

where Pw and Ps are the densities of water and solid.

From equation (42) we conclude that the flux of M at any point is

-DoiMVM
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and, since the flux is the concentration times the velocity, that the actual velocity
of the water through a stationary solid is

(44)

We can now use this expression to give the following expression for the velocity
of the water in the case where the solid is moving

6MV'M
u., = Us - Doe M· (45)

Putting this definition of water velocity into the conservation equations gives

0, (46)

O. (47)

The model is complete except for the fact that we have stated nothing about
the forces acting on the solid that may result due to its motion. Models may
either take the solid as a visco-elastic material or some other behaviour based
on the properties of the grain. Such models have been considered by several
authors, for instance King (1989). We do not anticipate that the resulting forces
will be sufficient to influence the water transport except to change the position
of the outer surface of the grain.

We integrate the first equation from the center of the grain, and choose a
frame of reference such that the net flux of grain and water mass is zero there,
to give

Doe6M !V'M = Us. (48)

Note that this corresponds to a particular choice of velocity of frame of reference,
moving with the grain itself, and the results are independent of this choice.

This completes the model of the behaviour, and the equation of motion for
the water in the swelling grain is

84> ( 6MV'M )8t = V'. (1 - 4»Doe M 4> . (49)

Using the relationship between M and 4> in equation (43), we can express these
equations in terms of either M or 4> • Hence either

(50)
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or
(51)

When considering a particular problem to solve we take the grain to have an
initial moisture content Mo and we assume that the outer surface is kept at the
moisture level Mt. The equation must be solved inside the grain with this initial
condition and boundary condition. The boundary condition, however, must be
imposed on the outer surface which will move at a velocity given by

oM c/>nMDoe -v ·n
M

where n is the outward facing normal to the surface. The problem is therefore
a moving boundary problem for a nonlinear diffusion equation.

8.2 Approximate solutions

In order to gain some insight into the behaviour of the water movement
when there is swelling, we derive an approximate solution in a region of param-
eter space of physical interest. It appears that one of the main situations of
interest to Uncle Tobys is when the moisture content is changed substantially,
and in particular where the resulting water diffusivities at the initial Mo level
and at the Ml level are significantly different, perhaps an order of magnitude
different. We could formally consider this problem using matched asymptotic
expansions. However, it is more instructive to outline the structure of the so-
lution and indicate the different physical balances in the various regions. The
analysis is not novel and has been done in various contexts elsewhere.

The basic structure of the solution is that the water moves into the region
from the surface and because the diffusivity is such a strong function of the
concentration the flux in the region immediately adjacent to the surface is nearly
uniform. This uniform flux region extends until the concentration approaches
the initial value where a narrow layer separates the region of constant flux from a
region where there is no substantial change from the initial value. This transition
layer has the form of a travelling wave and its position changes as the water moves
into the grain.

To illustrate the structure consider the I-D problem with the grain initially
in the region 0 :::;:z::::;L and the outer wetted surface at the point :z:= R(t),
with R(O) = L and where :z:= 0 is a stationary point impermeable to water (to
represent a line of symmetry). The problem is then

(52)
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with

M
M

aM
ax
dR
dt

R(O)

Uncle Tobys

Mo at t = 0,
M; at z = R(t),

(53)
(54)

(55)

(56)

(57)

o at x = 0,

D oM Ps aMoe '---'---
PsMl + Pw ax '

L.

The relevant dimensionless groups within this problem can be identified by
introducing the non-dimensional variables

x = x/L ,

M= M-Ml
Ml-Mo

Hence the problem becomes

R(l) = R(t)/ L

a (a + M ) a ( ef3
M aM)

at i + vM = ax (; + vM)2 ax
with

M
M

aM
ax
dil
dt

R(O)

(58)

-1 at i = 0,
o at x = il(l),

(59)
(60)

(61)o at x = 0,

vaM
-::;ax'
1.

(62)

(63)

Within these equations the non-dimensional parameters are

i = 1+ PsMt

Pw

v = Ps(Ml - Mo) = i - 1 (3= 8(M
t

- Mo)
Pw a

and hence there are three separate non-dimensional groups to consider. For
practical situations of interest the typical value of each of these parameters is
between 0.5 and 3.
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Because the parameter {3 is in the exponential it has a significant influence
on the solution and the approximate solution described below can be generated
by performing a large activation energy asymptotic analysis on the system in
the limit (3 ----+ 00.

The approximate solution is found by breaking the solution into two main
regions. The first has 0 ~ :z: < s(l) and is where no additional water has diffused
while the second region s(l) < :z: ~ R(l) is where the flux is nearly constant.
The interface between these regions is designated by 8(l), which is the position
of the wetting front.

Hence in 8(i) < :z: ~ R( l) we have

e{3M oM
(-y + vM)2 oi '" A(i) , (64)

which integrates to give

J e{3M -
( )2 dM '" A(i)i + B(i).-y+vM

(65)

The integral on the left-hand side of equation (65) is well-defined for M in the
range [-1, OJ,and is related to the exponential integral E2 and to an incomplete
gamma function.

This solution is required to satisfy the conditions

M
dR
dE

R(O)

Oat i = R(l),
voM -
-- at i = R(f\-y oi "),
1,

(66)

(67)

(68)

and in addition either by a careful local analysis around s(i) or by conservation
of mass at this point we also insist that it satisfy

M =
ds (Cl Cl-1)
dE -::;- -y - v

8(0)

-1 at i = s(i),
loM= - - - at f = s(l)

-y2 of '
1.

(69)

(70)

(71)

The solution in the other region is M = -1. So the problem reduces to one of
solving the algebraic and ordinary differential equations for A, B, Rand s. The
full system is

fo e{31/ -

g2 == ( )2 dy = A(i)R(i) + B(i),
-1 -y + vy

(72)
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dR
df

o
ds (0: 0:- 1)
df :;-,-v

R(O)

Uncle Tobys

u-A(f),,
A(f)s(f) + B(f),

-A(f),

1, s(O) = 1.

(73)

(74)

(75)

(76)

Simple manipulations result in the solution in the implicit form

ER+Fs =
Eil2 + Fs2

(77)
(78)

where g2 is defined above, and the constants E and F are defined to be

E = r = Pw + PsMl
- V Ps(Mt - Mo)

and

(79)

0: 0:-1
F=. ----.

, "t ': v
(80)

Equations (77) and (78) can be solved to obtain R and s explicitly as

- 2 2Fg2-

(R-l) = E(E+F)t,

and

(81)

_ 2 2Eg2-
(1- 8) = F(E + F/" (82)

The dimensionless time for moisture to fully penetrate a one-dimensional
swelling grain is the time when s reaches zero, that is

The penetration time in seconds is given by

(83)

* _ L2 -6M1 F(E + F)
tswelling - Do e 2E g2 • (84)

Note that the form of this wetting time is the same as without swelling,
relating time to the square of the length. The new feature is the dependence on
E, F and g2, which in turn depend in a moderately complicated way on Pw, Ps,
Mo and Mt.
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Figure 9: Sketch showing dependence of g2 on {3.

Note also that for large (3, Laplace's method gives the leading behaviour
g2 "-' 1/({3,2), {3 ---t 00. This approximation can be quite good even when {3 is
only 3, as illustrated in Figure 9. The thin line shows g2 when , = 1.7 and
v = 0.5, while the thick line shows g2{3,2, which is close to one when the leading
behaviour is a good approximation.

When M; = 0.5, values for the parameters based on the corn starch prop-
erties listed in Table 2 are, = 1.7,0: = 1.4, v = 0.5, {3= 3, E = 3.4, F = 0.5
and g2 = 0.13. Hence the time to penetrate a swelling grain of length L is
t;welling = 50 minutes. This is significantly longer than the time of 18 min-
utes from the nonlinear moisture diffusion model of Section 5, which makes no
allowance for the effect of swelling.

This analysis can be extended to the case when the region is either cylindrical
or spherical and this merely requires more algebra. In these cases we again do
not need to consider the law governing the motion of the material. For more
realistic shapes, including those with cusped initial shapes such as occur in real
grains, more work is required accounting for the forces acting on the solid as
well as approximating the solution to the model for the case {3---t 00. Such cases
are of theoretical as well as practical interest since analysis around such cusps
may indicate if such cusps remain or are smoothed out by the process.
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9. A gelatinisation model

This model is directed at the present cooking process, with a temperature of
about 140°C rapidly establishing throughout the grain, and moisture penetrating
more slowly. At these high temperatures, gelatinisation is taking place at the
wetting front. This is a chemical reaction, and focusing on this aspect leads to a
different treatment of the advancing cooking front. The approach in this section
is an approximate analytic technique.

The idea of the technique is to use steady state moisture content profiles on
either side of the front, and is similar to that used in Carslaw and Jaeger (1959),
p. 286. It depends on the gelatinisation process holding up the movement of
the moisture front into the grain. The method used in this section is also quite
similar to that of the previous section on grain swelling.

The grain is taken to be at a constant temperature. The nonlinear diffu-
sion equation (11) describes the movement of moisture in regions excluding the
gelatinisation front. This front is also the moisture front, and is assumed to
be sharp. At this front, virgin starch is (irreversibly) gelatinised by the water
arriving from the outside of the grain. Inside the front, there is not enough
water to cause gelatinisation. Outside the front, there is no more virgin starch
- it is all gelatinised. This sets the problem up with the usual Stephan condi-
tions, with the one difference that the critical water content at which irreversible
gelatinisation takes place is temperature dependent.

The reaction front is at the variable location a(t). At the front,

M(a(t), t) = Mc(T), (85)

a known value. Furthermore, the flux of water supplied by diffusion though
the already gelatinised region has to be sufficient to gelatinise the virgin starch
there, so that

da
f dt = -DV M/M. (86)

The left-hand side is the amount of water required to change virgin starch to gela-
tinised starch, f is a Stochis number (non-dimensional), and the right-hand side
is as in expression (44), the velocity of water arriving at the front (m3 / (m2 s)).
These two equations, together with

8:: =V.(Doe6MVM), (87)

in r > a, and
M(b, t)
M(r, 0)

u, , t » 0,

Mo,
(88)
(89)

form the complete model, where b is the outer boundary of the grain.
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9.1 Approximate solution, one-dimensional case

We use the steady state profile as a shape function to solve the problem
approximately, in the case where the grain is one-dimensional. That is, we
integrate :z (DoiMf)f)~) =0,

from the outer boundary at distance R to a distance z (and a moisture content
M) to get

(90)

(91)

where A is a constant of integration. This satisfies the boundary condition (88)
at z = R. Now A is chosen so that the boundary condition (85) at z = a is
satisfied,

Do (eOMa - eoM[ )
A = D(a - R) , (92)

so that the moisture profile is given by

eoM _ eoM[ z - R
eoMa - eOM1 - a - R' (93)

where a(t) is determined by solving the remaining flux condition (86), which can
be written

da
fMe dt = -A.

Using the expression (92) for A, evaluated at z = a, then gives

(94)

(95)

where all constants have been gathered into

Do (eOM1 _ eOMa)
Cl = DfMe . (96)

Equation (95) easily integrates to give

(97)

The constant of integration has been chosen to ensure a = R when t = O. The
appropriate solution of this quadratic is

a = R - J2Clt. (98)
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The time to cook is when a reaches zero, that is,

R2 R2 fMeh
to = 2C1 = 2Do (e6M1 _ e6MG)·

(99)

We can estimate f = 1 from the observation that the volume of water taken
up by the grain is about the same as the original grain volume. Note that this
gives the same sensitivity of wetting time to the parameters R, Do and h, as
that obtained from equation (23) for the maximum mean action time. If the
association

Mc- == (M1 - Mo)<T>e
2

is made, then both expressions (99) and (23) for wetting time are the same.

The present process has a temperature of about 140°C, which corresponds
to Mc = 0.33 according to Figure 1. The value to use for Ml is not accurately
known. It will be at least 0.6, so that value will be used here. The value for
Do depends on temperature, as noted in Section 6, but it is not clear exactly
what this dependence is. Values for an effective diffusivity have been calculated
at Uncle Tobys from experiments with wetting rice grains. The way these are
calculated, by fitting linear diffusivity to experimental results, suggests that they
should be the same as Dequiv in equation (25). More work is needed to properly
incorporate these experimental results into this analysis.

If the value of Do for a temperature of 400C is used, the penetration time
for the present process, for a typical grain, is tc = 16 minutes. This is very close
to the results obtained in the previous models, but more work is needed before
meaningful comparisons can be made.

Is is useful to refer here to other work, particularly that of Stapley (1995),
comparing the models of Suzuki et al. (1977) and Cabrera et al. (1984). Stapley
uses NMR imaging techniques to track moisture penetration into the grain.

10. Conclusions

Four models have been presented and solved for the movement of heat and
moisture into whole cereal grains.

Heat is found to penetrate a grain in about 5 seconds, according to a simple
linear diffusion model.

Moisture movement at temperatures below gelatinisation has been treated
as a nonlinear diffusion problem in the second model, leading to penetration
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times of about 20 minutes. The concept of mean action time allows analytic
solutions, and leads to formulae for the volume of grain cooked, and for the
degree of overcook of a grain, versus time.

A third model allows for the effect of grain swelling, which slows down mois-
ture penetration by about 10%.

The fourth model, incorporating the high temperatures used in the present
process, allows for the effect of gelatinisation slowing down moisture penetration
along a sharp front.

The third and fourth models are still under development, and need more
work.

All models identify relevant parameters, and give the sensitivity of cooking
times to the parameters.

Our recommendation to Uncle Tobys is that grains be presoaked at a tem-
perature that is just high enough for the moisture level to equilibrate at the
desired level. We estimate typical soaking times to be about 20 minutes. Then
the wet grains can be heated at a temperature that is set at Tgel. The heating
time should be quite short, as an individual grain is expected to heat through in
about 5 seconds. Such a process will allow a grain to be fully cooked, and will
minimise the degree of overcook.
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