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Abstract

Six patents were secured by E.H. Lanier from 1930 to 1933 for aeroplane designs
that were intended to be exceptionally stable. A feature of five of these was a flow-
induced “vacuum chamber” that it was thought provided superior stability and
increased lift compared to typical wing designs. Initially this chamber was in the
fuselage, but later designs placed it in the wing by replacing a section of the upper
skin of the wing with a series of angled slats. We investigated this wing design
using inviscid aerodynamic theory and viscous numerical simulations and found no
evidence to support the claims made. Rather we suggest that any improvement in
lift and/or stability seen in the few prototypes that were built was due to thicker
airfoils than was typical at the time.

1. Introduction

BackYard TEch are interested in aspects of aircraft design de-
scribed by Edward H. Lanier in a series of six United States patents ob-
tained from 1930 to 1933. Lanier’s overall aim was to provide an excep-
tionally stable aeroplane that would both fly normally and recover from
undesirable attitudes without pilot aid. BackYard TEch were specifi-
cally interested in Lanier’s idea of creating a vacuum cavity in the wing
by replacing a section of the upper skin of the wing with a series of
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angled slats, believing that this wing design would give superior lift and
stability compared to typical wing designs.

The MISG group approached this problem with a background read-
ing of Lanier’s patents, calculations and study based on the basic theory
of aerodynamics, numerical solution of potential flow around an ellipse,
and numerical simulation of viscous flow around an airfoil. The effects
of angle of attack, ground separation and wing thickness were consid-
ered. The complexity of the situation and lack of experimental data
made mathematical modelling difficult. To the limited extent to which
modelling was possible there was no indication that modern aeroplane
design had overlooked a major feature which would improve flight char-
acteristics. Lanier’s designs from the 1930s are now over seventy years
old and are perhaps more readily related to the pioneering aircraft of
the early 1900’s than to those of the present day.

Details obtained of aircraft studies based on Lanier’s patents from
the 1930’s were very limited. A few non-technical articles appeared in
contemporary popular science magazines. We were unable to find any
reference or citation of the designs in the scientific literature. The main
sources of information were Lanier’s six US patents.

In this paper, we begin by briefly summarising flight theory and then
attempting to put the designs of Lanier into some historical context. We
then analyse the comments made by Lanier in the original patent doc-
uments. This is followed by some calculations made from the claimed
performance of the vacu-plane in the existing documents, and calcula-
tions of lift made using an inviscid model. Next, results of viscous-flow
simulations, done using the finite-element PDE solver Fastflo [3], for a
‘slat-wing’ (with open top surface) and a more conventional closed wing
are compared. Finally, we look at viscous flow over a single slot, again
using numerical simulations from the Fustflo PDE solver.

2. Background Theory and Historical
Perspective

The theory of flight is now well-established. Aircraft undergo
four different forces that dictate their flight characteristics: lift, weight,
thrust and drag. In level flight, lift and gravitational forces are in bal-
ance. Similarly, at a constant speed, the forward thrust must be of the
same magnitude as the drag created by the motion. The weight and
thrust are characteristic of the aircraft with its load and the engine,
respectively. Lift and drag are influenced by the aerodynamics of the
plane’s lifting surfaces and fuselage and, consequently, are the main fo-
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cus of this work. More detailed discussions of what follows can be found
in [1, 4].

Lift is usually recorded in terms of the lift coefficient C'r, which is
a non-dimensional measure of lift that can be used in any consistent
system of units. Thus the lift on an airfoil can always be calculated
as L = CppU?A/2, where U is the speed, A = chord x span is the
projected area of the lifting surface, and p is the air density. In a similar
way, drag is recorded as a drag coefficient, i.e. Cp, where total drag is
D = CDpUZA/Q.

Lift is generated by the difference in flow velocity above and below the
wing. The air flows more quickly over the upper surface, and therefore
has lower pressure (according to the Bernoulli equation) than the more
slowly moving air under the wing. Factors influencing lift are the shape
of the wing, the angle of attack and the proximity to the ground. Drag
consists of two types, form and induced. Form drag is the effect of
viscosity as the air “sticks” to the surface of the plane. Induced drag
results from the fact that wings have a finite length; the flow of air
around the wing tips, from the high pressure region below the wing to
the low pressure region above it, creates trailing vortices that result in
further drag.

Flight is a trade-off between lift and drag. Mechanisms that increase
lift, such as additional flaps or small extra airfoils that prevent separa-
tion around the leading edge, usually have the effect of increasing drag.
Modern aircraft usually have some of these additional devices that ex-
tend during take-off and landing where higher lift is desirable and extra
drag is not so important (in fact during landing it is often desirable).

Lift is generally proportional to the angle a of the wing relative to
the direction of travel or air flow (the angle of attack) and the square of
the velocity. We assume that the wing span is long relative to its thick-
ness and chord (breadth). Then the flow is essentially two-dimensional
enabling us to consider flow in a plane containing a cross-section of the
wing. Lift per unit wing-span can then be quantified by the formula

L = pUT, where I' = ?{ q - dr around a loop containing the wing cross-

section, is known as the circulation. (The circulation is not an actual
flow.) This has to be determined subject to the Kutta condition; that the
air flow separates smoothly from the (sharp) trailing edge of the wing.
For relatively thin, symmetric wings, I' = wUC sin o, where C is the chord
length of the wing, so that the lift per unit span is L = mpU?Csin o, or
Cp, = 27msina.

However, if the angle of attack becomes too large, the flow no longer
follows around the wing but separates from the upper surface leading to
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a sudden and dramatic loss of lift called stall. The thicker the wing, the
more likely this is to occur since the air has to divert more rapidly around
the blunter leading edge, but it can also be influenced by the roughness
of the surface, and in older aircraft, especially the early metallic bodies,
this could play a significant role.

Aircraft from the time of the Wright Brothers until after World War
I were mostly bi-planar. Biplanes typically had two thin wings made of
wood and canvas held together by a variety of struts and wires. These
were relatively light and so required less lift, but had high drag due to
the wires, struts and rough surfaces.

Early monoplane wings were still quite thin, although they were fatter
than biplane wings because the structural framework was internal. The
slightly fatter wings generated slightly higher lift, but more powerful en-
gines enabling higher speeds and hence considerably more lift (increasing
with the square of speed) were a major factor in enabling the evolution
of the monoplane. Rapid development between the two World wars led
to planes designed for both long distance travel and high air speed, as
adventurers tried to set records of both types. Further rapid advances
in aircraft design during World War 11, led to the first jet-powered craft.

3. Laniers Patents

Lanier registered six US patents for aeroplanes in the early 1930’s
namely 1750529 and 1779005 in 1930, 1803805 and 1813627 in 1931,
1866214 in 1932 and 1913809 in 1933 ([6]-][11]). Each patent is for an
entire aircraft design and includes commentary on such matters as the
windows and landing gear. The design aspect of interest here is the
presence of cavities or slats on the upper surface of the wing and fuselage.
In the early patents it was claimed that the cavity designs improved
stability; later patents claimed enhanced lift as well. (The third of these
patents [8] is not relevant here since it concerns an aeroplane with a
top-wing and makes no reference to cavities or slats.)

Lanier in part attempted to explain increased lift from one or more
cavities in the wings and/or fuselage as an effect of a partial vacuum set
up in the aeroplane’s wings and body. This space would then be at a
lower density than the air surrounding the aircraft increasing buoyancy.
Lanier also appears to anticipate an additional lift effect by exposing
the inside top surface of the lower shell of the wing. Being patents the
descriptions are on the whole general without detailed measurements.

We now consider the patents in more detail.

The first two patents from 1930 introduce Lanier’s idea of a “vac-
uum chamber”. Essentially this is constructed by removing a portion of
the upper wing surface allowing flow between the internal wing cavity

¢
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and the outside. At this stage there is no claim of additional lift from
the design, the purpose of including the vacuum chamber being purely
stability [6]:

“...it 1s an object to provide a machine that will not nose dive, side
slip or tail spin under ordinary circumstances, but should this happen,
the machine will right itself without the pilot aid.”

The second patent is directed towards larger machines and develops the
idea of including a system of slats (or air buffers) across the hole in
the upper wing surface. These buffers would not extend to the base of
the vacuum chamber and would preferably be hinged so that they could
close the top of the vacuum chamber when desired. Lanier argues for
the inclusion of these buffers to reduce the flow of air into the vacuum
chamber [7]:

“When the plane is moving at slow speed or the engine is throttled down,
there is a tendency for the air to flow down into the vacuum chamber
from above. The provision of the air buffers, however, causes this air to
be deflected upwardly and rearwardly, thus preventing it from entering
the vacuum chamber to any considerable extent.”

The buffers remained a feature of the later patents and with his fourth
patent [9] Lanier made the further claim that his vacuum chamber in-
creases lift in addition to improving stability:

“ I have found by experiments and tests that the lifting power of the
vacuum chamber exceeded my expectations, and I have further found
that an aeroplane can be designed utilising the principle of the vacuum
chamber lift in which the wings can be wholly eliminated or reduced to
dwarf wings, ...”

The fifth patent [10] contains many of the earlier features and claims
and is perhaps the most useful for obtaining an insight into Lanier’s
thoughts. He reiterates his goal of safety through stability but also
mentions features that would be associated with a reduced wing size
and increased lift. His vacuum chamber here extends to the whole of
the wing and perhaps a portion of the fuselage and he explicitly claims
that the partial evacuation of air leads to an increased lift. In addition
to this lift, due to the buoyancy of a reduced air density within the
plane (as in a balloon), Lanier also appears to claim a mechanical lift by
exposing the bottom inner surface of the wing (in practice this would in
part be offset by reduced lift on the inner top surface of the wing). He
states that apart from the vacuum pocket the wings can be otherwise
conventional:

“The theory of getting additional lift from a given wing area is applicable
to the conventional wings of today with few changes, simply by making
the wing air-tight and supplying vents or openings in the top surface
to evacuate the air, thus increasing the payload without an increase in
structural weight. Lift is also exerted on the inside bottom skin of the
airfoil above the cabin which, on the conventional wing, is negligible.
On planes with large cabins this additional lift would greatly increase
payload.”
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4. Lift Calculations
4.1. Simple calculations

In horizontal flight, the lift must balance the weight of the aircraft.
Therefore, we can estimate the lift coefficient for the aircraft described
in Lanier’s patents by considering the weight.

Popular magazines indicate that the total mass of the Lanier XL-5
(1933) plane was not much more than M=220kg including the pilot,
and that they were able to take off at speeds as low as 48 km/hr (=~
13.3m/s). At their cruising speed of U = 128km/hr (= 35.6m/s) in
level flight, the well known relation L = CppU?A/2, where A is the wing
area (estimated at A ~ 7m?) and p is the density of air (1.23kg/m? at
15°C and atmospheric pressure), gives an estimate for the lift coefficient
of O ~ 2Mg/(pU?A) ~ 0.40, where g = 9.8 m/s? is the acceleration
due to gravity. This is comparable with lift coefficients of conventional
aircraft, both at that time and today.

The Lanier Paraplane Commuter 110 (see [2]) was built by Lanier
aircraft corporation circa 1949, sixteen years after the original patents
were submitted, and is of unknown design. This plane had similar takeoff
and cruise speeds but a greater mass (640 kg), and roughly 30% greater
wing area, giving a lift coefficient of Cy, ~ 0.88, again within conventional
values.

Further to this, we can estimate the drag coefficient by considering the
maximum speed. The XL-5 had a 36 horsepower engine (= 26 kW), and
an estimated top speed of 96 mph (~ 154km/h or 43m/s). Drag D =
CppU?A/2 and the power required is P = D x U ~ 3.4 x 105Cp Watts,
so P =~ 340C'p kW. The engine power is given as Pg ~ 36 Hp ~ 27kW,
so by comparing we see that the drag coefficient is Cp = 0.079.

The Lanier Paraplane Commuter 110 had a maximum speed of 165
mph or ~ 74m/s, but had a 150Hp ~ 112kW engine and slightly
greater wing area; the same calculations give P =~ 2300Cp kW and there-
fore a drag coefficient of C'p ~ 0.049.

In calculations to be described later, we have used an airfoil shape
approximating the Clark-Y wing, see e.g. [4]. This choice was made
for its visual similarity to the Lanier wing design (from sketches in the
patents) for which the exact specifications are not known. Hence, for
comparison, the lift and drag coefficients of this wing at 0° (6°) angle of
attack are Cr, = 0.36 (0.80) and Cp = 0.0217 (0.045).

These very simple calculations are based on information of slightly
doubtful veracity, but indicate that there is nothing out of the ordinary
in the behaviour of the Lanier aircraft.
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A further implication in some of the popular literature and Lanier’s
patents (see above) was that there is a buoyancy effect of air being
sucked out of the wing cavity. However, it is easy to show that the effect
of reducing air density within the wings would have an almost negligible
effect, perhaps lightening the aeroplane by a few hundred grams. For
example, the total weight of air in a wing cavity with a volume of two
cubic metres (estimated for the Lanier XL-4) is about 2.4 kilograms or
around 1% of the total weight. However, since not all of the air could be
evacuated, this is a very generous upper bound. In heavier, larger craft,
this proportion would be greatly reduced.

In a stall situation, the pressure would equalise between the inside
and outside of the wing, causing the air to rush back in, negating any
buoyancy effect in free flight. It may be that the effect of drag on the
lighter and slatted (and hence rougher) wings is greater than that on
the engine and cabin, causing the plane to right itself as it falls, but this
will depend on the plane’s attitude at stall.

4.2. Inviscid Theory

In this section we compute the lift on an elliptic airfoil using an
integral equation method so that we can compare the effects of wing
thickness, angle of attack and the ground effect. The lift on an airfoil can
be determined by inviscid flow theory. The assumption of irrotational
flow of an inviscid, incompressible fluid in two-dimensions (assuming a
large wing span) reduces the problem to that of solving for the veloc-
ity potential, ®, where the velocity field q = V®, and ® must satisfy
Laplace’s equation V2® = 0.

One way to do this is to compute the complex potential

i
w(z)=®+i¥ =Uz+ ;—ID(ZZ + H?) + x(2),
™

where the first term represents the free stream flow with velocity U,
the second the circulation around the wing, H is the height above the
ground, and x(z) is to be determined to satisfy the boundary conditions
for the flow. Complex function theory says that the velocity potential
® satisfies Laplace’s equation provided w(z) is an analytic function. ¥
is the streamfunction, and this must be constant on the surface of the
wing, so that q - n = 0, where n is the normal to the airfoil with upper
and lower surfaces y = f*(x), i.e. there is no flow through the surface
of the wing.

Using Cauchy’s integral formula for the function x(z) = £ +in around
an integration contour including the body, an image body (symmetric
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about the ground) and a circle of infinite limiting radius, leaves

x(z0) = LA xG)

2 z— 2y

and ~ consists of a path around the surface of the airfoil and its image
beneath the line of symmetry of the ground. Defining an arclength s,
where ds = \/dx? + dy?, and using the chain rule together with invoking
the symmetry of the airfoil above the ground and its image, it can be
shown that we obtain an integral equation for the real part of y, i.e. &,
as
fs)= L[ O OAT -2 (O]~ (Ol (DA +y' (1) Ay]
7w Jo (Az? + Ay?)
EOMY' ®)Az — 2" (t) Ay ] —n(®)[2'(H) Az +y'(t) Ay ]
(Az? + Ay?)

(1)

_I_

dt, (2)

where sy, is the arclength from the trailing edge of the body to the
leading edge then back, and Az = z(t) — z(s), Ay = y(t) — y(s) and
Ay, =y(t) +y(s).

Thus the method is to write the surface of the airfoil in parametric
form (z(s),y(s)), and then take a discrete form of the integral using
steps in arclength, si,k = 1,2,..N, and &,k = 1,2,...N. Replacing
the integral by a sum, the unknown &; can be obtained by solving N
equations in N unknowns. This was all programmed using Fortran.
Further details of the method can be found in [5].

We also know that the function x(z) = £ + in is made up of the
following components; £(s) = <I>(s)—Ux(s)—{—%(ﬁl(s)—ﬁg(s)) and n(s) =
Uo—Uy(s)— 5= In [pl(s)} where Uy is the (constant) value of the stream

p2(s)
function on the wing surface, 8, = arctan(%), By = arctan(yZH ),

p1 = (22 + (y — H)?)Y? and pg = (22 + (y + H)?)Y/? are the distances
and angles to points on the surface. Thus, 7 is known everywhere on
the surface and the integral equation can be used to find £ and hence
the velocity potential.

The crucial factor in determining the lift is the Kutta condition, which
says that the flow detaches smoothly from the end of the airfoil. The
circulation I" must be chosen to ensure this condition is satisfied. This
was achieved by allowing I" to be one of the unknowns and including an
extra equation to enforce this condition. In this case, since the trailing
edge of an ellipse is blunt, it was enforced by ensuring the stagnation
point formed on the trailing edge of the ellipse.

A series of simulations was performed using this code for various values
of wing chord, thickness, angle of attack and height above the ground.
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Figure 1. Lift (as lift coefficient C1) on elliptic airfoils of maximum thickness 0.05
(+) and 0.3 (x) as angle of attack « varies, compared with the analytic formula
for a flat plate (0). The approximate lift coefficients for a Clark-Y wing (which has
thickness &~ 0.12) are given as the upper line. Stall occurs at around 18.5°.

Figure 1 shows the results of increasing lift C';, with increasing angle
of attack o and maximum thickness. These data are compared with
the analytically computed formula for lift on a flat plate (or thin sym-
metric airfoil) and with the lift coefficient for the Clark-Y wing, which
has maximum thickness of around 0.12. This non-symmetric airfoil is
clearly much better designed than those used for numerical experiments.
The stall of this wing at around 18° can be clearly seen (separation and
stall are not computed as part of the other curves). The effect of wing
thickness is seen in that for the elliptic airfoil the wing that is six times
thicker has about 30% more lift at each angle of attack. Figure 1 illus-
trates that a “fatter” elliptic airfoil has a greater lift coefficient than a
“thiner” airfoil.

Figure 2 shows the effect of proximity to the ground on the lift co-
efficient for several different thickness wings. It is clear that ground
effect plays a role only when the ground is within one or two wing chord
widths. These results suggest that we can neglect ground effect from
our deliberations.

In general, wing profile designs must balance lift with drag. These
results confirm that thicker wings tend to have higher lift for a given
speed. However, they also tend to have increased drag making it more
difficult to attain speed. In addition, thicker wings at higher speed are
more likely to induce separation of the flow and hence stall (loss of lift).
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Figure 2. Lift (as lift coefficient C1,) on elliptic airfoils versus height above ground
h (as a multiple of chord length) for thickness 0.05 (x), 0.1 (+) and 0.2 (x), all at
angle of attack of 10°.

At the time of Lanier’s patents wings tended to be narrow in profile.
However, one of his patents includes an illustration of a conventional
wing together with the slatted wing of the patent design. The slatted
wing is much fatter in profile than the conventional wing in the picture
and if in practice this were the case then that could provide an explana-
tion of increased lift for the Lanier aeroplane. The simple calculations
in the previous section suggest that the lift of the Lanier craft was not
exceptional compared to conventional airfoils such as the Clark-Y wing.

5. Numerical Simulations
5.1. Two-dimensional viscous flow over a wing

To compute the form drag of a wing, as well as its lift, we cannot use
inviscid theory, but must solve for viscous flow around the airfoil. Hence,
two-dimensional flow over thick and thin airfoils at different angles of
attack has been simulated using the finite-element package Fastflo [3].
We here, necessarily neglect induced drag, which is a three-dimensional
effect as described earlier, although it can be significant, especially for
short wings. We have also made no attempt to compute form drag from
the aircraft fuselage, focusing rather on the trade-off between lift and
drag for a “slat-wing” compared to a conventional wing.

The geometries of the thick airfoils used in our simulations are shown
in Figure 3. The basic airfoil shape superficially resembles the Clark-Y
wing, see e.g. [4]. The chord length C of the airfoil is eleven times the
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6R |

Figure 3. Typical ‘thick’ airfoil geometry. Conventional airfoil shown solid; cavity
and vertical slats shown dashed.

nose radius R, which is the characteristic length for non-dimensionalisation.
To complement flow over the conventional shape, the flow is also consid-
ered around a similar shape with a cut away cavity and slats to resemble
the Lanier “slat-wing” design. The thin airfoil geometries are obtained
by halving lengths in the vertical direction, giving a less blunt elliptical
nose. Again a conventional closed airfoil and a “slat-wing” geometry are
considered.

The flow is assumed to be two-dimensional, incompressible, steady
and laminar, with a Reynolds number of 10. Although, Reynolds num-
bers of order 10° are to be expected, this is about the maximum that
Fastfio can reliably handle for all simulations done, and no other simu-
lation packages were available to the team during the MISG. We note
also that the flow would almost certainly be turbulent, but only lami-
nar flow has been considered due to constraints on time and facilities.
Despite these draw-backs, the simulations still allow a comparison of
the fundamental behaviour of a conventional wing and a Lanier “slat-
wing”. Separation of the flow from the airfoil is expected to occur at
lower angles of attack for the blunt-nosed thick airfoil than for the thin
airfoil.

We must solve the continuity and steady Navier-Stokes equations,
subject to no-slip on the airfoil boundary, for the flow around four differ-
ent airfoils (thick/thin x conventional/slat-wing). We adopt a reference
frame that moves with the airfoil at speed U, and let x,y be the hori-
zontal and vertical axes, respectively, with the origin at the tip of the
nose of the airfoil (see Figure 3). Let u,v be the x,y components of ve-
locity scaled with U, and let p denote pressure scaled with pU?. Lengths
are scaled with the nose radius R. Then the dimensionless continuity
equation is

ou Ov
%+8—yfo (3)
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and the Navier-Stokes equations are

Oz oy dx R, \0z2 0y? )’
ov v op 1 [0 0%
U%+Ua—y = —8—y+R—e<w+a—y2>, (5)

where R, = UR/v is the Reynolds number, v being the kinematic vis-
cosity of air (=~ 1.5 x 107> m?/s). On the boundary of the airfoil we have
u = v = 0. Far upstream of the airfoil, the flow is taken to be a uniform
stream of magnitude U at angle of attack «. Sufficiently far above and
below the airfoil we expect the flow to be that of a uniform stream also.
Because we must solve over a finite computational domain, we define a
square far field boundary having sides of length 20R around the airfoil,
aligned with the flow and with centre at the tip of the nose of the airfoil
(z,y) = (0,0). Thus, on the inlet (left), top and bottom boundaries we
specify u = cosa, v = sina. The outlet (right) boundary is a stress-free
boundary. The far-field boundary is (hopefully) sufficiently far from the
airfoil that the prescribed-velocity conditions do not impact too severely
on the solution.

The finite-element PDE solver Fastflo was used to solve for the flow.
Fastflo’s automatic mesh generator was used to generate an unstructured
mesh of about 1900 6-node triangles over the computational domain,
with elements clustered more densely near the airfoil. The “augmented
Lagrangian method” [3, §13.3] and quadratic basis functions were used
to solve for pressure and velocity.

Having solved for velocity and pressure, lift and drag forces per unit
wing-span are found by integrating the pressure around the surface of
the airfoil df?, i.e.

F J—
pU2R — Jaq

and resolving the force per unit span F = (F}, F}) obtained into two
components, one in the direction of the uniform stream (drag D =
Fycosa — Fysina) and the other normal to it (lift L = Fpsina +
F, cosa). We may also find the lift and drag coefficients:

pdr.

2L 2D

“C=or P TR

These are given in Table 1 for different angles of attack for each of the
simulations performed. Figures 4 and 5 show the lift and drag coefficients
C1, Cp versus angle of attack « for each of the four airfoils considered.
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Table 1. Lift and drag coefficients at angle of attack « for thick and thin conventional
airfoils and slat-wings.

o Conventional Slat-wing
Thick | Thin | Thick | Thin
0 CL 0.31 | 0.18 0.31 | 0.21
Cp 0.21 | 0.11 0.24 | 0.13
5 Cr 0.54 | 0.54 0.53 | 0.55
Cp 0.26 | 0.15 0.28 | 0.16
10 Cr 0.71 | 0.81 0.69 | 0.80
Cp 0.33 | 0.23 0.35 | 0.23
15 Cr 0.83 | 1.04 0.82 | 1.05
Cp 0.42 | 0.39 0.44 | 0.38
2 Cr 0.97 | 1.10 0.96 | 1.07
Cp 0.54 | 0.46 0.55 | 0.45

Figure 6 shows the ratio of lift to drag coefficients, again versus angle
of attack. In Figures 7-10 we show stream lines around the airfoils and
velocity vectors near the upper surface behind the nose of the airfoils.

A comparison of the curve for the Clark-Y wing in Figure 1 with
those for the thin wings in Figure 4 shows the lift coefficients to be of a
similar order of magnitude at the same angle of attack and gives some
assurance that the general behaviour of the wings under investigation is
captured by our low Reynolds number simulations. It is expected that
at higher Reynolds numbers boundary layers will be thinner and lift co-
efficients a little larger. In keeping with known aerodynamic behaviour,
the lift coefficient for the thick wings is larger than for the thin wings
at small angle of attack, however the slope of the curve Cp, versus angle
of attack a is greater for thin wings than for thick wings so that this
situation reverses at larger angle of attack. (For thin symmetric wings
Cr/sina ~ 27, while we have Cf/sina ~ 4 for the thin asymmetric
airfoils considered here.) For the thin wings, there is a sudden decrease
in slope above av = 15° signaling imminent stall (loss of lift). This is due
to flow separation which occurs at about v = 15° as seen in the plots
of streamlines and velocity vectors given in Figures 9-10. The thicker
wings experience flow separation at a lower angle of attack a ~ 10°,
as seen in Figures 7-8, but do not exhibit such a sudden reduction in
lift. It is readily seen that the conventional airfoil and corresponding
slat-wing, whether thick or thin, differ little from one another in terms
of lift coefficient.

As is to be expected the drag coefficient increases with angle of attack
as seen for all airfoils in Figure 5. For the thin airfoils we have Cp ~
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Figure 4.  Lift coefficient C, versus angle of attack a. (a) Thick conventional wing,
(b) thick slat-wing, (c¢) thin conventional wing, (d) thin slat-wing.

0.6

Figure 5. Drag coefficient Cp versus angle of attack «. (a) Thick conventional
wing, (b) thick slat-wing, (c) thin conventional wing, (d) thin slat-wing. Reynolds
number used is 10.
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Figure 6.  Ratio of lift to drag C/Cp versus angle of attack «. (a) Thick con-
ventional wing, (b) thick slat-wing, (c¢) thin conventional wing, (d) thin slat-wing.
Reynolds number used is 10.

0.1(0.15) at @ = 0°(5°) compared with Cp = 0.022(0.045) for the
Clark-Y wing. It is expected that, with thinner boundary layers at
higher Reynolds numbers, drag coefficients will be lower than indicated
by our simulations. From a = 10° to 15° there is a significant increase
in drag for the thin wings, which may be attributable to a relatively
large increase in the projection of the surface area normal to the flow,
an effect which would be smaller for thicker airfoils. There appears to
be a slight increase in drag for the thick slat-wing compared to the thick
conventional wing, but there is little difference in the Cp versus a curves
between the thin conventional wing and the thin slat-wing.

The curve of lift to drag ratio C1,/Cp versus angle of attack (Figure 6)
indicates that the thick and thin airfoils are most efficient over the range
a = 5 — 10°. For the thick airfoils it is evident that the conventional
shape is superior to the slat-wing in giving slightly more lift, less drag
and, consequently, a higher lift to drag ratio at a fixed angle of attack,
over the full range of angles considered. For the thinner wings, the
conventional and slat-wing profiles are very similar excepting at o = 10°
where the conventional wing again appears to be superior.

Although we are mindful of the fact that our computations are not
very accurate, the clear message emerging from our work is that our
simulations certainly provide no evidence to support the slat-wing over
conventional airfoils, but, if anything, the reverse.
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Figure 7. Thick, conventional airfoil. Streamlines and velocity vectors.
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Figure 8. Thick, “slat-wing” airfoil. Streamlines and velocity vectors.



Figure 9.

a = 20°

Thin, conventional airfoil. Streamlines and velocity vectors.
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Figure 10.  Thin, “slat-wing” airfoil. Streamlines and velocity vectors.
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Figure 11.  Geometry used for simulations of flow over a slot cavity. Slot aspect

ratio is defined as p = w/d

5.2. Modelling flow over a slot

Some further numerical simulations were conducted to illustrate
the general features of flow over a slot cavity. The typical dimensionless
geometry used in simulations is shown in Figure 11. The continuity and
Navier-Stokes equations (3)—(5) were solved, again using Fastflo and the
augmented Lagrangian method with quadratic basis functions. At the
inlet (left boundary) we specified the flow to be that of a unit uniform
stream (U = 1), while the outlet (right) was defined to be a stress-free
boundary. The lower boundary containing the cavity is, of course, a
no-slip boundary (v = v = 0); at the upper boundary we specified no
normal flow (v = 0) and no tangential stress, i.e. this is a slip boundary.
A mesh of about 3000 6-node triangles was used over the computational
domain.

The effect of slot aspect ratio (¢ = w/d) and slot angle 3 were consid-
ered to a limited extent. Pressure contours and streamlines are shown
in Figure 12 for a cavity of depth d = 1.5 and width w = 1 at angles
of inclination § = 60°,90°,120°. These were computed at a Reynolds
number of R, = 1000; at higher Reynolds numbers convergence difficul-
ties were experienced. The results shown are typical of cavities of both
larger and smaller aspect ratio, although the width and depth of the slot
does vary the vortex flow and pressure. As can be seen, a vortex devel-
ops in the slot. The pressure at the centre of this vortex is lower than
the average pressure in the surrounding fluid, but the overall pressure in
the slot is very similar to that in the fluid immediately above the slot.
This confirms our earlier findings that slots in the upper surface of the
wing make little difference to the lifting capacity of the wing.
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Streamlines, g = 90°.

Pressure, § = 120°. Streamlines, 8 = 120°.

Figure 12.  Flow in the vicinity of a slot of aspect ratio o = 3/2 (d = 1.5, w = 1)
at various angles of inclination 3. The colour of contours from blue to red indicates
the change in value from lowest to highest.
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6. Conclusions

The MISG team investigated the Lanier slat-wing design to de-
termine whether there is any scientific basis to the claims, made in the
patents, of superior stability and lift compared with conventional airfoils.
We, necessarily, focused on lift and drag, as an investigation of stabil-
ity required resources beyond those available to us. Our preliminary
computations indicate that conventional airfoils are superior, or at least
equivalent, to the Lanier slat-wing in terms of lift at a Reynolds number
of 10. We suggest that the apparent improvement in lift and/or stability
reported in the popular science literature of the times after experiments
with one or two prototypes, was a result of using thicker airfoils than
was typical at the time, so as to accommodate a “vacuum chamber” in
the wing. As shown above (see e.g. Figure 1), thicker airfoils generate
more lift at small angles of attack compared with thin airfoils. Possibly
they also appeared to be more stable to Lanier and co-workers, since
they would not undergo such a sudden stall as a thin wing. The rougher
top surface due to the slats would almost certainly lead to separation
at lower speeds and hence prohibit their use at higher speeds. It seems
likely that even if the slat wing design provided some improvement on
its contemporaries, it has now been superseded by modern wing designs
that include variable wing shapes, auxiliary lifting surfaces and flaps
that provide greatly enhanced performance, especially during take-off
and landing.

The investigation of Lanier’s designs could be extended. Probably the
most natural approach would be to compare airfoils using wind tunnel
experiments. Improved numerical experiments at higher Reynold’s num-
ber might also help illuminate the problem. Further historical research
might find out more from the 1930’s to add to the largely anecdotal in-
formation available. The possible stability features at low speed appear
the most promising aspect. It could be interesting to see how the Lanier
design compared with contemporary aircraft of the 1930’s. However, it
appears unlikely that any such study would have an impact on modern
aircraft design.
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