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Abstract

Water-temperature control during the fill phase of a new kind of washing ma-
chine being developed by Fisher and Paykel is considered. The machine and the
fill method are described, and the factors which affect temperature control are
explored.

A steady-state mass and energy balance of the system, and a linearised analysis
of the differential equation governing the temperature of the water sprayed over
the clothes are worked through. A linearised analysis of the dynamic situation is
also presented, which includes the effects of various dynamic delays.

A numerical approach is coded in MATLAB, which includes a simple model of
mass and heat flow to and from the clothes. Representative runs of this program
appear to yield results satisfyingly similar to the experimental data provided by
Fisher and Paykel, and suggest that the dynamic delays are unimportant, and that
temperature control can be achieved to within ±2 degC in most cases.

A cascade control process is detailed in which the input temperature is measured
simultaneously with the sump temperature. Various “smart” control strategies are
also enumerated.
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1. Introduction and Outline

1.1. Introduction

The question Fisher and Paykel were most interested in having an-
swered at MISG2005 was What is the best way to regulate water temper-

ature in the new, low-water-using washing machine?

The Fisher and Paykel representatives helped the team to understand
the following.

1 It will be harder to regulate the temperature in the new machine
since there is less water.

2 The disturbing effects are:

(a) Cold slugs of water from the hot tap;

(b) Wet, cold loads, or more generally, loads containing an un-
known amount of water at an unknown temperature.

(c) The temperature of the hot water supply is variable or un-
usually low;

(d) Various machine components absorb heat;

(e) The lid is raised, allowing heat to escape from the machine;

(f) The user adds clothes during the fill;

(g) The flow rates of the taps are variable;

(h) The ambient temperature is high or low;

(i) Varying load masses;

(j) Varying absorbency rates of different loads due to different
fabric types.

Another question of interest was Where is the best place to put the

temperature sensor and what is the benefit of 2 sensors? (The precon-
ception was that the cost of a second sensor will far exceed the benefit).

As demonstrated in the remainder of this paper, during the course
of MISG2005 the effects (2a) to (2d) were shown to be important, the
effects (2e) and (2f) were found to be important only in rather extreme
situations, and the effects (2g) to (2j) were found to be much less im-
portant.

1.2. Outline

Water-temperature control during the fill phase of a new kind of wash-
ing machine being developed by Fisher and Paykel is considered. The
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machine and the fill method are described (Sections 2 and 3), and the fac-
tors which affect temperature control are explored. The process variable
is chosen to be the temperature of the water sprayed over the clothes.

The magnitude of all the disturbing effects itemised above can be
quantified by using various strategies – both analytical and numerical.
These strategies are discussed and some simple examples are worked
through in order to guide future exploration.

The analytical approaches include a steady-state mass and energy
balance of the system (Sections 4.1.1 and 4.1.2), and, in Section 4.1.3, a
linearised analysis of the differential equation governing the temperature
of the water sprayed over the clothes (equal to the temperature in the
machine’s “sump”). A simple model of mass and heat flow to and from
the clothes is developed and solved in Section 4.2.

A numerical approach is coded in MATLAB (Section 4.3) which in-
corporates differential equations for the important factors found in Sec-
tion 4.1 and the model of Section 4.2. Representative runs of this pro-
gram appear to yield results satisfyingly similar to the experimental data
provided by Fisher and Paykel.

Proportional and proportional-integral controllers are discussed in
Section 5.1. An analytic linearised analysis of the dynamic situation
is also presented, which includes the effect of delays due to a controller
being constrained to operate only at fixed points in time, the finite-time
response of the temperature sensor, the time taken for water transport
between the input and the sump, and the finite time taken for water to
mix in the sump (Section 5.2).

A proportional controller has been included in the MATLAB program
in Section 5.3. Two example runs appear to illustrate that the dynamic
delays itemised above are unimportant. They also suggest that tem-
perature control may be achieved to within ±2 degC unless the clothes
contain an inordinate amount of cold water or the input temperatures
(including the cold slug) are such that the aim temperature cannot be
achieved irrespective of the control strategy.

To counter the effect of time-varying hot and cold input temperatures
a cascade control process is detailed in Section 6.1 in which the input
temperature is measured simultaneously with the sump temperature.
Various “smart” control strategies are also enumerated in Section 6.2:
estimating values at the beginning of the fill; installing a memory chip
in the machine; initialisation of the machine on installation; placing the
temperature sensor on a sill; and measuring input and sump tempera-
tures with one sensor.
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2. System description.

The system is shown in Figure 1, and is described below.

stainless steel

outer bowl
polypropylene

sump water

clothes

motor

pump

water

clothes
recirculated over

cold water

hot water

valves

sump
water enters

water drains out of clothes back into sump

temperature sensor

inner bowl

pressure sensor

(to estimate water depth)

Figure 1. Diagram of washing machine geometry.

The washing machine sits in an environment that is between 0 and
45 degC, with relative humidity between 20 and 95%. The machine
has hot and cold water inputs. The hot temperature ranges between
0 and 75 degC, while the cold is between 0 and 45 degC. There are
solenoid valves on each supply which switch them on and off; when
on, typical flowrates are: hot 10 l/min, and cold, 17 l/min. To isolate
the feedrates from supply pressure changes, throttles are used, these are
effective at maintaining constant flowrates for any supply pressure above
1 bar and most domestic supplies are above this threshold. The hot and
cold inputs pass through a mixing chamber before being discharged into
the machine.

The outer surface of the washing machine is cuboid and is constructed
from painted sheet metal. Inside this, and insulated from it by a layer
of air, sits a cylindrical polypropylene bowl of approximate diameter
550mm, which is 2mm thick and has mass 3.5 kg. The bottom of the
bowl is called the sump and it contains water while the machine is wash-
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ing. The under-surface of the sump is ribbed for strength. The motor
is attached to the bottom of the sump and its shaft passes vertically up
through the sump to the wash bowl. The wash bowl is also cylindrical
with rough dimensions 500mm. It is coaxial with the outer polypropy-
lene bowl/sump. Its curved surface is constructed of stainless steel of
mass 1.5 kg and its circular bottom is polypropylene of mass around 1
kg. All its surfaces are perforated to allow water to move from it to the
outer polypropylene bowl/sump. A polypropylene agitator of mass 500
g sits coaxially within the wash bowl.

Clothes are placed within the stainless steel wash bowl. The mass
of the dry clothes is up to 8 kg, but occasionally the clothes may also
contain some water which will typically be cold. An extreme case would
be towels, which weigh 8kg when dry, which are saturated with 40kg of
water. The machine is then filled with up to 35 kg of water, as described
in Section 3.

A variable-speed pump is attached to the sump, which can pump
between 14 l/min and 34 l/min. The pump’s output is either directed
towards the drain (to empty the machine), or back over the clothes,
which is called recirculating.

A pressure sensor is attached near the bottom of the sump which
allows measurement of the water height in the sump.

In current washing machines, the temperature of the water in the
input mixing chamber is measured; however, Fisher and Paykel suggest
that the sump is a more appropriate position for the temperature sensor
in the prototype machine considered here.

3. Fill cycle description.

The fill cycle begins with clothes being placed into the machine’s
wash-bowl. The machine then begins to fill with a certain mixture of
hot and cold water, the proportions of which are the topic of this report.
Currently, Fisher and Paykel use a 30 second periodic cycle time and
determine the dwell time of the hot and cold water (0 to 30 seconds)
within this period. When this period has finished, the dwell times may
be altered for the next period. This cycle time can be reduced if it is
found that the response time of the system to disturbances (see sections
below) is adversely affected. The water is mixed in the mixing chamber
and is discharged down the inside of the outer polypropylene bowl and
into the sump.

When the sump is full to a pre-set level (currently around 1.8 litres),
the pump starts removing water from the sump, pumping it through
the recirculation line and spraying it over the top of the clothes. The
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wash-bowl is rotating at 20 r.p.m. so that the spray is directed evenly
over the top surface of the clothes. The pump initially removes water at
its minimum speed so that the water level in the sump continues to rise.
The pump speed is then increased linearly with the sump’s water level
(but this does not mean that the rate of pumping increases linearly since
there is an exponential-type relationship between pump speed and rate
of pumping), reaching its maximum when the sump contains around 3.5
l of water. For standard loads this occurs at around 2.5 mins into the
fill cycle.

Some of the water that is sprayed over the clothes is absorbed, while
the rest finds its way through the perforated wash bowl and back into
the sump.

When the sump water level reaches 5 l, which takes about 3 minutes
for a standard load of clothes, the input water valves are cut off. The
pump is still removing water from the sump at its maximum rate, and
the clothes are typically still absorbing water, so the water level in the
sump falls. When the water level falls to 4 l, the input valves are toggled
on, and remain on until the sump water level reaches 5 l.

This on-off cycle repeats until the sump water level remains more-or-
less constant (the input valves are off), at which time the recirculation
rate is equal to the rate of drip-back from the clothes, and the clothes are
deemed saturated. The fill cycle is then complete. The whole process
takes around 10 minutes for a standard load of clothes.

The detergent will be placed somewhere within the system, possibly
in the recirculation line.

Summarising:

Hot/cold inputs are on (with some determined ratio) until the
sump level is 5 l. Then they are off if the sump level is greater
than 5 l, but turned on if the sump level ever falls below 4 l.

The pump is only turned on (to the recirculation line) if the water
level is above 1.8 l. Its speed varies linearly with sump level, from
a minimum value at 1.8 l to a maximum value at 3.5 l and above.

The sump water level as a function of time depends on the absorbency
of the clothes. Two examples are illustrated below.

4. A suite of simple models without any control
strategy.

During MISG2005 a number of different models of the fill cycle and the
washing machine were developed, as team members considered different
approaches to and aspects of the problem.
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small load of clothes, sheets or other fabric which is not highly absorbent

pump rate

water
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time

large load or load of highly absorbent fabric, eg. towels

Figure 2. Water level and pump rate for ’typical’ fills.

In Section 4.1 steady state mass and energy balances for the system
at the end of the fill are considered. This analysis was used to determine
which of the components of the machine absorb significant amounts of
heat during the fill in order to decide which components to include in
subsequent more detailed models. The model can also be used, as illus-
trated in Section 4.1.3, to determine the limits on disturbing effects that
can be tolerated.

The model of Section 4.2 provides a detailed treatment of the ab-
sorption of heat and water into the clothes, but does not include any
consideration of the dynamics in the water inputs, the sump or the tem-
perature sensor.

These delays are included in later Sections.
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These models are simple, but the results can be obtained analytically.
Section 4.3 discusses a MATLAB model which is a numerical imple-
mentation of a set of six differential equations describing the important
factors found in Section 4.1 and the model of Section 4.2. The MAT-
LAB model has been checked against experimental data and satisfactory
agreement has been obtained.

4.1. Overall, steady state mass and energy
balances.

During the fill, all components are heated by the hot water supply.
The heat required by each component will be determined and compared.
This shows which components are most significant in terms of the heat
load they represent. A general analysis is presented followed by an illus-
trative example. This model can then be used to determine where the
limits are for the system, i.e. what is the largest heat load that can be
tolerated before the target temperature can not be reached.

4.1.1 A general steady-state analysis.

Let us assume that

the losses to the environment, including the sheet-metal box, are
negligible.

the clothes and the sump are in thermodynamic equilibrium at the
end of the fill: that is, the temperature of the clothes, the water
in the clothes, the water in the sump, the bowls and the ambient
air are all equal (and denoted T ).

Table 1 describes the components of the system and how much energy
is gained by each during the fill. The sum of these terms is zero by
conservation of energy.

Energy conservation thus reads:

0 = Mccc(T − Tc(0)) + Mw.in.ccw(T − Tc(0)) + Mbcb(T − Tb(0))

+Maca(T − Ta(0)) + M i
w.in.acs(T − Tw.in.a(0))

+∆cw(100 − Tw.in.a(0))

+γ∆ + ∆cs(T − 100) + Mhotcw(T − Thot)

+Mcoldcw(T − Tcold) + Mslugcw(T − Tslug) .

The total mass of water in the machine at the end of filling is the mass
of water in the sump plus the water in the saturated clothes (denoted
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Component T0 M c Energy change
Clothes Tc(0) Mc cc Mccc(T − Tc(0))
Water in Tc(0) Mw.in.c cw Mw.in.ccw(T − Tc(0))
clothes
Bowls Tb(0) Mb cb Mbcb(T − Tb(0))
Dry air in Ta(0) Ma ca Maca(T − Ta(0))
machine
Water in air Tw.in.a(0) M i

w.in.a → cs M i
w.in.acs(T − Tw.in.a(0))

M i
w.in.a + ∆ +∆cw(100 − Tw.in.a(0))

+γ∆ + ∆cs(T − 100)
Hot water Thot Mhot cw Mhotcw(T − Thot)
Cold water Tcold Mcold cw Mcoldcw(T − Tcold)
Cold slug Tslug Mslug cw Mslugcw(T − Tslug)

Table 1. Basic components of the system, their initial temperature T0, mass M ,
specific heat capacity c, and their energy changes. The latent heat of vapourisation
of water is denoted by γ.

Mw.in.s and Mf
w.in.c) plus the water in the air. Thus the mass conservation

reads:

Mw.in.c(0)+Mhot+Mcold+Mslug+Mw.in.a(0) = Mw.in.s+Mf
w.in.c+Mf

w.in.a .

4.1.2 An example and comments on relative magnitudes of
different heat sinks.

To get a feeling for the relative magnitudes of each term, a realistic
example can be worked through. Suppose 8kg of dry fabric at 20 degC
containing 2 kg of water at 20 degC is placed in the wash bowl. Suppose
the ambient temperature is 20 degC and the relative humidity is 20%.
Suppose the hot water input has a 5 kg cold slug of temperature 15 degC,
the hot-water temperature is 60 degC and the cold water temperature is
15 degC. The aim temperature is T = 45 degC, and the final water mass
is 35 kg. Suppose finally that the relative humidity inside the machine
at steady-state is 100%. The result is shown in table 2.

This analysis shows the following points.

1 The effects of the stainless-steel bowl and the dry air are negligible.
The sensible heat changes for the water evaporated and the water
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Component Initial Mass c E %
degC kg kJ kg−1 K−1 kJ

clothes 20 8 1.5 300 18

water in clothes 20 2 4.2 210 13

bowls — polypro 20 5 2 250 15
— stainless 20 1.5 0.5 19 1

air — dry 20 0.5 1 13 1
— water 20 1.5 → 32.5 g 4.2 79 5

hot water 60 26.6 4.2 -1675 —

cold water 15 1.4 4.2 174 10

slug 15 5 4.2 630 38

Table 2. The components, their initial temperature and mass, their specific heat
capacity, and the energy gained E, for this example. The final column shows the
energy gained by each component as a percentage of the energy lost by the hot water.
The latent heat of vaporisation is γ = 2340 kJ/kg.

initially in the air are likewise small. The energy taken up by the
air can be approximated as the latent heat γ∆ only.

2 The effect of the polypropylene could be large, however, because it
is fixed (it cannot be altered by the user), it could be accounted for
by Fisher and Paykel by performing lab trials without any clothes,
as detailed below. Polypropylene’s diffusivity is 20 s mm−2, so the
time taken for heat to travel 2 mm (the thickness of the polypropy-
lene) is roughly 80 seconds. In the 10 minutes of a typical fill, it
can therefore be expected that the majority of the sump attains
thermal equilibrium with the water, but that the upper regions of
the outer bowl are at a lower temperature. This could be taken into
account by using a “reduced mass” approximation, which would
reduce the energy absorbed in the above table, of course.

3 The effect of opening the lid for a long period of time could be
significant. For example if the lid were open for a period of time
sufficient to allow 10 air changes this is ∼ 5kg of air and so, ignoring
any dynamic effects, the energy lost would be ∼920kJ (chiefly from
the latent heat of vaporisation). In the above example this heat loss
is so high that the aim temperature could not actually be achieved.
This calculation is taking the model too far, however, since it is
unlikely that each air change will have to take the air from 20 degC
and 20% RH, to 45 degC and 100% RH (i.e. dynamical effects are
important).
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4 The mass of water evaporated is negligible and could be removed
from the mass balance for simplicity.

5 Finally, the analysis also demonstrates that the cold slug and the
amount of cold water in the clothes can have a potentially large
effect.

4.1.3 The disturbance envelopes.

To quantify the limit a particular variable can take, values can be as-
signed for all other variables and the value of that variable determined
from the equations. Since, in most limiting cases the wash water will be
cooler than desired, it can be assumed that the control system will not
admit any water from the cold tap so Mcold = 0.

An illustrative example is now worked through.
For Tc(0) = 20 degC, Mc = 8 kg, cc = 1500 J/kg/K, cw = 4200 J/kg/K,

Thot = 55 degC, Tslug = 15 degC, Mslug = 2 kg, Mw.in.s = 7 kg and

Mf
w.in.c = 16 kg we can determine how much cold water can be present

in the clothes before a final temperature of 38 degC can not be attained.
There are two unknowns (Mw.in.c(0) and Mhot) and two equations:

0 = Mccc(Tc(0) − T ) + Mw.in.c(0)cw(Tc(0) − T ) + Mhotcw(Thot − T )

+Mslugcw(Tslug − T ) ,

0 = Mw.in.c(0) + Mhot + Mslug − Mw.in.s − Mf
w.in.c .

These are solved for Mw.in.c(0) = 4.5 kg with Mhot = 14.5 kg. This gives
a measure of how much cold water can be tolerated with the clothes
whilst still attaining 38 degC at the end.

Similarly, operating envelopes can also be developed for pairs of vari-
ables, for example, the limiting line in (Thot, Mw.in.c(0)) space.

4.2. Model of water and heat absorption into
the clothes.

In addition to water supply disturbances (cold slugs etc), the clothes
are a significant problem in controlling the temperature. This is for two
reasons: firstly, they might contain a large mass of cold water so that the
aim temperature might not be achieved even if the machine fills purely
with hot water; and, secondly, that there might be significant lag due
to the slow percolation of water through the clothes so that dynamic
control might not be possible. This means that the magnitude of the
disturbing effect of the cold drip-down from the clothes on the sump
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temperature may not be observed by the controller until the fill cycle is
well advanced.

It is therefore useful to build a model of water and heat absorption
into the clothes. This model is based on the following experimental
observations obtained during the course of MISG2005.

1 As water is sprayed onto the top surface of the clothes some is ab-
sorbed and some finds its way through the perforated drum back
into the sump. The pure “diffusivity” of water through the clothes
appears to be very small, so that on the time scale of the fill (less
than 10 minutes) a damp (but not dripping) article of clothing
will not significantly wet its neighbours. Clothes thus become sat-
urated in “layers” due to the water recirculation. The “layers”
need not be vertically stratified, although this is assumed in the
simple model below; rather, they may be like layers in an onion,
or have more complicated geometry. In the model developed here,
the top layer rapidly becomes saturated and starts dripping onto
the next layer, which in turn becomes saturated and drips onto
the third layer, and so on. As the top layers drip onto layers be-
low, they also drip from their sides through the perforated drum
and back into the sump. The clothes are thus either saturated
(top layers) or “dry” (bottom layers), with very few regions being
partially saturated.

2 The rate of absorption of water into dry clothes varies with the
fabric from synthetic/cotton sheets taking around 2 l/min, to a
“standard load” absorbing around 4 l/min, to towels which ab-
sorb around 9 l/min. These absorbency rates are well below the
minimum pump rate of around 15 l/min, so the absorbency is not
retarded by the pump rate. (However the model can be modified
easily to allow for low pump rates.)

3 As the dry clothes become saturated in the way described in (1),
the absorbency rate of the whole mass of clothes appears to de-
crease roughly linearly with time. After 12 minutes of pumping
the synthetic/cotton sheets (8kg dry weight) were completely sat-
urated. After 1 minute of pumping, the “standard load” (8kg dry
weight) was only absorbing roughly 1 l/min. After 5 minutes the
towels (8 kg dry weight) were completely saturated.

The model described here does not model the following experimental
observation:
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4 The surfaces of fabrics appear to have some initial resistance to
wetting, but once they have absorbed some water, their absorbency
increases.

The model is constructed as follows. A mass of clothes of height h,
initially containing Mw.in.c(0) kg of water at temperature Tsat.c(0), is
placed into the washing machine. The maximum absorbency rate of the
clothes is Ṁmax (kg/min). They are sprayed with water from the re-
circulation pump at rate Ṁre at temperature Tsump. It is assumed that

Ṁre ≥ Ṁmax, so that in time dt, an amount (Ṁre − Ṁmax)dt splashes
from the top surface of the clothes, through the perforations and into the
polypropylene bowl. This splash has temperature Tsump. For simplicity
Tsump is taken to be constant, although as in Section 4.3, dynamic ef-
fects can be included in a full dynamical system approach including the
sump water, the polypropylene, etc. Essentially then, we are dousing
the clothes with water at temperature Tsump and rate Ṁmax. This is
shown in the figure 3.

Clothes.  Initially
with M     (0) kg of
water at temp T

w.in.c

sat.c

M       Tre sump

x=0

x=h

.

. .

M   − Mre max

Figure 3. Basic setup in the absorption model.

For ease of exposition, the mass of the bone dry clothes has not been
included in this model (Mw.in.c is the mass of water in the clothes, not
the mass of the clothes). This will be of no consequence in the ab-
sorbency part of the model, but it will mean that if the model is applied
naively to the case of bone-dry clothes (Mw.in.c(0) = 0), the drip temper-
ature always equals Tsump. In Section 4.3, the model is slightly extended
by including the mass of the dry clothes as well as some initial water.

There are two parts to the model – the mass and heat flows.

4.2.1 The mass flow.

Consider a small slice of thickness dx which is saturated. If Ṁdt kg
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of water is incident on its top surface then the model assumes that
r.dx.Ṁdt kg of water flows to the sump (i.e. gets added to the “drip”),
and the rest, (1−r.dx)Ṁdt flows down to the next layer. This is the key
assumption in the model, and r is the key unknown parameter. Soon
we will give r another physical interpretation.

At time t (after pumping begins), the material between x = 0 and
x = x(t) will be saturated, while the material between x = x(t) and
x = h will be still in its initial state. Denote by Msat the mass of water
in the completely saturated clothes. Then at time t, the mass of water
in the clothes will be

Msat
x(t)

h
+ Mw.in.c(0)

h − x(t)

h
.

In the time interval dt pump Ṁmaxdt kg of water on the top layer. Then
the model’s key assumption implies that the amount to the “drip” is
r.x.Ṁmaxdt, and the amount to the unsaturated layer is (1−r.x)Ṁmaxdt.
This is depicted in figure 4.

h

x(t)

0

.

.

max

maxsat

w.in.c

M   x(t)/h

M    dt

M      (0) (h−x(t))/h

r x(t) M    dt

Figure 4. Depiction of the fundamental assumption of this model. Assumed mass
flow rates and situation at time t in the absorption model.

The resulting differential equation can be written in various ways.
Expressing in terms of the total mass of water in the clothes,

Mw.in.c(t) =
(Msat − Mw.in.c(0))x(t)

h
+ Mw.in.c(0) ,

gives

Ṁw.in.c = Ṁmax(1 − xr) = Ṁmax

(

1 −
Mw.in.c − Mw.in.c(0)

Msat − Mw.in.c(0)
hr

)

.



DETERMINING TEMPERATURE CONTROL OF WASH WATER IN A LAUNDRY . . . 177

This has solution

Mw.in.c(t) = Mw.in.c(0)+
Msat − Mw.in.c(0)

hr

[

1 − exp

(

−Ṁmaxhrt

Msat − Mw.in.c(0)

)]

.

This model has the property that if hr < 1 then the clothes become
completely saturated in time

tsat =
Mw.in.c(0) − Msat

Ṁmaxhr
log(1 − hr) ,

(after which time Mw.in.c(t) = Msat), but if hr > 1 then the clothes never
completely saturate — they reach Mw.in.c(∞) = Mw.in.c(0) + (Msat −

Mw.in.c(0))/hr — since the drip rate is too large for the water to percolate
past x(t) = 1/r.

This yields a useful interpretation of the parameter r. If h is very
large (a very high stack of clothes within the washing machine), then
the percolation described by this model saturates clothes only to the
depth 1/r.

Let us examine two instructive cases.
(a) Towels. The data described above suggests that Ṁmax = 9 kg/min.

Saturated towels weigh roughly 5 times more than bone-dry towels, so
for a 8kg bone-dry load, Msat = 40 kg. Load the washing machine to
height h = 0.4 m with damp towels with Mw.in.c(0) = 8 kg. The only
parameter that must be guessed at is r. Let us choose r = 1 m−1,
which means that a stack of towels of height greater than 1/r = 1 m
would not get thoroughly saturated, irrespective of how long we sprayed
them (because the loss through the perforated drum will equal Ṁmax

eventually — recall we’re ignoring plain diffusion). These parameters
give tsat = 4.5 minutes as the time for complete saturation, which agrees
rather well with the experimental observations. (Note that choosing
r = 0.5 m−1 gives tsat = 4 mins, while r = 2 m−1 (a rather extreme
value) gives tsat = 7 minutes, neither of which are too bad. Note also
that with Mw.in.c(0) = 0 we get tsat = 5.6 minutes.) The total mass of
water in the clothes is shown in the figure 5.

Note that the increase is roughly linear with time. This pattern is
repeated for many other choices of parameters, except for rather extreme
cases (where rh ≈ 1) in which the exponential form is visible. The other
important quantity is the mass flow rate from the clothes as “drip back”.
This is given by r.x.Ṁmax, and is plotted in figure 5.

Again a roughly linear relation is obtained. Once t > tsat the clothes
start dripping at rate Ṁmax (=9 kg/min in this case) since they are not
only dripping from their sides, but are dripping from their bottom too.
At that point the machine is deemed to have completed the “fill”.



178

(b) Synthetic/cotton sheets. The data described above suggests that
Ṁmax = 2 l/min. Let us suppose that saturated sheets weigh roughly
2 times more than bone-dry sheets, so for a 8kg bone-dry load, Msat =
16 kg. Load the washing machine to height h = 0.4 m with slightly
damp sheets with Mw.in.c(0) = 1 kg. Choose r = 1.4 m−1, which means
that a stack of sheets of height greater than 1/r = 0.7m would not get
thoroughly saturated, irrespective of how long we sprayed them. Then
tsat = 11 mins, again in good agreement with experiment. The graphs
are shown in figure 6.

Again, roughly linear relationships are obtained.

Figure 5. Left: Mass (kg) of water in the towels as a function of time (min). Right:
Drip-back rate (kg/min) (excluding the contribution of “splash”) for towels.

Figure 6. Left: Mass of water in the sheets as a function of time. Right: Drip-back
rate (excluding the contribution of “splash”) for sheets.

4.2.2 The heat flow.

Denote the average temperature in the saturated portion of the clothes
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by Tsat.c(t). By the key assumption (1), it is also the temperature of

the drip coming out of the clothes (disregarding the “splash” portion of
the drip). The temperature of the water in the unsaturated part of the
clothes is Tsat.c(0).

In time dt, the heat energy added to the clothes is ṀmaxdtTsump (mul-
tiplied by the heat capacity of the water which is common to all terms
below). The amount removed by the drip is Ṁmaxdt.x.r.Tsat.c(t). The
energy balance equation is

ṀmaxdtTsump + Msatx(t)Tsat.c(t)/h + Mw.in.c(0)(h − x(t))Tsat.c(0)/h

= Msatx(t + dt)Tsat.c(t + dt)/h + Mw.in.c(0)(h − x(t + dt))Tsat.c(0)/h

+Ṁmaxdt.x(t + dt).r.Tsat.c(t + dt) .

The LHS is the energy before mixing the recirculated water into the
water-clothes system, consisting of the energy of the small amount of
recirculated water plus the energy of the partially saturated clothes,
while the RHS is the energy of the clothes after plus the energy in the
small amount of drip water. Expanding to first order in dt gives the
conventional differential expression

ṀmaxTsump =
d

dt

(

MsatxTsat.c + Mw.in.c(0)(h − x)Tsat.c(0)

h

)

+ṀmaxxrTsat.c .

This may be solved to give a rather lengthy expression for Tsat.c(t).
An important observation is that the initial saturated layer, and con-

sequently the initial drip, is at temperature

Tsat.c(0) = ((Msat − Mw.in.c(0))Tsump + Mw.in.c(0)Tsat.c(0)) /Msat.

As expected, if Mw.in.c(0) = 0, Tsat.c(0) = Tsump (recall that we’re
essentially setting the heat capacity of the clothes to zero). Also, if
Mw.in.c(0) = Msat then the initial drip temperature is Tsat.c(0), which is
true by definition. (It is clear that the drip comes out at this temper-
ature because the addition of an initial infinitesimal amount of recircu-
lated water is not going to have any effect on the temperature of a large
thermal mass at Tsat.c(0).)

When the clothes are completely saturated at time tsat, the differential
equation simplifies to

Ṁmax(Tsump − Tsat.c) = MsatṪsat.c

giving an exponential approach of Tsat.c to Tsump.
Again let us explore the two examples.

1 Towels. Choose the parameters as above in addition to Tsat.c(0) =
20 degC and Tsump = 50 degC. Then the average temperature of
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the saturated part of the clothes, and consequently of the drip is
shown in figure 7.

2 Sheets. Choose the parameters as above in addition to Tsat.c(0) =
20,degC and Tsump = 50 degC. The temperature is shown in fig-
ure 7.

The important point here is that Tsat.c(t) does not vary significantly with
time.

Figure 7. Temperature of drip (excluding any “splash” contribution) as a function
of time. Left: Towels. Right: Sheets.

4.2.3 Conclusions from absorption model.

There are a number of important conclusions to be drawn from the
study of this model. Assume that the parameters (in particular “r”) do
not attain extreme unphysical values. Then

1 The time taken to saturate the clothes is

tsat =
Mw.in.c(0) − Msat

Ṁmaxhr
log(1 − h.r)

2 The mass of water in clothes increases roughly linearly with time
from Mw.in.c(0) at time t = 0 to Msat at time t = tsat. This is
satisfying since it agrees with experimental observations. At time
t = 0 the absorbency rate is defined by Ṁmax.

3 The drip mass rate increases roughly linearly with time from 0 to
Ṁmaxhr < Ṁmax at tsat. After tsat, the drip rate will suddenly rise
to Ṁmax, due to dripping from the bottom of the clothes as well
as from their sides, but this does not concern us as the “fill” will
be complete.
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4 The temperature of the drip and of the saturated portion of the
clothes stays more-or-less constant during the fill at the value

Tsat.c(0) =
(Msat − Mw.in.c(0))Tsump + Mw.in.c(0)Tsat.c(0)

Msat
.

After the fill the temperatures converges exponentially to Tsump.

The pump can recirculate water at any rate greater than Ṁmax, but
any excess is removed virtually instantaneously as “splash” back into
the sump with temperature Tsump, and so would be unobservable by a
temperature sensor in the sump.

The more complete model presented below includes the sump water
as well as the hot/cold inputs, and thus Tsump varies with time. What
is clear from this model is that in the initial stage of the fill, reasonably
dry clothes have very little effect since the drip-back rate to the sump
is low. During this stage, then, the controller will be battling the effect
of the polypropylene bowl. The key assumption of “layers” of clothes
becoming progressively saturated means that the drip temperature is
simply the average temperature of the saturated portion of the clothes
which remains quite constant. During the final stages of the fill the
clothes have more of an effect because of the high drip rate, and this
may make temperature control hard to achieve; although the main effect
of the clothes actually occurs when they are completely saturated and
the “fill” is complete.

4.3. A dynamic heat and mass transfer model in
MATLAB.

The team proposed a series of first-order differential equations as a
model of the washing machine. Many of these equations have been
discussed above, but are re-written here for ease of reading. A MATLAB
program has been written and produced the representative output which
is given graphically, below. This program also contains a controller and
has been given to Fisher and Paykel in order that they can carry out
numerical experiments in conjunction with the analytical approaches
presented in other sections. Although good agreement with experiment
is apparently obtained, further work is required to determine if this
model effectively captures all the mechanisms that need to be captured.

Given the aforementioned experimental observations and order-of-
magnitude calculations, it appears appropriate to model the washing
machine using the following components.
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Component Associated variables Notation Units

Hot/cold inputs mass flow rate Ṁin(t) kg/min
temperature Tin(t) K

Polypropylene mass Mpoly kg
average temperature Tpoly(t) K

Clothes mass of dry fabric Mc kg
mass of water in clothes Mw.in.c(t) kg
average temperature of
saturated portion of clothes Tsat.c(t) K

Water in sump mass Msump(t) kg
temperature Tsump(t) K

Recirculation mass flow rate Ṁre(t) kg/min
temperature Tsump(t) K

The dry parts of the clothes are assumed to be in thermal equilibrium
with the surrounding water at all times, and it is sufficient to consider
just the average temperature of the saturated portion, rather than con-
sider the spatial dependence.

Let us examine the mass and heat flow rates to and from each com-
ponent separately.

4.3.1 The hot/cold inputs.

Ṁin can be pre-set: for instance, Fisher and Paykel’s current scheme
is to set Ṁin(t) = constant until Msump = 5 kg and then Ṁin(t) = 0

for Msump > 5 kg and Ṁin(t) = constant when Msump returns to 4kg.

Alternatively, Ṁin and Tin could be dynamically controlled by a P/PI
controller in order to investigate the performance of the controller.

4.3.2 The polypropylene.

It has already been argued that heat transfer to the surrounding air
within the sheet-metal box can be neglected. Moreover, because the
polypropylene is only 2 mm thick and the diffusivity is 20 smm−2, given
good thermal contact between the sump water and the polypropylene,
it will attain a uniform distribution of heat within around a minute of
contact. Therefore, it is appropriate to use a “lumped approximation”
where the temperature in the polypropylene satisfies

cpolyMpoly

dTpoly

dt
= −hp.to.wApoly(Tpoly(t) − Tsump(t)) . (1)

The constants are
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Notation constant suggested value

cpoly heat capacity 2 kJ kg−1 K−1

Mpoly mass 5 kg
hp.to.w heat transfer coefficient

from water to poly 1 kW m−2 K−1

Apoly area of contact 1m2

The heat transfer coefficient (or, more particularly hp.to.wApoly/Mpolycpoly)
could be estimated by performing an experiment with an empty machine.
A suitable initial condition is Tpoly(0) = Tsat.c(0).

4.3.3 The clothes.

The model used here follows closely the model of Section 4.2. Intro-
duce the following constants.

Notation constant suggested value

Ṁmax maximum absorbency rate 9 kg/min (towels) to 2 kg/min (sheets)
Msat maximum mass of water that 5 times dry weight (towels)

can be absorbed by clothes 2 times dry weight (sheets)
cw heat capacity of water 4.2 kJ kg−1 K−1

cc heat capacity of dry clothes 1.5 kJ kg−1 K−1

h height of clothes in machine 0.4 m
1/r maximum height before complete

saturation is impossible
via dripping 1 m (towels) 0.7 m (sheets)

Also introduce the convenient variable

x(t) = h
Mw.in.c(t) − Mw.in.c(0)

Msat − Mw.in.c(0)
, (2)

which measures the total “height” of the saturated layer.
The drip-back rate to the sump is (Ṁre − Ṁmax) + Ṁmaxrx, the term

in parentheses being the “splash” contribution, while the final term is
from dripping through the clothes. The differential equations of mass
and energy conservation are

dMw.in.c

dt
= Ṁmax − Ṁmaxrx(t) , (3)

d

dt

(

(cwMsat + ccMc)
x(t)

h
Tsat.c(t) + (cwMw.in.c(0) + ccMc)

h − x(t)

h
Tsat.c(0)

)

= cwṀmaxTsump(t) − cwṀmaxrx(t)Tsat.c(t) . (4)

When the clothes are completely saturated (Mw.in.c = Msat) then the
drip-back rate to the sump becomes Ṁre and the differential equations
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simplify to

dMw.in.c

dt
= 0 ,

(cwMsat + ccMc)
dTsat.c

dt
= cwṀmax(Tsump(t) − Tsat.c(t)) .

4.3.4 The sump.

The mass and energy balance equations read

dMsump

dt
= Ṁin(t) − Ṁmax + Ṁmaxrx(t) , (5)

cw
d

dt
(Msump(t)Tsump(t)) = cwṀin(t)Tin(t) − hp.to.wApoly(Tsump(t) − Tpoly(t))

−cwṀmaxTsump(t) + cwṀmaxrx(t)Tsat.c(t) . (6)

After the clothes become saturated the equations simplify to

dMsump

dt
= Ṁin(t) ,

cw
d

dt
(Msump(t)Tsump(t)) = cwṀin(t)Tin(t) − hp.to.wApoly(Tsump(t) − Tpoly(t))

−cwṀmaxTsump(t) + cwṀmaxTsat.c(t) .

4.3.5 The recirculation line.

The pump moves water at the arbitrary rate Ṁre(t). Currently, Fisher
and Paykel use a linear function:

Ṁre(t) =











0 if Msump < 1.8 kg
14 + 34−14

3.5−1.8
(Msump − 1.8) if 1.8 < Msump < 3.5 kg

34 if Msump > 3.5 kg

4.3.6 Matlab model (without control).

The differential equations (1), (3), (4), (5) and (6) (with the defini-
tion of x in equation (2)) and a simplified delay equation comprise the
“virtual machine” model. The delay equation is discussed in more detail
in Section 5.3 — as no control strategy is used here, the delay is not
important for these results.

Two simulation runs of the model, with no control strategy, were
conducted to compare with experimental results from the two hot fills
of the machine performed at MISG2005. In these experimental fills,
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the machine was filled with hot water only and the slug of cold water
from the hot tap had previously been cleared. Two different loads were
used, a load of sheets and a load of towels, each of dry weight 8kg. The
initial conditions used in the simulation runs were that all temperatures
initially were room temperature (25 degrees C), the mass of water in
the load was zero and the mass of water in the machine was 0.1kg. The
water was assumed to be input at a constant flow rate of 15 l/min (when
the tap was on) and a constant temperature of 50 degC. The values used
for absorbency, heat capacity, etc are as suggested above. The results
are shown in figure 8.
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Figure 8. Output from MATLAB model. Upper graphs: towels. Lower graphs:
sheets. Left graphs: Temperatures, Tsump in red (upper line), Tsat.c in black (middle
line), Tpoly in green (lower line). Right graphs: mass of water in the sump as a
function of time (in minutes).

The time taken in the model for both sheets and towels to reach
saturation is in good agreement with the times observed from the ex-
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periments performed at MISG2005: around 12 minutes and 6 minutes
respectively. The temperature graphs are not unrealistic considering the
initial conditions used, and the mass of water in the clothes increases
roughly linearly as predicted by the analytic solution of the absorbency
model.

The graphs for the mass of water in the sump (RH graphs in figure 8)
are the furthest from the observed values as there is a larger number of
“sawteeth” and the towel graph doesn’t show the expected dip in the
water level (see the sketches in Section 3). This is possibly because the
model assumes that once the pump is on the water is always pumped
over the clothes at a higher rate than can be absorbed, so that pump
speed has no impact on the absorbency rate. However, if the input rate
is less than the recirculation rate is less than the maximum absorbency
rate, a flattening of the curve for the mass of water in the sump can be
achieved (see figure 9). Still, the water mass does not drop significantly
as the recirculation pump switches off. (Note that while the maximum
absorbency rate is greater than the pump rate, the actual rate of water
absorbsion into the clothes must always be less than or equal to the
pump rate. )
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Figure 9. Mass of water in sump when hot/cold input rate < pump rate < maximum
absorbency rate.

To see the “dip” in the water mass that was observed experimentally,
changes would need to be made. Either the pump rate needs to be
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directly included and the absorbency related to the pump rate, or the
absorbency model needs to be changed. The current absorbency model
has maximum absorbency at the beginning of the fill cycle and the total
absorbency of the mass of clothes decreases as the clothes become wetter
(due to water escaping through the perforated drum), but, as mentioned
in Section 4.2, clothes appear to have some initial resistance to wetting,
meaning their raw absorbency can change with time. It is hoped that
this effect is not large.

5. Simple control and models with delays

5.1. Simple feedback.

In control theory, the process variable(s) is the thing that is being
regulated. In this case it is the sump temperature. This is an appropri-
ate choice for the process variable since the aim of the regulation is to
ensure that the clothes are not thermally damaged and that the deter-
gent is completely dissolved. The sump temperature is indicative of the
temperature at which the wash water is sprayed onto the clothes and
also the temperature for dissolving the detergent.

This is regulated by manipulating the dwell times for the hot and cold
water inlet valves, denoted Uhot(t) and Ucold(t) respectively. These are
the fraction of time for which the valve is open, so range between 0 and
1. The controller chooses Uhot and Ucold when it is given an input, which
in this case is denoted T input.to.controller

sump (t). This is not necessarily equal
to Tsump(t) because of various delays discussed in Section 5.2. The aim
temperature for the water in the sump is denoted T set.point

sump .
It is suggested that for simplicity, the choice for the value of the ma-

nipulated variables could be linked by defining Uhot(t) from the controller
equation and then setting Ucold(t) = 1−Uhot(t). If fill time is important
then an alternative is to use the following to maximise fill rate:

If T input.to.controller
sump (t) < T set.point

sump then set Uhot(t) = 1 and let Ucold(t)
be set less than 1 as dictated by the controller equation,
else if T input.to.controller

sump (t) > T set.point
sump then set Ucold(t) = 1 and let Uhot(t)

be set less than 1 as dictated by the controller equation.
Feedback control strategies first calculate the “error” signal, denoted

e(t) and defined as:

e(t) = T set.point
sump − T input.to.controller

sump (t) .

A proportional controller will then relate the manipulated variable (as-
sume this is Uhot(t) for illustration) to the error signal with the equation:

Uhot(t) = kpe(t) + offset ,
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where kp is the controller’s proportional gain and “offset” is the con-
troller’s offset.

Such a controller is very simple with just 2 parameters to choose. The
main drawback is that there is usually a steady state error, that is we do
not have T input.to.controller

sump (t) exactly equal to T set.point
sump . To see this, for

the prevailing values of the disturbances there will be a value of Uhot(t)
that is required to make e(t) = 0 and this value will generally not be
equal to the offset chosen.

The proportional gain can be chosen using a modelling or experimen-
tal approach. Various values can be tried in the MATLAB model of
Section 5.3.

To remove this steady state error, a Proportional + Integral controller
can be used, this has the form:

Uhot(t) = kp

(

e(t) +
1

Ti

∫

e(t)dt

)

where Ti (s) is the controller’s integral time. This effectively automat-
ically adjusts the controller’s offset to remove any steady state error.
This benefit comes at a cost, though, as the controller’s integral action
adds 90 degrees of phase lag and it is now effectively the frequency at
which the System Transfer Function has 90 degrees of phase lag (not 180
degrees as for proportional control) that is the limit of the disturbance
rejection bandwidth. This might not be a problem in the washing ma-
chine where the MATLAB model of Section 5.3 suggests that delays are
unimportant.

The controller’s integral time should be “tuned” first the proportional
gain to follow. A good rule of thumb for choosing the integral time
is to set Ti = 1/ω90 where ω90 (rad/sec) is the frequency by which
the phase lag of the System Transfer Function reaches 90 degrees (or
approximately twice the sum of the longest pure delay time and the
largest time constant).

5.2. A dynamic, equilibrium perturbation model
of the sump.

A dynamic, equilibrium perturbation model will be constructed to
assist with the analysis and design of a control strategy for the wash
water temperature. The generic architecture used for such analysis is
shown in figure 10.

The disturbance signals are anything that impacts the process variable
excluding the manipulated variables. There are essentially 2 categories
of disturbance variable: water supply and clothes. The water supply
disturbances are represented by the signals for the hot and cold wa-
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Figure 10. Generic architecture for control system analysis.

ter supply temperatures (Thot(t) and Tcold(t)), it is assumed that the
flowrates of hot and cold water will depend only on the dwells of the
valves (not dependent on line pressure since the supplies are throttled
to produce a fixed flow for any line pressure > 1 bar). The flowrates
of hot and cold supply will be given by ṀhotUhot(t) and ṀcoldUcold(t)
where Ṁhot and Ṁcold are the mass flowrates (kg/s) that prevail when
the valves are fully open.

There are 2 parts of the machine to model to produce the Process
and Disturbance Transfer Functions: the mixing chamber for the supply
water and the sump.

The dynamic energy balance for the mixing chamber is given by:

d (MmixTmix(t))

dt
= ṀhotUhot(t)Thot(t)

+ṀcoldUcold(t)Tcold(t) − Ṁmix(t)Tmix(t) , (7)

where Mmix (kg) is the (fixed) mass of water in the mixing chamber,
Tmix(t) is the temperature of the water in the mixing chamber and
Ṁmix(t) is the mass flowrate of mixed water to the sump.

Since there is no change of mass of water in the mixing chamber, we
have

Ṁmix(t) = ṀhotUhot(t) + ṀcoldUcold(t) . (8)

To model the transport delay caused by the water flowing from the
mixing chamber to the sump we define the variable Tm.to.s(t) which is the
temperature of the mixed water entering the sump at time t. Assuming
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no energy loss during transport this is equal to the temperature for the
water leaving the mixing chamber δmix seconds ago, where δmix is the
transport time. Thus we have the delay equation:

Tm.to.s(t) = Tmix (t − δmix) . (9)

Note, the sump model will assume instantaneous mixing for simplicity,
this will not be strictly correct and some of the “lost” dynamics can be
effectively “captured” in the model by adding an appropriate amount of
delay time to δmix.

The dynamic energy (assuming instantaneous mixing) and mass bal-
ances for sump are given by:

d (Mw.in.s(t)Tsump(t))

dt
= Ṁmix(t)Tm.to.s (t) − Ṁre(t)Tsump(t)

+Ṁdrip (t)Tdrip(t) , (10)

d (Mw.in.s(t))

dt
= Ṁmix (t) − Ṁre(t) + Ṁdrip(t) (11)

where, Mw.in.s(t) (kg) is the mass of water in the sump, Tsump(t) is the

temperature of the water in the sump, Ṁre(t) (kg/s) is the mass flowrate
of recirculation, Ṁdrip(t) (kg/s) is the mass flowrate of the drip back
from the clothes (including recirculated water that does not penetrate
the clothes — this portion is called the “splash” in other sections) and
Tdrip(t) is the temperature of the water dripping back.

Thus the disturbances are parameterised here by the disturbance sig-
nals: Ṁre(t), Ṁdrip(t) and Tdrip(t). Alternative parameterisations are
possible, e.g. in terms of the absorbance rate of the clothes and the
temperature difference between the sump and the clothes.

The measurement system (the temperature probe) can be assumed to
have a first order response, thus

τs

dTmeasured
sump (t)

dt
+ Tmeasured

sump (t) = Tsump(t) , (12)

where Tmeasured
sump (t) is the measured sump temperature and τs (s) is the

time constant of the temperature sensor.
Finally, the pulse width modulation of the valves effectively produces

an additional delay of approximately half the modulation period. This
can be accommodated in the measurement dynamics with the delay
equation:

T input.to.controller
sump (t) = Tmeasured

sump (t)
(

t − 1
2
δPWM

)

, (13)



DETERMINING TEMPERATURE CONTROL OF WASH WATER IN A LAUNDRY . . . 191

where T input.to.controller
sump is the delayed, measured sump temperature as

received by the controller and δPWM (s) is the modulation period.
So, to summarise so far, the measured signal T input.to.controller

sump (t) and
process variable signal Tsump(t) are related to the manipulated variable
signals (Uhot(t) and Ucold(t)) and disturbance variables signals (water
supply Thot(t) and Tcold(t), and clothes Ṁre(t), Ṁdrip(t) and Tdrip(t)) by
equations (6) through (13).

To yield a linear set of ODEs and delay equations, the nonlinear equa-
tions will have to be approximated by linearisation about a chosen, equi-
librium operating point. For example, equation (6) can be approximated
by the linear ODE:

Mmix
dTmix

dt
= Ṁhot (Uhot(t)T

o
hot + Thot(t)U

o
hot)

+Ṁcold (Ucold(t)T
o
cold + Tcold(t)U

o
cold)

−Ṁmix(t)T
o
mix − Tmix(t)Ṁo

mix ,

where the superscript “o” means the chosen equilibrium operating point
for the variable. To ensure that the operating point is an equilibrium we
require the operating point to be chosen such that: Ṁo

mix = ṀhotU
o
hot +

ṀcoldU
o
cold and ṀhotU

o
hotT

o
hot + ṀcoldU

o
coldT

o
cold − Ṁo

mixT
o
mix = 0.

Equations (10) and (11) are coupled, the product differential on the
LHS of (10) should be expanded and the dMw.in.s(t)/dt term replaced
by substitution with the expression on the RHS of equation (11). The
resultant decoupled ODEs will still be nonlinear and an approximation
(similar to that given for equation (6)) will have to be made to linearise
them about a chosen equilibrium operating point.

For the purposes of controller design and system assessment, the Sys-
tem Transfer function should be analysed, this is essentially the concate-
nation of the Process Transfer Function and the Measurement Transfer
Function and describes the map from the signals representing the ma-
nipulated variables (Uhot(t) and Ucold(t)) to the signal representing the
measured variable T input.to.controller

sump (t).
It is the low frequency phase lag of this System Transfer Function

that is of primary importance and the phase crossover frequency (The
frequency at which the phase lag reaches 180 degrees.) is a good mea-
sure of this. If the system has a low phase crossover frequency then it is
only possible to engineer a controller which can reject the low frequency
components of the disturbance signals (i.e. slow changes in water supply
temperatures or absorption behaviour of the clothes can be accommo-
dated but more abrupt changes can not). Conversely, if the system has
a high phase crossover frequency then a broader spectrum (bandwidth)
of the disturbance signals can be rejected.
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The phase lag of the System Transfer function is the sum of the phase
lags of the component parts. The most significant parts are likely to be
the pure delays (these are the transport and mixing delay (δmix) and the
PWM delay (δPWM )). If the time constant for the temperature sensor
(τs) is large (say > 10 s) then this may have a significant impact. The
phase lag contributed by mixing is likely to be small since the residence
time of the mixing chamber (Mmix/Ṁmix) is likely to be small (< 5 s).
The phase lag contributed by the sump will increase as Mw.in.s (t) in-
creases during the fill cycle.

Thus, it is possible to analyse the impact which δPWM and τs have on
the controllability of the system, these are both able to be influenced by
sensor choice and programming of the controller, noting shorter PWM
periods may have a negative impact on valve mean-time-between-failure.
Further, it is evident that δmix may have a significant impact on the
performance, measures should be taken to minimise the transport delay
and to make the sump mixing as ‘instantaneous’ as possible.

If any of the dynamic effects mentioned are much faster than the
others they will contribute negligible phase lag at low frequencies and
thus can be neglected from the model. The MATLAB simulation of
Section 5.3 suggests that none of these delays is particularly important.

5.3. A MATLAB model of proportional control.

A controller has been added to the MATLAB model of Section 4.3.
The model also incorporates the cold slug of water from the hot tap.
To model the delays, the team decided to calculate the dwell times only
every 30 seconds, and to introduce another variable, Tmeasured, which is
the temperature of the water in the sump as measured by the tempera-
ture sensor. This lags behind the temperature of the water in the sump,
Tsump with time constant τ :

τ
dTmeasured

dt
= Tsump − Tmeasured. (14)

This is designed to model the finite-time response of the temperature
sensor. It is also designed to model the slow mixing of water at different
temperatures in the sump: we can assume instantaneous perfect mixing
(and denote the temperature by Tsump), but the sensor takes some time
to “see” this mixed water.

Two representative cases were tried. Both concerned 8kg of towels.
Both had an aim temperature of 45 degC. All other parameters are as
given in Section 4.3, and the input flow-rate was assumed to be constant
at 10 l/min (when the valves are open).
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In the first case the towels were initially bone dry and at the ambient
temperature of 20degC. The hot input was at 60 degC and the cold at
15 degC. The cold slug was of 30 seconds duration. The offset in the
proportional controller was taken to be (45-15)/(60-15), and the gain
kp = 0.02 degC. The time constant for the sensor was chosen to be
τ = 0.2 min. Control was achieved, with the final sump temperature
being around 43 degC. Choosing the gain more carefully, or using a PI
controller, would counter the effects of the polypropylene, etc.

The second case was rather extreme. The towels contained 20 kg of
cold water at 10 degC. The ambient, and initial conditions were 10 degC.
The hot water input was 55 degC and the cold at 15 degC, and the cold
slug was of 45 seconds duration. The controller’s offset was chosen to
be (45-15)/(55-15) with gain kp = 0.02 degC. The time constant for the
sensor was chosen to be 0.4 min. Control was not achieved, with sump
temperature being around 40 degC at the end of the fill.

Both simulations were continued after the fill had completed until the
sump-clothes temperatures had equilibrated. For the latter simulation,
this was at the low temperature of around 24 degC. This illustrates that
post-fill effects can be quite important.

The results are shown in figures 11 and 12.

6. Sophisticated control strategies.

6.1. Cascade control.

A cascade control strategy utilises information of an additional mea-
surement to improve the performance of the system. In this case, the
additional measurement would be the temperature in the mixing cham-
ber. The generic architecture of such a system is shown in figure 13.
In this case the ‘Inner process variable’ is the mix temperature and the
water supply disturbance signals will act on this inner loop. The inner
controller can be tuned to have a relatively high bandwidth since the
phase lag of the inner transfer function is relatively low ( the phase lag
contributed by the transport lag to the sump and mixing dynamics in
the sump are ‘outside’ the inner loop). Thus the impact of the water
supply disturbances will be significantly reduced if cascade control is
used.

The phase lags in the outer loop are similar to those for the single loop
control and thus the ability to reject disturbances from the clothes is not
significantly changed. To tune the controllers in the cascade architecture,
the inner loop is tuned first then the outer loop tuned once the inner
loop is fixed.
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Figure 11. Output from MATLAB model command for “normal” control condi-
tions. Temperature of polypropylene (green, lower at t = 5), sump water (red),
saturated portion of clothes (black, second lowest at t = 5) and water input (blue,
highest at t = 5) are shown plotted against time. Note that the “fill” ends around 6
minutes when the “input” is shut off. Produced with MATLAB command >_>[t,y]

= washp(45,1,10,@normal).
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Figure 12. Output from MATLAB model command for “harsh” control conditions.
MATLAB command >_>[t,y] = washp(45,1,10,@harsh).
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Figure 13. Generic architecture for cascade control system. Note, measurement
transfer functions have been omitted for brevity.

6.2. “Smart” control systems.

In addition to the models and control strategies discussed above the
team that worked on the problem at MISG2005 came up with a number
of innovative suggestions to “redesign” the washing machine or control
strategy. These suggestions are detailed below.

6.2.1 Estimating values from beginning of fill.

In order to obtain accurate values for site specific parameters such as
the flow rate and temperature of the hot and cold water supply it was
suggested that these be measured in the initial part of the fill cycle.
Before the pump is switched on, the hot and cold taps could be turned
on separately to measure flow rate (using the data from the pressure
sensor) and temperature. However, dealing with the cold slug is a com-
plicating factor and measuring the temperature of the water supplies
would require the temperature sensor to be placed in or near the input.
Further, adding cold water to the machine in order to measure the cold
temperature will worsen the performance of the control strategy in the
situation where no cold water should be added in order to reach the aim
temperature.

6.2.2 Memory chip.

This suggestion built on the previous suggestion and overcomes some
of the problems with it, by eliminating the need to measure values each
time a load of washing is done. As a Fisher and Paykel washing machine
already contains significant computing power it would be feasible to add
a memory chip to the machine. This could store information about the
hot and cold water temperatures, flow rates, and other site specific in-
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formation like the length of the cold slug. Remembering how well the
control strategy did last time a hot wash was performed would also be
useful — the controller would then know whether it should add more or
less hot water. The memory chip could also store information about the
user’s washing patterns which would aid in data collection and act as a
diagnostic tool if the machine required repair.

6.2.3 Initialise machine on installation.

Further building on the previous suggestion, the machine when installed
could perform an initial measurement test to obtain the data required
by the memory chip for future washes.

6.2.4 Placement of temperature sensor on a “sill”.

Following the realisation that the first suggestion of measuring the hot
and cold water temperature in the initial part of the fill would require the
temperature sensor to be placed near the input and not in the sump, it
was suggested that the temperature sensor instead be located on a ledge
in the lower part of the machine (see figure 14). This would allow the
temperature of the incoming water to be measured initially, before the
water level in the machine reached the sill. Once the water was higher
than the sill the temperature sensor would measure the sump temper-
ature. This is a potential compromise between the conflicting needs to
rapidly observe temperature disturbances from the water supplies and
have an accurate, local measure of the temperature of the water at the
suction side of the recirculating pump, i.e. the temperature of the water
that will soon be sprayed on the clothes.

6.2.5 Placement of temperature sensor in the mixing cham-
ber and diverting the recirculating water.

An alternative location for the temperature sensor would be in the mix-
ing chamber (see figure 15). This would allow the measurement of the
incoming water temperature. The temperature of the recirculation wa-
ter could also be measured by the same temperature sensor if this water
was passed through the mixing chamber. The drawback of this geome-
try is that another valve would be required so that the water could be
directed either into the sump or onto the clothes, to prevent water which
is too hot being sprayed onto the clothes.
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Figure 14. Placement of temperature sensor on a “sill”.

7. Conclusions and recommendations

The steady state energy balance illustrates which effects are significant
and which are not. Cold slugs in the hot water supply, large amounts of
water in the clothes and excessive opening of the lid are all significant.
Machine components also absorb heat, although since this effect does
not change considerably between loads, Fisher and Paykel can easily
compensate for the effect, especially if using a PI controller.

A number of analytic models have been presented which allow an
analytical exploration of the disturbance envelopes including dynamic
delay effects. The analysis and modelling of the clothes suggests that
cold, saturated clothes may continue to drip cold water into the sump for
most of the fill and this is a challenging disturbance for the temperature
regulation system.

MATLAB simulations suggest that dynamic delays are unimportant
and also allow the effects of the following variables to be easily in-
vestigated numerically: temperature of the hot water supply, amount
and temperature of initial water in the clothes, clothes masses, and ab-
sorbency rates of clothes. In all but the extreme cases, a few trial runs of
the MATLAB proportional controller routine have suggested that tem-
perature control can be achieved to within ±2 degC, and this could be
improved by using a PI controller.
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Figure 15. Placement of temperature sensor in the mixing chamber and modifying
the geometry so that the recirculating water also flows through the mixing chamber.

If the water supply disturbances are much greater than the clothes
disturbances then the best place to locate the sensor is in the mixing
chamber. High bandwidth disturbance rejection of the water supply dis-
turbances can then be achieved but the system will be highly exposed to
any significant disturbances from the clothes. Conversely, if the clothes
disturbances are much greater than the water supply disturbances then
the best place to locate the sensor is in the sump. All disturbances
can be rejected to an extent but the high frequency disturbances from
the water supply will not be able to be rejected. If both water supply
and clothes disturbances are significant then the best performance will
be achieved by measuring both the mix and sump temperatures and
utilising this measured information in a cascade control strategy.

Further, a series of ideas have been presented for “smart” approaches
where key external parameters may be identified, memorised and utilised
by the regulation system.

Finally, it may be useful to reiterate that the temperature of the
sump water may change radically after the fill phase due to equilibration
between the sump water and the water in the clothes.
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Appendice

A The MATLAB model

The top level function washp.m calls all the other functions. To run
the code with the aim temperature set to 45 deg C, for a load of sheets,
with the simulation going up to the 10 minute mark of the fill cycle
for a fill under “normal” control conditions, at the command prompt in
Matlab, enter:

>> [t,y] = washp(45,1,10,@normal);

For the same aim temperature, with a load of towels, simulated up
to the 5 minute mark of the fill cycle under “harsh” control conditions,
enter :

>> [t,y] = washp(45,2,5,@harsh);

Three load “types” have been defined - sheets (1), towels (2) and empty
(3). The empty load is useful for checking the behaviour of the model
and the accuracy of parameters such as the heat transfer coefficient from
the water to the polypropylene by comparing with experimental fills of
an “empty” machine (when the disturbances associated with the load
are removed).

To enable some parameters to be changed easily they have been saved
in separate files. “Normal” control conditions are defined as ambient
temperature 20 deg C, hot and cold water supply temperatures 60 and
15 deg C respectively, a cold slug which takes 30seconds to clear, no
water in the load initially and a delay constant for the temperature
sensor of 0.2 min. “Harsh” control conditions (an example of a case
where we expected the controller to have difficulty reaching the desired
temperature) are defined as ambient temperature 10 deg C, hot and cold
water 60 and 15 deg C, a cold slug which takes 45seconds to clear, 20 kg
of water at 10 degC in the load initially and a delay constant of 0.4 min.
The temperature of the cold slug is assumed to be the temperature of
the cold water. Note that “harsh” control conditions may only be used
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with the towel load type as the sheet load type will not absorb 20kg of
water. Files containing parameters for any other operating conditions
may be created. It should also be reasonably straightforward to add
other parameters to the parameter files (removing the definition of these
parameters from within the model proper) if required.

Note that the controller, which updates the temperature of the input
water every 30 seconds, requires that the time step is chosen so that
there is a time step exactly at 30, 60, 90, etc. seconds. The time step is
set within the code so that there is a time point every 0.5seconds, but if
the time step is changed this requirement must be taken into account.

The function washp.m returns a vector of the time values t, and a
matrix y which contains the values of the 6 variables - the temperatures
of the polypropylene (y(:,1)), the sump water (y(:,2)), the water in the
clothes (y(:,3)); the mass of water in the sump (y(:,4)) and in the clothes
(y(:,5)) and the “measured” temperature of the sump water (y(:,6)).
This last variable is used to incorporate delays.

The code also produces a plot of each of the mass variables against
time in separate figures and a combined plot of the temperatures of the
polypropylene, sump water, water in clothes and the input water (the
“measured” sump temperature is not included in the plot).

Most of the parameters for the model (aside from those in the pa-
rameter files) are set within the code and need to be altered manually
to experiment with different situations. Some “typical” parameters are
included within the code and occasionally alternative values are given in
comments (any line in Matlab code which begins with % is a comment).
The gain parameter for the controller is set in temp control.m and all
other parameters are defined within washmodel.m.

A1 wash.m

function [t,y] = washp(Taim,load,tfinal,parafile);

% Taim is aim temperature for sump at end of fill (in Celsius)

% load = 1 for sheets, 2 for towels, 3 for empty

% tfinal is time in MINUTES to run simulation for

% parafile is file containing parameters

% (have collected in file to make it easier to change the

% values)

% n is number of points used for numerical ode solver

% n MUST be chosen so that there is a time point EXACTLY

% at t = 0.5, 1, 1.5, 2, etc. minutes or input temp

% will not be updated
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n = tfinal * 120; % time step every 1/2 second

% load parameters and initial conditions from file

[ambient,Mwinc,Twinc,Thot,Tcold,slugtime,tau]

%= feval(parafile);

% +273 to temperatures for Kelvin scale

Taim = Taim + 273;

ambient = ambient + 273;

Twinc = Twinc + 273;

% set up initial conditions

% temperatures initially all ambient temperature

% unless there is water in clothes, then this is at temp

% Twinc

% mass of water in clothes given by parameter Mwinc

% mass of water in machine initially assumed to be 100mL

% or 0.1kg

if Mwinc == 0, % make sure if no water in clothes

Twinc = ambient; % that this is ambient temp

end

y0 = [ambient, ambient, Twinc, 0.1, Mwinc, ambient];

global inlet;

% used to remember whether taps were previously on or off

% for each call to washmodel

inlet = 1; % set taps on initially

% variables are

% y1 == Tpoly

% y2 == Tsump

% y3 == Tsatc

% y4 == Msump

% y5 == Mwinc

% y6 == Tsumpmeasured

% cannot use Matlab solver as adaptive step size messes up

%tap control,

% have used a fourth order Runge-Kutta method with n

%evenly spaced points

[t,y] = rko4vpara(@washmodelp,0,tfinal,n,y0,parafile,
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[Taim,load,y0]);

% -273 from temperature values to get Celsius scale

y(:,1) = y(:,1) - 273*ones(length(t),1);

y(:,2) = y(:,2) - 273*ones(length(t),1);

y(:,3) = y(:,3) - 273*ones(length(t),1);

y(:,6) = y(:,6) - 273*ones(length(t),1);

% plot masses

figure;

plot(t,y(:,4)); xlabel(’time’); ylabel(’kg’);

title(’mass of water in sump’);

figure; plot(t,y(:,5)); xlabel(’time’); ylabel(’kg’);

title(’mass of water in clothes’);

% combined plot of temperatures

global inputtemps; % used to plot input temperatures

inputT(1) = inputtemps(1)-273; k = 1;

for i = 2:length(t),

if rem(t(i),1/2) == 0,

k = k+1;

end;

inputT(i) = inputtemps(k)-273;

if t(i) < slugtime,

inputT(i) = Tcold;

end

end

figure;

plot(t,y(:,1),’g’,t,y(:,2),’r’,t,y(:,3),’k’,t,inputT,’b’);

xlabel(’time’); ylabel(’degrees C’);

legend(’poly’,’sump’,’water in clothes’,’input’);

A2 washmodelp.m

This function contains the differential equations of the model. The
equations used are equations (1), (3), (4), (5) and (6) from the absorption
model of Section 4.2 and the simple delay equation (14) discussed in
Section 5.3.

function y = washmodelp(t,w,parafile,para);

Taim = para(1);
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load = para(2); % load = 1 for sheets, 2 for towels, 3 for empty

y0 = para(3:8); % initial conditions

% load parameters from file, only use Tcold and tau in

this file

[ambient,Mwinc,Twinc,Thot,Tcold,slugtime,tau]

= feval(parafile);

global inlet % taps on/off

global inputtemps % used to plot input temperatures

global Tin

% not used outside this file but need to remember

% this value as it’s only updated every 30 seconds

% initialise Tin if t is zero,

start cold water temperature (cold slug)

% model INCLUDES COLD SLUG

if t == 0,

Tin = Tcold+273;

inputtemps = Tin;

end

if t < slugtime,

Tin = Tcold+273;

inputtemps = Tin;

end

% if 30 second mark, find input temperature,

% given DELAYED MEASUREMENT of sump temperature

if (rem(t,1/2) == 0 && t >= slugtime),

Tin = feval(@temp_controlp,w(6),Taim,parafile);

inputtemps = [inputtemps, Tin];

end

% constants which are independent of load

Cpoly = 2; % heat capacity of polypropylene

Mpoly = 5; % mass of polypropylene

Hw2p = 1; % heat transfer coeff from water to poly

Apoly = 1; % area of contact between water and poly

Cw = 4.2; % heat capacity of water

Cc = 1.5; % heat capacity of dry clothes

% constants which depend on load, but which are not changed
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h = 0.4; % height of clothes in machine

Mc = 8; % mass of dry clothes

if load == 1, % constants for sheets

Mmax = 2; % maximum absorbency rate

Msat = 2*Mc; % max mass of water absorbed by clothes,

% 2 times mass of clothes

r = 10/7; % max height before complete saturation

% impossible

elseif load == 2, % constants for towels

Mmax = 9;

Msat = 5*Mc;

r = 1;

elseif load == 3, % no clothes!!

h = 0;

Mc = 0;

Mmax = 0;

Msat = 0;

r = 1; % r is meaningless but must be defined

else

fprintf(1,’need to set load parameter to 1, 2 or 3\n’);

end

inputrate = 10;

% find Min at current time

if w(4) < 4 % on if water level below 4

Min = inputrate;

inlet = 1;

elseif w(4) > 5 % off if water level above 5

Min = 0;

inlet = 0;

elseif inlet == 1 % if between 4 and 5 on if previously on

Min = inputrate;

else % off if previously off

Min = 0;

end

% calculate x (height of saturated clothes)

if load == 3, % no clothes

x = 0;

else

x = h*(w(5) - y0(5))/(Msat - y0(5));
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end

% Three situations

% (1) pump off (beginning) water level isn’t high enough

% for water recirc pump to be on, set Mmax to zero,

% no change in mass or temp of water in clothes

% (2) pump on, clothes absorbing water

% (3) pump on, clothes saturated, equations simplify,

% no change in mass of water in clothes

% system of odes

if load == 3, % no clothes

y(5) = 0; % never any water in clothes

y(3) = 0; % no clothes so satc is meaningless

y(1) = -Hw2p*Apoly/(Cpoly*Mpoly)*( w(1) - w(2) ); %Tpoly

y(6) = (w(2) - w(6))/tau;

if w(4) < 1.8 % Msump < 1.8, situation (1)

Mmax = 0;

y(4) = Min; %Msump

y(2) = 1/w(4)*( -w(2)*y(4) + 1/Cw*( Cw*Min*Tin -

Hw2p*Apoly*(w(2) - w(1)) - Cw*Mmax*w(2)

+ Cw*Mmax*r*x*w(3) ) ); % Tsump

elseif w(5) > Msat % Mwinc > saturation mass, situation (3)

y(4) = Min; %Msump

y(2) = 1/w(4)*( -w(2)*y(4) + 1/Cw*( Cw*Min*Tin -

Hw2p*Apoly*(w(2) - w(1)) - Cw*Mmax*w(2)

+ Cw*Mmax*w(3) ) ); % Tsump

else % situation (2)

y(4) = Min - Mmax + Mmax*r*x; %Msump

y(2) = 1/w(4)*( -w(2)*y(4) + 1/Cw*( Cw*Min*Tin -

Hw2p*Apoly*(w(2) - w(1)) - Cw*Mmax*w(2)

+ Cw*Mmax*r*x*w(3) ) ); % Tsump

end

else % clothes

y(1) = -Hw2p*Apoly/(Cpoly*Mpoly)*( w(1) - w(2) ); %Tpoly

y(6) = (w(2) - w(6))/tau;

if w(4) < 1.8 % Msump < 1.8, situation (1)

Mmax = 0;

y(4) = Min; %Msump

y(5) = 0; %Mwinc

y(2) = 1/w(4)*( -w(2)*y(4) + 1/Cw*( Cw*Min*Tin -

Hw2p*Apoly*(w(2) - w(1)) - Cw*Mmax*w(2)
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+ Cw*Mmax*r*x*w(3) ) ); % Tsump

y(3) = 0; % Tsatc

elseif w(5) > Msat % Mwinc > saturation mass, situation (3)

y(4) = Min; %Msump

y(5) = 0; %Mwinc

y(2) = 1/w(4)*( -w(2)*y(4) + 1/Cw*( Cw*Min*Tin -

Hw2p*Apoly*(w(2) - w(1)) - Cw*Mmax*w(2)

+ Cw*Mmax*w(3) ) ); % Tsump

y(3) = 1/(Cw*Msat + Cc*Mc)*( Cw*Mmax*( w(2) - w(3) ) );

% Tsatc

else % situation (2)

y(4) = Min - Mmax + Mmax*r*x; %Msump

y(5) = Mmax - Mmax*r*x; %Mwinc

y(2) = 1/w(4)*( -w(2)*y(4) + 1/Cw*( Cw*Min*Tin -

Hw2p*Apoly*(w(2) - w(1)) - Cw*Mmax*w(2)

+ Cw*Mmax*r*x*w(3) ) ); % Tsump

% calculate derivative of x

dx = h/(Msat - y0(5))*y(5);

if x == 0,

y(3) = 0; % no water in clothes,

% assume no change in temperature

else

y(3) = 1/x*( -dx*w(3) + h/(Cw*Msat

+ Cc*Mc)*( Cw*Mmax*w(2) - Cw*Mmax*r*x*w(3) -

(Cw*y0(5) + Cc*Mc)*y0(3)/h*(-1*dx) ) ); % Tsatc

end

end

end

y = y(:);

A3 temp controlp.m

This function is the “controller”. Different control strategies can be
used with the model, by varying the way uhot and ucold (and hence
inputtemp) are calculated in this file. No other changes need to be
made to any other file, unless the flow rate needs to be altered. Note
that the model currently has a constant flowrate of 10 L/min when the
taps are on. This is defined by the parameter inputrate, set within
washmodelp.m.

function inputtemp = temp_controlp(sumptemp,aimtemp,parafile);
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% given current sump temperature and aim temperature,

% set input temperature

% load parameters from file, only use Thot, Tcold in

this file

[ambient,Mwinc,Twinc,Thot,Tcold,slugtime,tau]

= feval(parafile);

Tmax = Thot+273; % max achievable temp (all hot water)

Tmin = Tcold+273; % min achievable temp (all cold water)

offset = (aimtemp - Tmin)/(Tmax - Tmin);

k = 0.02;

error = aimtemp - sumptemp;

uhot = k*error + offset; % dwell time for u hot

% uhot must be between 0 and 1

if uhot > 1,

uhot = 1; % all hot water

end

if uhot < 0,

uhot = 0; % all cold water

end

ucold = 1 - uhot;

inputtemp = uhot*Tmax + ucold*Tmin;

A4 normal.m

As explained in section 7, this file defines some parameters for “nor-
mal” control conditions.

function [ambient,Mwinc,Twinc,Thot,Tcold,slugtime,tau] = normal;

% parameters for ’normal’ control conditions

ambient = 20; % ambient temperature

Thot = 60; % hot water supply temp

Tcold = 15; % cold water supply temp

slugtime = 0.5; % time for cold slug to clear -

% based on 5L cold slug, 10L/min flowrate

Mwinc = 0; % amount of water in clothes initially
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Twinc = ambient; % temperature of water in clothes initially

tau = 0.2; % delay constant

A5 harsh.m

As explained in section 7, this file defines some parameters for “harsh”
control conditions.

function [ambient,Mwinc,Twinc,Thot,Tcold,slugtime,tau]=harsh;

% parameters for ’harsh’ control conditions

% - towels with 20kg cold water at 10degC

% - ambient (initial conditions) is 10degC

% - T_hot = 55degC, T_cold = 15degC

% - 30second period, with tau_sensor = 0.4 minutes.

ambient = 10; % ambient temperature

Thot = 55; % hot water supply temp

Tcold = 15; % cold water supply temp

slugtime = 0.75; % time for cold slug to clear

Mwinc = 20; % amount of water in clothes initially

Twinc = 10; % temperature of water in clothes initially

tau = 0.4; % delay constant


