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1 IntrodutionAlthough the system will eventually ater for Bus Eireann, private bus operators and theLUAS, urrently the only user of the system is Dublin Bus. Predition times for when abus will arrive at a partiular stop are generated by software designed by Init Systems forDublin Bus and forwarded to Dublin City Counil. This information is subjet to ertainonstraints suh as a look ahead window and a maximum number of buses to reeive infor-mation for. Currently Dublin Bus has plaed a limitation of 550 bus stop `subsriptions' forthe preditions their software generates. It is possible that their servers an be upgraded tohandle a thousand subsriptions but it is unertain and the original goal of obtaining fourand a half thousand subsriptions looks unlikely by this methodCurrently there are 80 physial street signs in plae in Dublin and a website that providespreditions for 550 of the 4500 Dublin Bus bus stops. However, the noisiness and variabilityof predition data has onsiderably slowed the progress of the roll-out. Thus DCC haverequested the Study Group to �nd a method to aurately predit the arrival time of a busat any stop (monitored or unmonitored).Dublin City Counil also reeives all of the GPS loation o-ordinates of every in-serviebus in the Dublin Bus �eet, subjet to the bandwidth onstraints of the Dublin Bus privateradio network. At peak times this amounts to almost 1100 buses. In pratie we �nd thatthe bandwidth limitation amounts to a loation update for eah bus every 30 sec. Theloation is alulated using di�erential GPS and is said to be aurate to within 5 meters.Other information provided inludes shedule deviation, whether a bus is at a stop or notand whether a bus onsiders itself to be in ongestion or not.Bus arrival time is important information for passengers but providing it is not an easytask. For example, bus arrival time at stops in urban networks are di�ult to estimatebeause travel times on links, dwell times at stops, and delays both at signalized and non-signalized intersetions �utuate both spatially and temporally. A variety of preditionmodels for foreasting tra� states suh as travel time and tra� �ow have been developedover the years. The �ve most widely used models inlude historial data based models[Williams and Hoel (2003)℄, time series model [Thomas et al. (2010)℄, regression models[Jeong (2004), Ramakrishna et al. (2006)℄, Kalman �ltering model [Chien et al. (2002),Vanajakshi et al. (2009)℄ and mahine learning models [Bin et al. (2006), Yasdi (1999)℄.However, no single preditor has yet been developed that presented itself to be universallyaepted as the best, and at all times, an e�etive tra� state foreasting model for real-timetra� operation.2 Desription of the ProblemThe aim of this projet is to provide all Publi Transport users with high quality reliableinformation, on street and through Web and SMS, see Fig. 1. Hene Dublin City Counilis seeking to answer two separate and distint but related questions about the system. Inpartiular, the Study Group was asked the following questions.Assuming it is not possible to provide aurate preditions from just the loation infor-mation stream provided (due to the lose proximity of bus stops to one another within a ity2



and the infrequeny of updates), what additional information would be required to deliver asystem that an aurately predit the time that a partiular bus will arrive at a partiularstop? If this additional information were present, what level of omplexity or proessingonstraints might be enountered for a system attempting to generate preditions for 1100buses serviing four and a half thousand bus stops?Seondly, the stated aim of the NTA for the projet is to ahieve 98% auray of pre-ditions for the system. Assuming the loation information to be always aurate, howould Dublin City Counil approah verifying whether the preditions are su�iently au-rate? The urrent approah is to manually survey sites but this is both time onsuming andexpensive.

Figure 1: Dublin Bus information: street displays or on the web (www.rtpi.ie).Currently there are 80 displays in operation and an additional signi�ant number of siteshave been identi�ed. However, the urrent approah has revealed several problems inluding
• buses arriving at the stop without being on the sign (ghost buses),
• preditions ounting down without a bus arriving,
• or errors to do with missing data.To minimize the errors assoiated with the preditions, spei� �ags are now used to indiatedthe auray of the preditions. In addition, ameras are also used to reord display signsand bus arrivals.The objetive of the Study Group was to develop a dynami model that an provideaurate predition for the Estimated Time of Arrival of a bus at a given bus stop using theprovided global positioning system (GPS) data and/or the observed travel time data. Inpartiular, the Group aimed to use the urrent available data to provide a model that ane�iently predit the arrival times.3 Approah I: Average Travel-time ModelThe Study Group investigated a model of prediting the arrival time based on the averagetime taken by several buses on the same route. The idea was to use data from buses with3



same inbound/outbound departure times over a ertain period of time. The group basedtheir analysis on data for bus number 4 on seleted Tuesdays within the period from June -July 2011 with the aim of extending this to over all the other routes. Five outbound 4:00 PM� buses on route 4 were seleted. The GPS data indiated that the route is approximately
23 Km and it will take eah bus an average of 78 mins for a single outbound trip. Theaverage travel time of the �ve buses was alulated using a least square approah.3.1 Predition Based on Average TimeHere we predited the arrival time of the 4:00 PM bus on route 4 using the average timetaken by the seleted 5 buses. We will refer to this as our simple model. The algorithm isgiven by

tp(k + 1) = tp(k) + ∆tav(k + 1), (1)where tp(k) denote the total predited time to arrive at stop k and ∆tav is the average timetaken by the seleted 5 buses to travel between stops k and k + 1. A omparison of theobserved arrival time and the predited time is shown in Fig. 2.
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Figure 2: A omparison of the arrival times for the simple model.In general, we observe a good �t between the predited time and the atual time. How-ever, in some ases the predited time is lower than the observed time with errors of up to 5
mins. See the error histogram in Fig. 5. This may not be the most e�ient way sine traveltimes are updated only one when the bus leaves the �rst stop. We are likely to see `ghost'buses or `no show' in this setup. Next we re�ne the preditions by using the observed timesat the previous stop other than the last predition, i.e.,

tp(k + 1) = ta(k) + ∆tav(k + 1), (2)where ta(k) is the observed time reorded at stop k. We will refer to this model as themodi�ed simple model. This model requires that the updates be done every time the bus4



lears a bus stop. In addition, preditions an be done at any number of stops from theurrent position. The simulations are shown in Fig. 3.
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Figure 3: A omparison of the arrival times for the modi�ed simple model.3.2 Predition Based on Kalman AlgorithmIn another approah, we follow the work of Vanajakshi et al. (2009) who used an algorithmbased on the Kalman �ltering tehnique. In their paper, the arrival time for a partiular buswas predited using GPS loation of the urrent bus and the times predited by two probevehiles on the same route. Our approah is similar to Vanajakshi et al. (2009), but here wehoose the data for the two `probe' vehiles from B1, the average of the seleted 5 buses andB2, the previous bus - in this ase the 3:45 PM bus. The travel time for eah kth subsetionwas estimated from
∆tp(k + 1) = a(k)∆tp(k) + w(k),where a(k) is a parameter assoiated with bus B1 and w(k) is the disturbane assoiatedwith the subsetion.For ompleteness, we outline the steps in the algorithm as follows1. We divide the route into n points with eah point representing a bus stop.2. The travel time from B1 was used to ompute a(k) via
a(k) =

∆tB1(k + 1)

∆tB1(k) , k = 1, · · · , n− 1,where ∆tB1 is the travel time of bus B1 in eah k subsetion.
5
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Figure 4: Comparison of predited time and observed time using the algorithm from [5℄.
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Kalman modelFigure 5: Comparison of the errors in the three models.3. The Kalman algorithm is a preditor orretor method, i.e.,priori estimate ∆t−p (k + 1) = a(k)∆t+p (k)priori error variane P−(k + 1) = a(k)P+(k)a(k) +Q(k)Kalman gain K(k + 1) = P−(k + 1)[P−(k + 1) +R(k + 1)]−1posteriori travel time ∆t+p (k + 1) = ∆t−p (k + 1) +K(k + 1)[∆tB2(k + 1)−∆t−p (k + 1)]posteriori error variane P+(k + 1) = [I −K(k + 1)]P−(k + 1).Here the supersripts `�' denotes the a priori estimate and `+' the posteriori estimate. Thepredition together with the observed travel times are given in Fig. 4. Note, the urrent6



model di�ers from Vanajakshi et al. (2009) in several ways. The urrent model uses datafrom the average of previous (weeks) buses and the last bus while Vanajakshi et al. (2009)uses data from two previous vehiles. In addition, no GPS data is required in the urrentmodel.In Fig. 5 we ompare the e�ieny of the three presented models by plotting an errorhistogram for eah model. The error in the preditions is given in mins and is alulatedfrom error = ∆tp −∆ta.We observe that while the simple model under-predits the arrival times, the modi�ed simplemodel over-predits the arrival times with the Kalman model falling in between. In general,the Kalman based model signi�antly outperforms the other two models. In the next setionwe present a model whih onsiders all the buses in operation as a single proess.4 Approah II: The Polling-time ModelThis model relies on the polling time of the reporting system Dublin Bus urrently use.This polling time is unitary for all operational busses at any partiular time of day, so ine�et it redues a substantial number of virtual `threads' (i.e., systemi or parallel proessesas in Approah I) down to one. For example, if there were 1100 busses in operation, 1100proess alulations would have to be made in prediting average times for all busses. Inthis alternative model, a `number of polls' variable is simply inremented (one for eah bus)subsequent to a report bak. For eah bus, a new `element' of this variable is reated as itgoes from one stage (the `measurement' between two subsequent stops), and the next. Themodel simply aumulates the di�erene between the de-fato or expeted number of pollsfor a partiular stage and the atual number of polls for that stage. This di�erene for eahstage alled εi, an be negative, null, or positive. That is, the model sums-up these εi for rretrospetive stops and projets m stops ahead of the last stop visited. Proess-wise, 1100threads are redued to one.4.1 The ModelIn prediting the time of arrival for the next stop, the equation is as follows:
Tn = ∆tn−r−1 + tn + tp

(

r + 1

r

) n−1
∑

i=n−r

εi, r 6= 0, (3)where Tn is the estimated arrival time at stop n, ∆tn−r−1 is the di�erene in the atual arrivaltime at stop n−r−1 and the de-fato arrival time at this stop, tn is the de-fato or expetedarrival time at stop n, tp is the polling time (time between two subsequent/adjaent polls),
r is number of preeding or retrospetive stops we are examining with respet to `error' inthe number of polls, and εi is the di�erene in the atual number of polls and the de-fatonumber of polls for a partiular stage i (between stop i− 1 and stop i).So,

∆tn−r−1 = T ∗

n−r−1 − tn−r−1, and εi = p∗i − pi,7



where T ∗

n−r−1 is the atual arrival time at stop n− r− 1, p∗i is the atual number of polls forstage i and pi is the de-fato number of polls for stage i and an be alulated as follows
pi =

ti − ti−1

p′
,where ti − ti−1 is the de-fato time between stops i− 1 and i and p′ is the polling rate. Forexample, if ti − ti−1 were expressed in minutes, and eah bus is polled every 30 sec, then

p′ = 0.5Of ourse, if we are onsidering the blok numeri di�erene in the number of pollsbetween stop n− r and n− 1, ε, the equation is as follows:
Tn = ∆tn−r−1 + tn + tp

(

r + 1

r

)

ε, r 6= 0.When estimating the time for m stops ahead of the n-1 stop, the equation beomes
Tn+m−1 = ∆tn−r−1 + tn+m−1 + tp

(

r +m

r

) n−1
∑

i=n−r

εi, r 6= 0,and this should be the general equation in the model, the fore-mentioned equations do nothave to be used.We an see that the model is entered around tp the polling time, and there is really noin�uential hange in this for any oneivable sequene of iterations. However, if there werean abrupt hange, the model an handle this.Also, the term (

r +m

r

) gives quite a smooth or �owing predition or update for eah
m stop ahead. This also portrays e�etiveness should there be an abrupt hange in the timeit took the bus to get to (a) partiular stop(s) between n− r and n− 1 stops.In e�et, the model onsiders a ombination of timing between eah suessive stop andthe polling times. The timing between eah stop is exlusively expressed by the platform
∆tn−r−1 (no summation is required), from whih to launh the more aurate polling timeonsiderations, and of ourse all onsiderations are determined by r. As the polling time isusually less than the stage time, greater auray is ensured when onsidering polling times,and this auray an be �ne-tuned by the onsideration of r. Dublin City Counil anpredetermine r to optimise auray, and of ourse r an vary depending on time of day andtra� onditions, and also speial oasions suh as St. Patrik's day parades, et. Obviously,as the bus is traveling to the �rst `few' stops on its route, r would inrement progressivelyto a predetermined value. However, prediting a onsiderable number of stops ahead basedon a relatively small number of initial or retrospetive stops is not advisable. There isonly one summation in this model, whih e�etively ontributes to proessing resoures,simpli�ation, and testing.This model is based on retrospetion up to stop n − 1, the last stop. If abruptnessours subsequent to the last stop, no elegant model an e�etively ome up with auratepreditions. However, a reursive approah an be used with this model � the formulafuntion alling itself, i.e., the segment between where the bus is urrently at and the lastbus-stop is broken into a number of sub-stages, whih of ourse depends on the degree of8



reursion we are urrently in. Auray inreases at eah degree, and is related to the numberof polls sine the last stop. These sub-stages are not pre-determined or pre-�xed, but aredynami and related to reported GPS data.Obviously, there is no need for reursion if no abruptness ourred sine the last stop.Abruptness an beome apparent if the bus has not yet reahed its desired stop after aonsiderable number of polls sine the last stop. This is very useful in raising an alert.There are additional bene�ts when onsidering alerts.1. A high-degree of on�dene in resolving the `leardown' problem. An alert an triggera positional hek, and if a bus is deemed to have already passed the next preditedstop, or a series of stops that have not been subjet to leardowns, leardowns an beevoked. The time to the atual next stop, n, an now be estimated as follows:
Tn = tl +

(

tx − tl

te − tl

)

(tn − tl) ,where tl is the atual time of arrival at the last stop to be registered by the system,
tx is the atual time of the positional hek, te is the expeted or de-fato time for thebus to be at the loation of the positional hek, and an be alulated as follows:

te = tl +
dl,x

dl,n
(tn − tl) , dl,n 6= 0,where dl,x is the distane from stop 1 to the loation of the positional hek and dl,n isthe distane from stop 1 to stop n.No doubt the present system uses software to alulate these distanes.Basially this equation is just a linear equation, the graph of whih is suspended on twoaxis, expeted/de-fato times (x−axis) and atual times (y−axis), tl being the originand we are projeting up from tn and aross to get TnAs a matter of fat, this linear equation an be used as a oarse alternative to the`polling time' model entirely, we are just basing our estimation on two known points,and tl does not have to be the last stop - just a prior positional hek, the appropriateseletion of whih is important for optimisation.However, in regard to missed lear-downs, eah εi for these stops an be estimatedby projeting bak/leftwards on the linear equation to determine an estimation forthe atual time of arrival for these stops, and therefore the `polling time' model anbe re-implemented to determine greater auray and ontinuity in the proess sys-tem/algorithm. This of ourse assumes that the reason why an alert was triggeredwas due to lear-down skips, and not due to abruptness in whih ase the reursionsuggestion may be viable.Another viable suggestion regarding abruptness would be to use the `least square �t-tings' method on a series of positional heks during the abruptness to obtain a linefor projeting forward, similar to the linear equation �x.As abruptness is normally severe, estimations based on the `polling time' model arebased on stops prior to the abruptness and this model would have to be suspended if9



the platform for preditions is from the last stop. After abruptness, the `polling time'model would be re-engaged and r re-initialised.2. An alert an alert a radio operator in Dublin Bus who an ask the driver for an update.3. An alert an fous DCC's tra� monitoring system to a partiular loation.Other onsiderations would be to inorporate output from DCC's tra� managementsystem into the new model, i.e. iterations of yle-times an be added or subtrated for eahiterative stage (between adjaent stops), and inorporated into formula.If quik-�re or global error analysis or results are required at a meeting for example, theleast-squares �tting (aka, best-�t line) approah an be used. The de-fato line would beplotted on a x − y graph for a partiular route or segment in a route, and a sattering ofpoints from atual or aumulated information would be plotted alongside. The least-squaresmethod would be used to get the best straight line whih suits these points. The `quik-�re'or `meeting-friendly' error (numerially and visually [omparisons an be made with othergraphs, for di�erent routes or times, say℄) is proportional to the angle between the two lineson the graph, it is atually proportional to the tan of the angle. So if the two lines were thesame, the angle and the error would be zero.4.2 SimulationsThis model was tested with data from the Southbound 16:45 Dublin Bus on Route No. 4.This partiular time was hosen beause it is immediately prior to the Dublin rush-hour,and thus it was felt that most senarios would be naturally inluded in the testing. Initiallythe polling-time model envisaged a de-fato or standard time-table or stop-shedule for eahplanned journey. Suh shedules an be evolved stepwise through time to determine the mostappropriate and aurate shedule for a partiular journey, i.e., yearly or seasonal evaluationsould be made.No sheduling data was at-hand at the time of testing, however suh a requirement ouldbe onsidered to be somewhat redundant as it would suppress the need to evolve a de-fatotimetable during the limited time of testing. Data for �ve adjaent Tuesdays spanning Juneand July 2011 was available, and as suh an initial timetable ould be developed. However,data for three Tuesdays in June was exlusively used as it was determined that inonsisteniesin bus-stop identi�ers would be minimised. This was not seen as an impedane as randomnesswas introdued into the testing during the later stages.In determining a de-fato timetable based on atual journey information, three ap-proahes were taken.1. A timetable was built based on the average intervals between eah suessive stop.These intervals were then added to the base time of 16:45.2. A timetable was alulated based on averaging eah time of day a bus was at a parti-ular stop on the route.
10



3. The third approah is the most radial and is based on a synthesis of the previous two.It is suggested that Dublin Bus relegate timetable information and adopt de-fato in-terval data in preferene. As there is a greater likelihood of inonsisteny in the timesa partiular bus starts its journey, i.e., leaves a terminus, due to human and system-ati error, building a spei� or unique timetable for eah journey based on de-fatointerval information is a suggested strategy. Suh a timetable an be build when thebus has left its seond stop on the journey. In this sense, it is inesapable that the busis in progression. Also, this approah aids Dublin Bus in their requirement to supplydynami and live web-based information to their ustomers. In relation to tehnologi-al advanement, using periodi polling-times is an e�etive way to update ustomers,whether via web-page or RSS feeds to hand-held devies. If suh a onsideration hasnever been previously envisaged, it may be an advanement for Dublin Bus to progres-sively update subsribed ustomers of when the next bus is due at a partiular stop,and to give him/her prior noti�ation regarding the last bus. To return to the intervalapproah, should any abruptness our during a partiular journey, interval based dataan quikly be used in reovery one suh abruptness has terminated. Furthermore,de-fato interval information �ts into the wider piture when route diversions our. Inrelation to the polling-time model, it was determined that a `mathematial oneptualdimension' is redued with this approah (in omparison to the �rst two approahes),thereby ontributing to its e�etiveness.Testing for all three approahes was undertaking. In eah ase, various values were givento r and m in the model. i.e., prediting the arrival time m stops ahead based on pollingounts of r prior or retrospetive stops. The polling time between 16:00 and 18:00 was foundto be very onsistent at 21 sec. Testing is by no means omplete, however an advantageof the polling-time model is that values for r and m an be evolved to best-�t partiularriteria. In onjuntion with the interval approah, either by synthesis or opting in and out,an appropriate system an be imaged.4.2.1 Test 1: Timetable determined by average intervals added to an aeptedbase-timeFrom Fig. 6, it an be determined that for small values of r, suessive preditions to a distantpre-determined stop are more likely to be errati. This is unaeptable when ustomersare to be progressively updated. For large values or r, the errati nature diminishes andupdates are more ongenial. For this partiular data-set, the di�erenes between the urrentpredition and the previous predition were summed. When the summation exeeded 45
sec, the summation was reinitialised. In the ase of r = 5, 6 initialisations ourred. For
r = 20, there were no initialisations. It an also be seen that for r = 20, the initial error isthe smallest, i.e., 90 sec. When the bus is approximately 8 stops away from the objet stop,preditions for r = 15 are the more aurate, and are less than 45 sec in error. The atualtravel time from the start of preditions to the desired stop is slightly less than 10 mins.Fig. 7 displays preditions for a �xed value of m, i.e., a predetermined number of stopsahead from the start of the journey. Prediting to a partiular stop does not our here, butrather to a sequene of stops determined by m. As expeted, preditions are more aurate11



for shorter distanes ahead. However, an appropriate value of r, determined by route, tra�onditions, and time of day an be determined for optimisation. As this �gure expressespreditions for the entire route, the value of r had to be ounted up from 1 at the start ofthe route to its predetermined state, this explains the `tails' for r = 1 on the extreme left ofeah graph. The plot settles at r = 3.
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4.2.2 Test 2: Timetable built exlusively on averaging arrival times for eahstopIn this approah, a de-fato timetable is exlusively built by determining the average timefor eah stop on the route. No intervals are onsiously added to a predetermined base time.Although mathematially there is e�etively no di�erene between the timetable determinedin `Test 1' and the one in this approah as the intervals are the same, by hane the samebus journey data used in `Test 1' produes a slightly more errati graph in `Test 2'. Thisunderlines the rationale of applying de-fato intervals to determine a busses unique sheduleor timetable one it has started its journey.
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m=20, r=20Figure 8: Preditions based on predetermined values for r and m (Average arrival timesapproah in timetable).4.2.3 Test 3: De fato Interval ApproahThis approah is based on reating a new timetable for any partiular bus eah time ithas been undoubtedly established that it has started its route. The timetable is built fromexisting de-fato bus-stop time intervals for that partiular planned route. A reservoir ofde fato intervals ould be held for any planned route, and the appropriate one applied tobuild a timetable. The range of timetables in the reservoir may be ategorised under weatheronditions, holiday season, spei� publi holidays, time of year, et.As with the �rst two approahes, the same bus data was applied to the initial testing ofthis approah. A graph of whih is displayed below, Fig. 9. In this approah and in `Test2', the absolute or positive value was summed for the di�erene between the expeted andatual arrival time of every stop on the route. The summation amounted to 29 mins 8 secin `Test 2', while with this approah the sum is 25 mins 43 sec. When the di�erene in thesesums with respet to eah sum is onsidered, a signi�ane an be understood in relation toerrors in stop arrival times. 13
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m=20, r=20Figure 9: Preditions based on predetermined values for r and m (De fato intervals).4.2.4 RandomisingRandom delays ranging between one and 70 sec were aumulated to the expeted arrivaltimes at eah stop. Given that the average de-fato interval between any two adjaent stopsis 24 sec, suh delays and their errati nature are very unlikely. However, this simulation anbe suggestive of snow or iy onditions, or were there are large numbers of people embarkingand disembarking.Fig. 10 below is a display of this unlikely senario. It an see that the model works wellfor m = 15, i.e. prediting �fteen stops ahead, one the onsideration of r retrospetivestops has reahed or exeed 10. Considering that the journey time has more than doubled,the model is favorable to this situation.Fig. 11 displays the output when an additional 3 mins was added to the `atual arrivaltime' of `Stop 15'. Prediting 10 stops ahead seems to bu�er this anomaly.Fig. 12 highlights data when three 3 minute delays are added to a series of arrival times.As well as seleting appropriate values for r and m, strategies disussed in the setion on`abruptness' may need to be onsidered.Fig. 13 shows a pro�le of progressively prediting to a partiular stop on the data thatwas used in Fig. 12. The value r = 20 seems to give the smoothest transition.4.3 Further ConsiderationThis model, as with all viable models, is based on a de-fato Dublin Bus timetable/intervaldata, whih determines expeted arrival times at all stops for all busses. Obviously, progres-sively this information would be re�ned, as is the ase with all organi systems. Perhapswhen publishing hard-opy or web-page standardised timetables, a number of standardisedtimetables ould be used throughout the year, depending on the `season'. i.e., shool holidaytimes, harateristi weather onditions, day-light hours, et. Furthermore, say for examplefour timetables were used, the expeted arrival times at a partiular stop an be posted on14
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Figure 10: Random delays of between 1 and 70 sec aumulatively added to `atual arrivaltime' of eah stop.
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Figure 11: Additional 3 mins added to arrival time at stop 15.that bus-stop, this is globally generi. However Dublin Bus an use the advertising edge orgimmik to impress and soialise passengers that they fator seasonal onditions into theirtimetables, and that the set of four timetables do not hange for a `blok' number of years.This set of four timetables for a partiular bus route an be posted on the web, and for stopswhere there are a limited number of `bus-routes' stopping (as in most suburban areas), the'set of four' timetable an be posted without need to hange from season to season, or year toyear. Also, when a timetable is being updated for a partiular season based on retrospetiveexperiene, there is a nine month to one year bu�er in whih to do so.
15
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Figure 12: Delays at Stops 15, 22, and 29 are 3:10, 3:34, and 3:10.
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r=20Figure 13: Progressively prediting to a partiular stop initially 20 stops ahead. Stop No.19 is the initial stop in this test, and its `pro�le' an be seen in Fig. 12.5 Conlusions and Future WorkThis report outlines two approahes in prediting bus arrival times for DCC. In partiular,we aimed to use the urrently available data and minimise errors assoiated with the urrentpreditions. In setion 3 we reviewed some models in the literature and tested them usingthe urrent data. The key result of this setion being that the lassial Kalman algorithmoutperforms the other presented sub-models. In setion 4 we presented a polling-time modelwhih redues the need for parallel proess for eah bus in operation to just one proess.The model was validated by omparison with existing data from Dublin Bus network.Future work will link models to the average number of passengers waiting for a spei�16



bus, hange in onditions, e.g., aident, demand surge, road works, et.AknowledgementsAll ontributors would like to thank Brian Carrig from Dublin City Counil for introduingthe problem and answering questions during the entire week.We aknowledge the support of the Mathematis Appliations Consortium for Siene andIndustry (www.masi.ul.ie) funded by the Siene Foundation Ireland mathematis initiativegrant 06/MI/005.Referenes[1℄ B. Williams and L. Hoel. Modeling and foreasting vehiular tra� �ow as a seasonalARIMA proess: Theoretial basis and empirial results. Journal of TransportationEngineering (ASCE), 129(6):664�672.[2℄ S. Chien, Y. Ding, and C. Wei. Dynami bus arrival time predition with arti�ialneural networks. Journal of Transportation Engineering (ASCE), 128(5):429�438.[3℄ Y. Bin, Y. Zhongzhen, and Y. Baozhen. Bus arrival time predition using support vetormahines. Journal of Intelligent Transportation Systems, 10(4):151�158, 2006.[4℄ R. Yasdi. Predition of road tra� using a neural network approah. Neural Computing& Appliations, 8(2):135�142, 1999.[5℄ L. Vanajakshi, S. Subramania, and R. Sivanandan. Travel time predition under hetero-geneous tra� onditions using global positioning system data from buses. IET. Intell.Transp. Syst., 3(1):1�9, 2009.

17

http://ascelibrary.org/teo/
http://ascelibrary.org/teo/
http://www.tandf.co.uk/journals/titles/15472450.asp
http://www.springer.com/computer/theoretical+computer+science/journal/521
http://scitation.aip.org/IET-ITS

	Introduction
	Description of the Problem
	Approach I: Average Travel-time Model
	Prediction Based on Average Time
	Prediction Based on Kalman Algorithm

	Approach II: The Polling-time Model
	The Model
	Simulations
	Test 1: Timetable determined by average intervals added to an accepted base-time
	Test 2: Timetable built exclusively on averaging arrival times for each stop
	Test 3: De facto Interval Approach
	Randomising

	Further Consideration

	Conclusions and Future Work

