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1 Introduction

Analyzing the effectiveness of different treatments for cancer typically involves collecting data from
large clinical studies or animal testing. Such testing is always needed as a final validation for
establishing treatment safety, but can be very costly and labor-intensive. Developing alternative
testing approaches to be used in preliminary stages of evaluating new treatment strategies would
be a great aid in speeding up research and development. We consider the use of mathematical
models to describe the progression of cancer and how the influence of anti-cancer drugs can be
incorporated into these models.

There are many different forms of cancer, but several types share similar mechanisms for how
they start and spread. The basic understanding of metastatic cancer consists of the following
general stages:

1. The disease starts from a single primary tumor which grows in one location.

2. The primary tumor will start to shed cancer cells which get carried to other parts of the body
by the circulatory or lymphatic systems.

3. These cells will attach to other organs and start new secondary tumors, called metastases (or
meta-static tumors).

4. The metastases grow and will shed cancer cells to produce more tumors. Such rapid spreading
of cancer (also called “progression”) typically leads to multiple organ failure and fatality.

Some schematic representations of this description are shown in Fig. 1.
While there are many different types of clinical studies of cancer, there have been standards

(RECIST) [12, 4] defined for many aspects of studies - including how to measure tumors and what
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Figure 1: Two schematic representations of the spread of metastatic cancer: (left) from trialx.com
(right) from www.cancer8.com.

data should be recorded. These articles are also good sources for descriptions of the stages of
progression of cancer and practical limitations in what data can be collected in clinical trials.

An important question about the RECIST standards is whether collecting more clinical data can
provide better assessments of progression and lead to more accurate models and better treatment
protocols. Statistics and mathematical analysis can be applied to address these issues. Practical
factors (effort, expense, record keeping, intrusiveness) have shaped the current standards and lim-
ited the amount and type of data that is collected in current studies. If benefits of increased data
collection for guiding treatments could be demonstrated, this might lead to valuable improvements
in the standards. Studies differ in conclusions about probability of fatality correlating with growth
of tumors [6, 14, 18], but for our work, we will focus on increase in total tumor mass as a general
descriptor of the progression of the disease.

In this workshop, we made use of mathematical population dynamics models to describe the
spread of metastatic cancer and how it could respond to different dosing of anti-cancer drugs. Some
questions we consideration included:

1. What are the different ways in which the influence of anti-cancer drugs be incorporated in
the simplest models for growth of a single tumor?

2. How does the amount of available data and the signal-to-noise ratio put limitations on the
ability to distinguish between different models?

3. How can models for the entire population of tumors be constructed from extensions of the
single tumor growth models?

4. Can population models be used to produce easy-to-calculate predictions?

5. How can model parameters be best identified from available data?

We will outline our progress on these areas in the following sections. In section 2 analytical solutions
of single-tumor growth models are derived. In section 3 population dynamics models are formulated.
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In section 4 numerical and analytical approaches for studying the population dynamics systems are
presented. Finally, in section 5 we briefly describe ideas for parameter estimation in models and
directions for further study.

2 Single Tumor Growth ODE Models

The simplest models for growth of a single tumor prescribe a growth rate law as a function of time
for the size of the tumor x(t),

dx

dt
= g(x,E), (1)

where E = E(t) is a measure of the effect of anti-cancer drugs being tested. The measure of
the tumor size as a function of time, x(t), could be given by the volume, radius, or number of
constituent cells. Since all of these are directly correlated qualitative dynamics will be the same
using any of these, but typical data will report tumor diameter. The initial size will be written
as x(0) = x0. For an initial period of time, taken to be the normalized period 0 ≤ t < 1, we will
assume that the tumor grows in an untreated state (i.e. with no drug effects, g = g(x, 0)); for later
times, we will impose a constant drug dose. The influence of drug effects will be modeled as the
step function,

E(t) ≡

{
0 0 ≤ t < 1,
E∗ t ≥ 1

(2)

where E∗ is a positive constant. The value of E∗ should be correlated with the drug dose, d,
but in general will be a function E∗(d), not necessarily just linearly proportional. Often a Hill’s
equation (or generalized-Michaelis-Menton or Langmuir model) will be used for the dose-effect
relation [28, 23] in the form

E∗(d) =
αdβ

γ + dβ
.

Systematic statistical evaluation of dose response models [28, 23, 5, 36] are studied as part of
pharmacology (pharmaco-dynamics).

We considered three models that have closed-form explicit solutions:

1. The linear inhomogeneous (constant growth) model: g(x,E) = k1 − Ex,

dx1

dt
= k1 − E1(t)x1, x1(0) = x0, (3a)

x1(t) =

{
x0 + k1t 0 ≤ t < 1
k1
E1

(
1− e−E1(t−1)

)
+ (x0 + k1)e−E1(t−1) t ≥ 1

(3b)

Untreated, the tumor is predicted to grow linearly with time. When the drug is introduced,
depending on the strength of the dose, either the rate of growth is slowed, but not reversed
(if E1 < k1/x(1) [the low dose case]), or the tumor will shrink exponentially (if E1 > k1/x(1)
[the high dose case]). However in both cases, the predicted long term behavior is for the
tumor to reach a finite-size equilibrium state, x∗1 = k1/E1.

2. The logistic growth model: g(x,E) = x(k2 − Ex),

dx2

dt
= (k2 − E2(t)x2)x2, x2(0) = x0 (4a)
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Figure 2: Best fits of solutions (3b, 4b, 5b) (with optimized model parameters kj , Ej) to simulated
data from (3b) with various levels of additive noise: (left) low noise, with the three models being
clearly distinguishable, (middle) moderate noise, and (right) large amplitude noise.

x2(t) =

{
x0e

k2t 0 ≤ t < 1
k2x0

E2x0(1−e−k2(t−1))+k2e−k2t t ≥ 1
(4b)

Untreated, the tumor under this model exhibits exponential growth. Like the constant growth
model, whether slowed growth or tumor shrinkage occurs depends on the strength of the drug
effect: E2 ≷ k2/x(1). This model will also lead to a finite-size equilibrium tumor, x∗2 = k2/E2.

3. The linear separable (linear growth) model: g(x,E) = (k3 − E)x,

dx

dt
= (k3 − E3(t))x, x3(0) = x0, (5a)

x3(t) =

{
x0e

k3t 0 ≤ t < 1
x0e

k3+(k3−E3)(t−1) t ≥ 1
(5b)

Untreated, the tumor under this model exhibits exponential growth. Strong/weak drug effects
are gaged directly relative to the tumor growth rate, E3 ≷ k3 corresponding to exponential
growth/decay of the tumor. For E3 > k3 the tumor will ultimately vanish, x3(t→∞)→ 0.

In all three models, once treatment is started, monotone growth or decay of the tumor is predicted.
A generalization that can be incorporated into any of these models is the effect of the tumor

developing resistance to the drug. A simple model for this is an exponential damping factor on the
drug effect, i.e. g = g(x,E(t)e−r(t−1)) with r > 0. These are sometimes called Gompertz models;
we were not able to obtain any closed-form solutions for such models.

2.1 Fitting Data to Single Tumor Growth ODE Models

The simple growth models are heuristic and do not attempt to describe the complicated physio-
logical processes that govern tumor growth. Consequently, none of the models can be expected to
perfectly match any real tumor data, but some models may be better approximations than others.
A very basic approach to assessing this can be done by taking a time series of tumor data, {ti, xi}
for i = 0, 1, 2, · · · , n can be fit to one of the solution forms (3b, 4b, 5b) using least-squares or
similar fitting algorithms to determine approximate model parameters, kj , Ej (j = 1, 2, or 3). The
magnitude of the residual error between the data and the optimal-fit solution would give a measure
of the goodness-of-fit of the model.

Real tumor data was not available to us, so instead we fitted simulated data (which was produced
by solution (3b) with Gaussian noise added) against the three models, see Figure 2. When the level
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Figure 3: Measures of the error in fitting the models (3b, 4b, 5b) against the simulated data for
different noise levels and with respect to reduced data sets.

of noise in the data was small, the best-fitting model is easy to identify. For moderate to noisier
data, the difference between the three models can fall within the error bars of the data and then two
different models (in this case, the true solution x1(t), and x2(t)) may yield comparable estimates,
see Figure 3. For sufficiently large data sets, fitting gives robust results, for very sparse data,
parameter estimation and choice of models can be much less reliable.

3 Population dynamics models

A more global and comprehensive description of the progression of cancer in a patient should
consider the growth of all of the tumors that are present. We considered two forms of mathematical
population dynamics models. These are equations that describe the evolution of a distribution
function that gives the number of tumors, n, of each given size, x at time t. If size is treated as
a continuous variable, the model is partial differential equation called a “Lotka-McKendrick” or
“McKendrick-von Foerster” model. If size is discretized, as in counting the number of cells (or in the
case of polymer chemistry, counting monomer building blocks), then a coupled system of ordinary
differential equations, sometimes called Becker-Doering equations [13], is produced (sometimes also
called polymerization or coagulation/fragmentation models).

These models provide well-defined mathematical frameworks which could be used for matching
against data from experiments, clinical studies or simulations [35, 37, 10, 7, 17, 22, 25].

We mention that other studies have also made use of probabilistic models for transitions in
tumor states (sizes)

P (sj → sj + ∆s) tumor growth P (sj → sj −∆s) tumor shrinkage

and made use of Markov birth/death processes, branching processes, and Poisson process [3, 16,
15, 38, 21, 26] but we will not pursue these approaches here.

3.1 A McKendrick-von Foerster population model

Following the work of Iwata et al [19], consider a density function for metastatic tumors of size x as
ρ = ρ(x, t) where x ≥ 1 is a continuous variable representing tumor size being of one cell or larger.
The total number of tumors is given by

N(t) =
∫ ∞

1
ρ(x, t) dx, (6)
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and the total tumor mass is the first moment of this distribution,

M(t) =
∫ ∞

1
xρ(x, t) dx (7)

The density function will evolve according to a conservation law for the number of tumors,

∂ρ

∂t
+

∂

∂x
(g(x)ρ) = 0, (8a)

where g(x) gives the growth rate for tumors of size x. We assume that initially there no metastases
(only a primary tumor of size xp(t)), yielding the initial condition

ρ(x, 0) = 0 1 ≤ x < xp(0). (8b)

The formation or “birth” of metastases comes about from shedding of cells from the primary tumor
(and other subsequent tumors) according to a size-dependent birth-rate function β(x). This will
generate a flux of new tumors into (8a) starting from size x = 1, this is given by the boundary
condition,

g(1)ρ(1, t) =
∫ ∞

1
β(x)ρ(x, t)dx+ β(xp(t)) (8c)

If β(x) and g(x) are given, then these equations, supplemented by the growth law for the primary
tumor,

dxp
dt

= g(xp) xp(0) = xp0 (8d)

give a complete problem statement for the population system. This system has been studied as
model for metastatic cancer in [19, 2, 9], similar mathematical population models have been studied
extensively in context with demographics, ecology, and epidemiology [8, 1, 29, 32, 31, 33, 30, 11].

Equation (8a) is called a size-structured population model. It allows for descriptions of the
overall dynamics of a population whose individual members can range in sizes and may have
different size-dependent properties. These models differ from similar-looking but simpler “age-
structured” population models (in which x represents the age of each individual member) in that
age increases at an unchangeable rate, dx/dt ≡ 1, whereas size can increase or decrease with time
depending on the form of g(x), as in (8d). Further details of the approach to the analysis of this
model (method of characteristics) will be detailed below, but it represents a convenient and useful
condensed form for the study of many (mostly) independent growing tumors, building on the single
ODE model given by (1).

3.2 A Becker-Doering-type population balance model

Another related approach seeks to more carefully describe the processes involved in tumor growth
or decay. Consider tumor sizes to be discretized, being counted in terms of number of cells present,
j = 1, 2, 3, · · · . Let nj be the number of tumors present with j cells. To relate to the model in
(8a)), if x represents number of cells, then

nj(t) ∼
∫ j+1

j
ρ(x, t) dx

for more macroscopic scales of measure for x, we can interpret nj(t) ∼ ρ(xj , t)∆x.

6



Then, a linear growth model, extending (5a), with growth rate k1 describing tumors with (j−1)
cells growing to join the nj population is

dnj(t)
dt

= k1(nj−1 − nj) + f(t)(nj+1 − nj) j = 2, 3, · · · . (9)

where the second describes tumors with (j + 1) cells being shrunk due to drug (and other) effects
down into the nj population with rate f(t). The above equation applies to all tumors with more
than one cell; the equation for j = 1 takes a special form to incorporate the new single-celled
metastatic tumors shed by all of the larger tumors,

dn1(t)
dt

= −k1n1 + f(t)(n2 − n1) + k0

 ∞∑
j=1

jnj

 . (10)

The final term in (10) can be related to the boundary condition on new tumors, (8c), with the
birth rate β(x) = k0x mapping onto k0j in the summation over larger tumors.

A rearrangement of the terms in (9) can put it into a form that makes it more clear that it
describes a system with advection (drift based on the rate k1 − f) and diffusion,

dnj
dt

+ [k1 − f(t)](nj+1 − nj) = k1 [(nj+1 − nj)− (nj − nj−1)] , j > 1. (11)

Diffusive effects were neglected in writing (8a). This system of coupled ODEs is closed by distin-
guishing equation for the largest tumors,

dnJ
dt

= k1nJ−1 − f(t)nJ . (12)

The size of the largest tumor, J , itself will increase with time and will be governed by a growth
equation analogous to (8d).

4 Results and approaches to solutions

In the following subsections we describe results we obtained on the different models and using
various numerical and analytical approaches.

4.1 Numerical simulations of the Becker-Doering model

In a discrete population model, the success of any treatment (which is understood here to increase
the death rate of the cancer cells) will depend on the birth and growth rates of the cancer cells.
To view this effect we model the success rates of treatment in this polymerization model with a
RECIST-inspired criteria.

We begin by normalizing k0, f, k1 by f , and t by 1/f . I.e. we set f = 1 in all simulations and
interpret t, k0 and k1 accordingly. We begin a simulation by setting

nj(0) = δ1,j (13)

and allowing nj to evolve with f = 0 until a sufficient number of tumors appear. Time integration
of the model was done computationally in MATLAB using ode45. We established lower bound on
the size of detectable tumors jD and calculating the number of detectable tumors [25, 16, 15] as

CD =
∑
j≥jD

nj(t). (14)
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Figure 4: Results of the simulations of the polymerization discrete population dynamics model
over a range of birth and growth rates: black triangles indicate progression, magenta squares mark
stable conditions, circles mark responsive outcomes, with blue marking complete response.

The first time t0 at which CD ≥ JC is taken as the beginning point for treatment, with t0 = 0.
In cases where the birth and growth rates are not sufficiently large to initialize in a specified time
frame, this is noted.

We allow the evolution to continue with the death rate now set to unity. For a given time t, we
calculate CD as before, and also the detectable tumor mass

MD =
∑
j≥jD

jnj(t). (15)

At this point, the success or failure of the treatment is evaluated as follows:

Complete Response CD(t) < 1 and MD(t) < 0.9jD,
Response CD(t) < 1 + CD(0) and MD(t) ≤ 0.7MD(0),
Progression CD(t) ≥ 1 + CD(0) or MD(t) ≥ 1.2MD(0),
Stable otherwise.

Results are presented in Figure 4 over a range of different birth and growth rates with the (arbitrary)
values of M = 100, jD = 20, and threshold for CD(0) = 5. Plots of further results from individual
simulations are shown in Figures 5, 6.

4.2 Analytical results for the von Foerster model

Equation (8a) is in the form of a conservation law PDE and can be re-written as

∂ρ

∂t
+ g(x)

∂ρ

∂x
= −dg

dx
ρ (16)
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Figure 5: Time evolution results from simulations of the discrete population dynamics model
showing: (left) effective treatment and (right) insufficient treatment and progression of the tumors.

Figure 6: Results from further simulations of the discrete population dynamics model.
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In this form, solutions of the model can be obtained using the method of characteristics [24, 27],
where we write ρ(x, t) = ρ̃(x̃(t), t) with ρ̃, x̃ satisfying the ordinary differential equations:

dρ̃

dt
= −

(
dg

dx

∣∣∣∣
x̃

)
ρ̃,

dx̃

dt
= g(x̃). (17)

This allows for a parametric representation of the solution to be determined. Under some conditions,
this form can then be inverted to obtain the explicit form of the population density function,
ρ = ρ(x, t).

Equation (16) is linear PDE for ρ(x, t) and as a result of ODE existence/uniqueness theorems for
the characteristic equation (17) it can be shown that shocks cannot form and a well-defined solution
can be determined for all finite times. This is the case so long as the growth rate function g does
not depend on ρ. An important consequence for some of the g(x) models (the linear inhomogeneous
and logistic models) that we will consider below is: if g(x) changes sign at a finite stable equilibrium
tumor size x∗ then the characteristics starting at sizes above/below x∗ will converge to x∗ but this
will take infinite time. Namely these models would predict all tumors in the population slowly
approaching the equilibrium size (small tumors growing, larger tumors shrinking). In contrast, for
quasilinear PDE, shocks can form when characteristic curves cross in finite time. It is not clear that
this type of behavior corresponds to observations from tumor populations. The linear separable
growth model (5b) does not exhibit this questionable behavior, as tumors of all size all grow or
decay depending on the strength of the drug effect compared with the untreated tumor growth
rate.

An immediate result on the form of ρ(x, t), corresponding to the fact that by definition, there
are no tumors larger than the primary tumor is that

ρ =

{
ρ(x, t) 1 ≤ x ≤ xp(t),
0 xp(t) < x <∞.

(18)

Consequently, the shedding boundary condition (8c) reduces to

g(1)ρ(1, t) =
∫ xp(t)

1
β(x)ρ(x, t)dx+ β(xp(t)). (19)

This is a time-dependent integral equation that controls ρ(x, t) and hence the birth rate β(x) plays
an important role in determining the tumor size distribution.

For some choices of the growth and birth rate functions, we were able to derive other exact
solutions for ρ(x, t). In some cases this could include drug effects.

4.2.1 The model from the Iwata et al. 2000 article

The article by Iwata et al. in 2000 [19] guided the mathematical formulation of most of our work
on von Foerster models. There, Iwata considered (8abcd) with the specific forms of growth rate
and birth rate functions:

g(x) = kx, β(x) = mxα, (20)

where we note that their growth rate does include any drug effects. This choice leads to the explicit
solution

ρ(x, t) =
m

k
x−α−m/k−1e(kα+m)t 1 ≤ x ≤ (xp(t) = ekt). (21)
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4.2.2 Modified problem for growth function: g (x) = k − Ex

We examined extending the single-tumor growth model(3b) to solve the von Foerster problem with
drug effects with

dx
dt

= k − Ex. (22)

This leads to the characteristic equations

dx
dt

= k − Ex, dρ
dt

= Eρ. (23)

The parametric solutions on characteristics

xp(t) = e−Et +
k

E

(
1− e−Et

)
, x(t) = x0e

−Et +
k

E

(
1− e−Et

)
, (24)

ρ(x, t) = ρ0(x0)eEt. (25)

Iwata’s choice for the birth rate, β(x) = mxα, was used. Since (19) made this problem difficult to
solve, we considered the system subject to a modified, simplified shedding/tumor birth condition
that included shedding only from the primary tumor:

g(1)ρ(1, t) = β(xp). (26)

Substituting-in the characteristic solutions, with x0 = xeEt + k/E(1 − eEt) and ρ evaluated at
x = 1,

(k − E) ρ0

(
eEt +

k

E

(
1− eEt

))
eEt = m

(
e−Et +

k

E

(
1− e−Et

))α
, (27)

and this yields the colony size distribution of metastatic tumors with cell number x at time t:

ρ (x, t) =
mE−α

k − Ex

(
k +

e−Et (E − k)2

Ex− k

)α
. (28)

4.2.3 Solution for the generalized tumor growth rate, g(x, t) = [k − E(t)]x

Similarly, we extended the linear separable model (5b)

dx

dt
= [k − E(t)]x, (29)

where the drug effect can vary with time. Then the method of characteristic produces the distri-
bution

ρ(x, t) =
(

m

k − E(t)

)
x
−α−1− m

k−E(t) e

“
α+ m

k−E(t)

”
(
R t
0 k−E(s)ds)t

. (30)

4.2.4 Solution for the logistic growth rate, g(x) = (k − Ex)x

Finally, the generalization of the logistic model (4b), g(x) = (k − Ex)x, yields the characteristic
equations

dx

dt
= (k − Ex)x,

dρ

dt
= −(k − 2Ex)ρ, (31)

with the parametric solutions

x(t) =
kx0

Ex0(1− e−kt) + ke−kt
ρ(t) =

ρ0(x0)ekt

k2

(
Ex0(1− e−kt) + ke−kt

)2
. (32)

These must be used with (26) to determine the overall distribution.
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4.3 The linear chain trick: reduction of the population model to ODE systems

The “linear chain trick” [8, page 123] is a method for converting a population dynamics PDE
problem into a system of ODEs for the moments of the distribution function ρ.

Using the standard McKendrick-von Foerster equation from Iwata et al:

∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, (33a)

with boundary conditions

g(1)ρ(1, t) =
∫ ∞

1
β(x)ρ(x, t)dx+ β(xp(t)), (33b)

lim
x→∞

ρ(x, t) = 0, (33c)

define the k-th zero-centered moment of ρ(x, t)

Pk =
∫ ∞

1
xkρ(x, t) dx, k = 0, 1, · · · . (34)

To find an ODE for P0, integrate the PDE for x from 1 to ∞, and apply the boundary condition:∫ ∞
1

∂tρ(x, t)dx+
∫ ∞

1
∂x(g(x)ρ(x, t))dx = 0. (35)

This can be re-written as

d

dt

(∫ ∞
1

ρ(x, t)dx
)

+ g(x)ρ(x, t)
∣∣∣∣x=∞
x=1

= 0, (36)

and using the boundary condition (19), we obtain

dP0

dt
= g(1)ρ(1, t) =

∫ ∞
1

β(x)ρ(x, t)dx+ β(xp(t)). (37)

For certain choices of β(x), this can be integrated directly. In particular, Cushing [8] shows the
method of doing this for functions of the form β(x) = mxne−ax, where n is a non-negative integer.
For our purposes, we will take β(x) = mx+ q since of these possibilities, it is the most physically
relevant. In general, we take q = 0, but including an arbitrary q requires no further work so it will
be included here for reference. Substituting this and integrating we get

dP0

dt
=
∫ ∞

1
mxρ(x, t)dx+mxp = mP1 + qP0 +mxp + q (38)

To calculate the moment Pk for k > 0, we multiply the PDE by xk and integrate as before:∫ ∞
1

xk∂tρ(x, t)dx+
∫ ∞

1
xk∂x(g(x)ρ(x, t))dx = 0, (39)

d

dt

(∫ ∞
1

xkρ(x, t)dx
)

+ xkg(x)ρ(x, t)
∣∣∣∣x=∞
x=1

−
∫ ∞

1
kxk−1g(x)ρ(x, t)dx = 0, (40)

dPk
dt

= g(1)ρ(1, t) +
∫ ∞

1
kxk−1g(x)ρ(x, t)dx. (41)
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Figure 7: Evolution of the moments of ρ(x, t) using the moment model (42).

The choice of g(x) is important. In the simplest case of a linear growth function, g(x) = ax+ b,
we can proceed analytically:

dPk
dt

= g(1)ρ(1, t) +
∫ ∞

1
kxk−1(ax+ b)ρ(x, t)dx, (42)

= mP1 + qP0 +mxp + q +
∫ ∞

1
kxk−1(ax+ b)ρ(x, t)dx,

= mP1 + qP0 +mxp + q + akPk + bkPk−1.

Thus, in this case, we have a closed system of ODEs for any set of moments of ρ: P0, . . . , Pn, with
n ≥ 1. It is important to note that these are not the mean centered moments. However, they
do give important information, such as the total number of metastases (P0), the total number of
tumor cells (P1), and the mean number of cells per tumor (P1/P0). In addition, there are numerical
methods of reconstructing a density function from a finite set of its moments [20]. This would be
an easy way of gaining more information about the size density function without solving the full
PDE. An example plot of the zeroth through fourth moments of ρ is given below for g(x) = ax,
β(x) = mx with a = 0.0286 day−1 and m = 5.3 × 10−7 (cell day)−1, see Figure 7. After 60 days,
there are approximately 53 metastases present and 901 total tumor cells, for an average of about
17 cells per tumor.

A second reasonable growth function we worked with was logistic growth, g(x) = x(ax + b).
Solving for the ODE for Pk yields:

dPk
dt

= g(1)ρ(1, t) +
∫ ∞

1
kxk−1x(ax+ b)ρ(x, t)dx (43)

= mP1 + qP0 +mxp + q +
∫ ∞

1
kxk(ax+ b)ρ(x, t)dx

= mP1 + qP0 +mxp + q + akPk+1 + bkPk

In this case, the system is not closed, and some further assumptions would need to be made in
order to proceed. This is a significant limitation of the method, and similar problems are found
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with other growth and shedding functions. It would be interesting to examine this method further
to look for any possible extensions that could be of use.

4.4 A population-averaged approach to dynamics for the population of tumors

If sufficient information on the sizes of individual tumors is available, then the population dynamics
models can be used without attempting to directly construct a size-distribution function ρ(x, t).

Consider that the primary and all metastatic tumors grow independently, all according to the
same growth model,

dxp
dt

= g(xp, t), xp(0) = 1, (44)

dxi
dt

= g(xi, t), xi(ti) = 1, (45)

for i = 1, 2, · · · , n where the time ti when each metastatic tumor is created is to be determined.
The number of metastases above is given by N(t) = n, and in terms of the distribution function
we must have

N(t) =
∫ ∞

1
ρ(x, t) dx. (46)

The distribution function ρ can be normalized to be a probability density function,

ρ(x, t) = N(t)p(x, t)
∫ ∞

1
p(x, t) dx = 1. (47)

Identifying N = P0 from section 4.3, we re-write equation (37) as

dN

dt
=
∫ ∞

1
β(x)ρ(x, t) dx+ β(xp) (48)

The integral above can be understand as the expected value of the birth rate with respect to the
probability of finding a tumor of size x,∫ ∞

1
β(x)ρ(x, t) dx = N(t)

∫ ∞
1

β(x)p(x, t) dx = E(β). (49)

This expected value can be replaced by the average over the ensemble of tumors to re-write (48) as

dN

dt
= N(t)

(
1
n

n∑
i=1

β(xi)

)
+ β(xp). (50)

Equations (44, 45, 50) form a system of (n+ 2) ODEs for the number and sizes of all tumors. This
system is completed by noting that when N increases to reach N(t) = n+1, at that time, t = tn+1,
a new tumor should be added starting with initial condition xn+1(tn+1) = 1 and evolution of the
augmented system continued with n→ n+ 1.

Using time-series data on the target lesions {xi(t)} for i = 1, 2, · · · , 5 in (45) an estimate should
be made to determine a sufficiently accurate growth rate g(x, t). Separately, data on the count of
observable (having at least minimum size xmin) new and non-target metastatic tumors will provide
an estimate of the total number,

Ñ(t) ≈
∫ xp

xmin

ρ(x, t) dx < N(t) =
∫ ∞

1
ρ(x, t) dx. (51)
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Figure 8: The computed distribution function ρ(x, t) at t = 10 for g (x) = kx (Iwata’s model) with
all parameters normalized to one.

Assuming that equation (50) is also well approximated by

dÑ

dt
≈

(
1
n

n∑
i=1

β(xi)

)
Ñ + β(xp) (52)

then given time-series on Ñ(t) and {xi(t)} this equation could be used to estimate the birth rate
function β(x). With β(x) and g(x) estimated (and assuming smooth extensions to the entire range
1 ≤ x <∞), we can then make predictions for the full size-distribution function ρ(x, t).

4.5 Numerically computed solutions of the von Foerster model

4.5.1 Upwind finite differencing method

One numerical approach that was developed to the solve the initial-boundary value problem for the
von Foerster population dynamics model (8abcd) made use of upwind finite-differencing and second-
order accurate time-stepping and was implemented for various choices of g(x) growth functions with
the birth function β(x) = mxα.

The shedding boundary condition (8c) was solved iteratively by first predicting ρ(1, t) using
ρ(x, t) from the previous timestep and the current β (xp) and then correcting using ρ(x, t) based
on this prediction.

An overview of the numerical results obtained is:

1. For the growth function g(x) = kx the primary tumor grew as xp = ekt and the density
function for metastatic tumors exhibits monotone decay as predicted by Iwata’s solution
(21), see Figure 8.

2. The distribution function for the model with the growth function g(x) = k − Ex where the
second term describes the effects of the introduced drug is shown in Figure 9. Here the
primary tumor’s growth is described as xp =

(
x0 − k

E

)
e−Et + k

E and cannot increase past
xmax = k

E which results in an accumulation of tumors of the same size as the primary tumor
as it approaches its maximal size. This form of dynamics was discussed in section 4.2 as a
consequence of g(x) having a zero at a positive equilibrium tumor size x∗, here x∗ = k/E.

The figure also shows that increasing the exponent α in the birth rate may correspond to
distributions of tumors that are closer to uniformly distributed over the range 1 ≤ x ≤ xp.
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Figure 9: The computed distribution function ρ(x, t) at t = 10 for g(x) = k − Ex, with E = 0.2,
k = 0.3, m = 0.1 and two choices of parameter α in the birth rate function β(x) = mxα.

Figure 10: The computed distribution function ρ(x, t) at t = 10 for g (x) = ax ln
(
b
x

)
with a =

0.00286, b = 7.3× 1010, k = 0.3, and m = 5.3× 10−8

3. The growth rate function g(x) = ax ln
(
b
x

)
was another model considered in Iwata [19], called

the Gompertzian growth rate. Under this model the primary tumor’s size is bounded by
xp < b. Parameters values from the Iwata paper [19] were used with two different values of
α, see Figure 10.

4. Another simulation used the growth function g(x) = (k − E(t)e−rt)x where r gives a rate of
development of drug resistance. Parameters similar to those from the Iwata paper were used
in this case. In Figure 11(right) drugs were introduced at t = 2000 while in Figure 11(left)
no drugs were introduced. Both simulations were run until t = 3650.

4.5.2 Method of lines solution

The method of lines [34] was also considered as a numerical scheme for computing the solutions of
the von Foerster model. Starting from the PDE in form (16), we discretize in space as ρi = ρ(xi, t)
where xi = 1 + ih for i = 0, 1, · · · , n. The transport term is approximated by a second-order
accurate centered finite difference,

∂ρ

∂x
=
ρi+1 − ρi−1

2h
, (53)
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Figure 11: The computed distribution function ρ(x, t) at t = 3650 for g(x) = (k−E(t)e−rt)x, with
k = 0.006, α = 0.663, m = 5.3× 10−8 and for (right) E = 0.0083, r = 10−5.

and the PDE reduces to a system of coupled ODEs:

dρi(t)
dt

= −g(xi)
ρi+1 − ρi−1

2h
− g′(xi)ρi, i = 1, . . . , n− 1. (54)

This system can be re-written in the form

d~ρ

dt
= A~ρ + ~b, where ~ρ =

 ρ1
...

ρn+1

 , (55)

and

~b =



g(xi)
2h ρ0

0
...
0

−g(xi)
2h ρn

 A =



−g′(xi) −g(xi)
2h

g(xi)
2h −g′(xi) −g(xi)

2h
. . . . . . . . .

. . . . . .
g(xi)
2h −g′(xi)


(56)

subject to the initial condition ~ρ(0) = ~0.
In order to complete the system, we approximate the shedding boundary condition (8c) on

ρ(1, t) using a quadrature for the integral,

ρ0(t) =
1

g(1)− hβ(1)

(
h

n∑
i=1

β(xi)ρi(t) + β(xp(t))

)
, (57)

to get second order accuracy, a trapezoid rule could be used (instead of the first order rectangle
rule shown above).

5 Further work

Much further work is needed on several fronts to make progress on modeling spread of metastatic
tumors:
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1. Fitting data to models, parameter estimation for multiple tumor time series and multiple
patient data requires more careful statistical analysis to form a detailed understanding of the
confidence level that can be attributed to predictions from the models.

2. Incorporating limitations and uncertainties in the measurable clinical data into the above
analysis. Also exploration is needed in whether good inferences for these models be drawn
from more limited qualitative clinical data.

3. Comparing the analytical and computed results from the PDE, discrete population and poly-
merization models to determine which approaches provide the most robust predictions at an
acceptable level of computational workload.
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