
Medical Ultrasonic Imaging

Problem Presenter

Bruno Haider
GE Global Research Center

Problem Participants

Dean Duffy, NASA/Goddard
David A. Edwards, University of Delaware

Brian Emmanuel, New Jersey Institute of Technology
Kim Fessel, Rensselær Polytechnic Institute

Linghong Hu, Rensselær Polytechnic Institute
Rich Moore, New Jersey Institute of Technology

Colin Please, University of Southampton
Don Schwendeman, Rensselær Polytechnic Institute

Susie Seal, Arizona State University
Yunfei Song, SUNY Buffalo

He Yang, Rensselær Polytechnic Institute
and others...

Twenty-Sixth Annual Workshop on Mathematical Problems in Industry
June 14–18, 2010

Rensselær Polytechnic Institute



Section 1: Introduction
Medical ultrasound devices are used extensively to “see” soft tissue structures inside

the body. High-amplitude ultrasound waves are sent from a transducer into the tissue.
The resulting reflected waves are collected by the same transducer, and then converted
into an electrical signal. This signal is then processed to produce a visual image of the
scanned tissue.
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Figure 1.1. Schematic of transducer array.

A schematic of a transducer is shown in Fig. 1.1. Each transducer is made up of a
series of transducer elements. A subset of these elements sends out waves either at the
same time to produce a linear (plane) wave profile or asynchronously to produce a wave
at a given angle from the device (used for wedge scans).

Each transducer element is made up of three parts, as shown in Fig. 1.2. A piezo-
electric substance (PZT) converts electric impulses to pressure waves and vice versa. As
it compresses in the x̃-direction, (which points normal to the transducer/skin interface), it
expands in the ỹ-direction (parallel to the interface), as shown in Fig. 1.3, where x̃ points
up. Hence nearby elements are usually fired together.

Two matching layers are placed in series above the PZT. The purpose of these are to
gradually step down the impedance Z from the high value in the PZT to the lower value
in the tissue in order to improve imaging.

Though the media in the matching layers behaves linearly, the interface between
them introduces reflections into the outgoing signal, a phenomenon known as ringdown.
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Figure 1.2. Schematic of transducer element.

This mixed wave then penetrates into the tissue, which is a nonlinear medium. The
outgoing wave has a large enough amplitude that nonlinear effects are important, though
the reflected waves traveling back to the transducer are small enough that a linear analysis
is sufficient.

These nonlinear effects make it difficult to discern the true features of the tissue, and
compensating for them is the major thrust of this investigation.
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Finite element simulations 

Figure 1.3. Transverse motion of PZT.



Section 2: Linear One-Layer Model,
Outgoing Wave

matching layer tissue x̃

−πcL/2ωc 0

Figure 2.1. Semi-infinite one-layer model.

As a first attempt, we consider a single transducer element with only one matching
layer, as shown in Fig. 2.1. (We choose the element-tissue interface to be x̃ = 0 for
algebraic convenience.) Typically in these experiments the PZT waves are modulated sine
waves with characteristic frequency ωc. For purposes that will be explained below, the
width of the matching layer is set to be 1/4 of the wavelength of the corresponding wave,
so we have

−2πcL
4ωc

= −πcL
2ωc
≤ x̃ ≤ 0, (2.1)

where cL is the wave speed in the layer.
Typically the distance between the structures of interest and the transducer is much

larger than the layer width (see Appendix). This means that though there may be internal
reflection in the matching layers, their primary effect is to contaminate the signal when
the transducer is set to “listening mode”. Hence for the purposes of this model we take
the tissue to be semi-infinite, and determine the signal at some arbitrary distance from the
PZT as a function of time.

Moreover we assume linear behavior for the tissue, so the governing equations for the
pressure displacement p̃ are as follows:

∂2p̃L

∂t̃2
= c2L

∂2p̃L
∂x̃2

, −πcL
2ωc
≤ x̃ ≤ 0, (2.2a)

∂2p̃T

∂t̃2
= c2T

∂2p̃T
∂x̃2

, x̃ ≥ 0, (2.2b)

where the subscript “T” refers to “tissue”. The pressure boundary condition is given by
the PZT wave

p̃

(
−πcL

2ωc
, t̃

)
= pcpP(t̃), t̃ > 0, (2.3)

where pc is some characteristic value of the displacement and the subscript “P” refers to
“PZT”. Here the (obvious) restriction on t̃ will become important later.

Equations (2.2) and (2.3) motivate the following scalings:

p(x, t) =
p̃(x̃, t̃)

pc
, x =

ωcx̃

cL
, t = ωct̃. (2.4)
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Substituting (2.4) into (2.2) and (2.3), we obtain the following dimensionless system:

pcω
2
c

∂2pL
∂t2

= c2L
pcω

2
c

c2L

∂2pL
∂x2

, −πcL
2ωc

(
ωc

cL

)
≤ x ≤ 0

∂2pL
∂t2

=
∂2pL
∂x2

, −π
2
≤ x ≤ 0, (2.5a)

∂2pT
∂t2

=
1

r2
∂2pT
∂x2

, x ≥ 0, r =
cL
cT
, (2.5b)

u(−π/2, t) = pP(t), t > 0. (2.6)

Note that r is the inverse of the sound speed ratio; we use it for later algebraic simplicity.
Note also from the Appendix that r > 1.

x

0−π/2

π/2

π

3π/2

t G→
1

G→
0

Figure 2.2. Characteristic diagram for Green’s function, outgoing wave.

To solve the problem for general pP(t), we first construct the Green’s function G(x, t)
for the problem by solving for pP(t) = δ(t). This solution can be constructed using
the method of characteristics, as illustrated in Fig. 2.2. We note from (2.5a) that the
normalized sound speed in the layer is 1. Hence we have the following solutions for 0 <
t < π/2:

GL(x, t) = δ(t− (x+ π/2)), 0 < t < π/2, (2.7a)

GT(x, t) = 0, 0 < t− rx < π

2
. (2.7b)

Note from (2.7b) that the range before which the first pulse hits increases with increasing
x, as it takes the wave (traveling with speed r−1) longer to reach there. Since r−1, the
sound speed ratio, is less than 1, we have the characteristic bending shown in Fig. 2.2.
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At time t = π/2, the wave hits the boundary between layer and tissue. The discon-
tinuity causes the creation of a transmitted wave and a reflected wave. The (amplitude)
reflection coefficient RT is defined as

RT =
ZT − ZL

ZT + Z1
. (2.8)

Note from the values in the Appendix that in this case, −1 < RT < 0. Since we are using
the amplitude reflection coefficient, this means that the amplitude transmission coefficient
is just 1 − RT. So the amplitude increases in the tissue because the signal impedance is
smaller there. (When perusing the literature, one must take care to distinguish between
the amplitude reflection coefficient and the energy reflection coefficient, which is R2

T in our
notation.)

Since the amplitude of our initial wave is 1, this implies that

GT(x, t) = (1−RT)δ
(
t− π

2
− rx

)
,

π

2
< t− rx < 3π/2. (2.9)

where the value of the upper limit on t will be established later. The reflected wave in the
layer now moves with speed −1 until it impinges upon the PZT boundary, so we have

GL(x, t) = RTδ (t+ (x− π/2)) , π/2 < t < π. (2.10)

Note that the form of the phase shift can be seen by the method of images.
This reflected wave reflects again from the PZT boundary. Here the reflection coef-

ficient is given by RP, which is greater than zero because the layer adjoining the PZT is
more rigid. Hence we have

GL(x, t) = RPRTδ((t− π)− (x+ π/2)), π < t < 3π/2. (2.11)

But this is just the expression for GL in (2.7a), scaled down by RT and phase shifted by
π. Hence by the shift of (2.7) we have that there is no additional wave in the tissue until
t = 3π/2, at which point we have an additional “echo” of the initial signal of the form in
(2.9), scaled down by RT and shifted by π, so we have

GT(x, t) = (1−RT)
[
δ
(
t− π

2
− rx

)
+RPRTδ

(
(t− π)− π

2
− rx

)]
,

3π

2
< t− rx < 5π

2
.

(2.12)
We introduce the following notation:

G→
j

(x, t) = (1−RT)(RPRT)jδ
(

(t− jπ)− π

2
− rx

)
. (2.13)

G→
j

is just the jth echo from the main signal, and the arrow to the right indicates that

these are echoes of an outgoing wave. Here the first term represents the gain by moving
from PZT into the tissue. The (RPRT)j represents the decay in signal for each reflection
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that occurs inside the PZT. Each reflection takes t = π (see Fig. 2.2), which accounts for
the jπ phase shift in the δ-function.

Then (2.12) becomes

GT(x, t) =

1∑
j=0

G→
j

(x, t),
(2 + 1)π

2
< t− rx < (2 + 3)π

2
. (2.14)

But the echoing process continues forever, and hence we have

GT(x, t) =
J∑
j=0

G→
j

(x, t), t− rx ∈
[

(2J + 1)π

2
,

(2J + 3)π

2

]
. (2.15)

Hence at some position x = `, the signal is just a series of pulses arriving t = π apart,
each one smaller in magnitude than the last. Hence J is simply the number of echoes that
have had time to reach position x, and j indexes the echoes. But since the δ function is
zero for nonzero argument, we don’t need the restriction on t, and we may write

GT(x, t) =

∞∑
j=0

G→
j

(x, t) (2.16)

for all t. This form is useful for later calculations, but for most purposes, we will stick
with the finite form (2.15).

We also remark that if we relax the assumption that there is total reflection at the
PZT interface, but treat the PZT as semi-infinite (so there are no reflections from the back
of the PZT), we may simply redefine our reflection coefficient to take into account that
reflection. (We shall do this in the next section.) Treating the PZT as finite introduces
more reflections that are beyond the scope of this section.

Given GT, the signal in the tissue for an arbitrary boundary condition is given by

pT(x, t) =

∫ t

0

pP(τ)GT(x, t− τ) dτ

= (1−RT)
J∑
j=0

(RPRT)j
∫ t

0

pP(τ)δ
(

(t− τ − jπ)− π

2
− rx

)
dτ.

=
J∑
j=0

p→
j

(x, t), t− rx ∈
[

(2J + 1)π

2
,

(2J + 3)π

2

]
, (2.17a)

p→
j

(x, t) = (1−RT)(RPRT)jpP

(
(t− jπ)− π

2
− rx

)
. (2.17b)

Since reflections arrive at intervals of π, any wave boundary condition with period greater
than π will have overlap between the initial signal and the first reflection, as shown in
Fig. 2.3.
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In reality, we will not have pT everywhere, but at some point ` (where we may have
placed a hydrophone) and at discrete times when the data is sampled. Obviously no signal
can be heard until

π

2
+ `r,

so that would be the first time sampled. Sampling rates are expressed in terms of frequency
fs. To convert them into dimensionless time, we have

ts =
ωc

fs
= π

2fc
fs
. (2.18)

It would be best if the same points could be used over and over again, which corresponds
to them being spaced like ts = π/M , for some integer M . This is not quite true for the
frequency ratio in the Appendix.

Using this discussion, we define the sampling times by

tm =
mπ

M
+
π

2
+ `r. (2.19)

We now substitute (2.19) into (2.17a). Because of the finite nature of the problem, it is
more useful to return back to the finite representation in (2.17a). Doing so, we have

pT(`, tm) =
J∑
j=0

p→
j

(
`,
mπ

M
+
π

2
+ `r

)

= (1−RT)
J∑
j=0

(RPRT)jpP

(mπ
M
− jπ

)
,

mπ

M
+
π

2
∈
[

(2J + 1)π

2
,

(2J + 3)π

2

]

= (1−RT)
J∑
j=0

(RPRT)jpP

(
(m−Mj)π

M

)

pm = (1−RT)
J∑
j=0

(RPRT)jqm−Mj , m ∈ [MJ,M(J + 1)], (2.20a)

pm = pT(`, tm), qm = pP

(mπ
M

)
. (2.20b)

But (2.20a) is a set of linear equations in the variables pm and qm, and so can be written
schematically as

p = Cq,

where the bold notation means the vectors of the corresponding samples, and C is some
matrix. So to obtain the initial signal is equivalent to computing

q = C−1p.

Note that C is a function of the material.
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We now consider the case of a single mode:

pP(t) = p̂P(ω)eiωt, (2.21)

which has the desirable property that

p→
j

(x, t) = p̂P(ω)(1−RT)(RPRT)j exp

(
iω

(
t− (2j + 1)π

2
− rx

))
= p→

0
(x, t)RjPR

j
Te
−πiωj ,

p→
0

(x, t) = p̂P(ω)(1−RT) exp
(
iω
(
t− π

2
− rx

))
, (2.22a)

pT(x, t) = p→
0

(x, t)
J∑
j=0

(RPRTe
−πiω)j

= p→
0

(x, t)
1−

(
RPRTe

−πiω)J+1

1−RPRTe−πiω
, t− rx ∈

[
(2J + 1)π

2
,

(2J + 3)π

2

]
.

(2.22b)

Hence in this simple case the sum collapses and the expression can be written explictly.
Moreover, since |RT| and |RP| are both less than 1, we have that

pT(x, t) ∼
p→
0

(x, t)

1−RPRTe−πiω
, t→∞. (2.23)

t

p

Figure 2.3. Graph of (2.22b) for RP = 1, RT = −0.5, ω = 0.7, x = 3/r, p̂(0.7) = 1,
n ∈ [0, 3]. Dark line: received signal pT. Dotted/dashed lines: individual pulse echoes p→

j
.
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Figure 2.3 shows a graph of the solution in (2.22b) for the parameters described.
Here ω < 1, so the period is longer than π. Hence the initial waveform (shown by the
first appearing dashed line) is not fully formed before the first echo (shown by the first
appearing dotted line) distorts it. However, since this is a purely linear problem, existing
filters can determine the initial waveform from the contaminated signal.

Because of the normalization used in (2.4), we know that choosing ω ∈ Z corresponds
to some multiple of the characteristic wavelength ωc. In particular, choosing ω = 2 yields

pT(x, t) = p→
0

(x, t)
1− (RPRT)J+1

1−RT

= p̂P(2)[1− (RPRT)J+1] exp
(

2i
(
t− π

2
− rx

))
,

t− rx ∈
[

(2J + 1)π

2
,

(2J + 3)π

2

]
, (2.24a)

pT(x, t) ∼ p̂P(2) exp
(

2i
(
t− π

2
− rx

))
, t→∞, (2.24b)

and the original waveform is reconstructed from the reflections as t→∞. Hence the choice
of width as compared to a typical wavelength.

Obviously the true signal is made up of waves of varying wavelengths, and hence this
nice fidelity of signal is not preserved. In particular, we note that any PZT waveform pp
may be expressed in terms of its Fourier transform:

F{pP(t)} ≡ p̂P(ω) =
1

2π

∫ ∞
−∞

pP(t)e−iωt dt, pP(t) =

∫ ∞
−∞

p̂P(ω)eiωt dω. (2.25)

Then using the result for a single mode in (2.25), we obtain

pT(x, t) = (1−RT)

∫ ∞
−∞

p̂P(ω)
1−

(
RPRTe

−πiω)J+1

1−RPRTe−πiω
exp

(
iω
(
t− π

2
− rx

))
dω,

t− rx ∈
[

(2J + 1)π

2
,

(2J + 3)π

2

]
, (2.26)

which describes the relationship between pT and pP for any boundary condition.
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A reference waveform is needed for the optimization;   
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gain applied to time 
domain error 

Figure 3.1. Top: typical data for received signal pR(t). Bottom: envelope on dB (10 log10)
scale. Abscissa is measured in ticks.

A typical experimental setup occurs when the transducer is placed in a tank of water,
1.5 cm away from a steel reflector. Small-amplitude vibrations are induced in a pulse to
eliminate nonlinear effects. Then the reflected waves are measured, as shown in the top
graph in Fig. 3.1. As discussed previously, the data is sampled at a frequency rate fs, or
at a dimensional time of f−1s . In the experimental setup, the data is sampled at 33 MHz,
which means once every

1

33× 106 s−1
= 3.03× 10−8 s.

Each of these measurements is called a “tick”, and it is the number of ticks, rather than
the time, which is measured on the abscissa axis.

The pulse is made up of a fast-oscillating carrier wave sinαt and a slowly varying
envelope P (εt), where 0 < ε � 1 is a small parameter to be defined later. Hence the
received signal is given by

pR(t) = P (εt) sinβt, (3.1)

where the subscript “R” refers to “received”. The quantity of interest is the envelope
A(εt), which is plotted on a log plot at the bottom of Fig. 3.1. But given data such as in
the top of Fig. 3.1, how does one infer the envelope?

The answer lies in the analytic signal, which is related to the Hilbert transform. We
give a very brief introduction for our purposes below; for more details, consult Bracewell
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(2000). We recall the following transforms (Kammler, 2008):

F {P sinβt} = P
δ(ω − β)− δ(ω + β)

2i
,

F
{
Peiβt

}
= Pδ(ω − β).

In other words, the eiβt has a single spike at ω = β, while sinβt has two spikes at ω = ±β.
In particular, we note from the above that

F
{
Peiβt

}
= 2iH(ω)F {P sinβt} ,

for constant P . Now (similar to a WKB analysis) we say that since A(εt) varies on a slow
scale, on the scale of the Fourier transform it behaves roughly like a constant (up to some
O(ε) error). Hence we now say that

F
{
P (εt)eiβt

}
∼ 2iH(ω)F {P (εt) sinβt}

P (εt)eiβt ∼ F−1 {2iH(ω)F {pR(t)}}
P (εt) ∼ 2

∣∣F−1 {H(ω)p̂R(ω)}
∣∣ . (3.2)

Equation (3.2) now shows how to construct the envelope. Take the Fourier transform
of the received signal, remove the negative frequencies, and double the result. Then take
the absolute value of the inverse Fourier transform of the result. (Note that in a real
experimental setup, these will be finite Fourier transforms.)

To demonstrate the concept we introduce a modulated signal as the pulse and see what
happens if we listen at a fixed distance from the transducer. Motivated by the problem
statement, we use a truncated Gaussian for our envelope function:

pP(t) = exp

(
− (t− π/εω)2

2ε2

)[
H(t)−H

(
t− 2π

εω

)]
sinωt. (3.3)

Some discussion of (3.3) is appropriate. In particular, we see that the signal lasts for
t ∈ [0, 2π/εω]. This then allows O(ε−1) carrier wave oscillations within the amplitude.
The maximum of the envelope is centered on this range. This function is graphed in
Fig. 3.2 for a value of ε that roughly replicates the form of the received wave in Fig. 3.1.

Now we substitute (3.3) into (2.17a) and graph the result for ` = 35cT/c1, which
is shown as the solid line in Fig. 3.3. Here we have plotted the amount of time that
corresponds to 20 echoes. To use the analytical signal, we sample points at every ts, which
we obtain from (2.18):

ts = π
2fc
fs

=
2π

8.25
≈ 0.76. (3.4)

Once those points have been obtained, we perform the process described above to back
out A(t), which is shown as the dotted line in Fig. 3.3.

Note that the received signal in Fig. 3.3 has many more oscillations than the experi-
mental data in Fig. 3.1. Hence modeling the transmitted signal by the received signal does
not seem to be an appropriate strategy.
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t

pP

Figure 3.2. Input function pP(t), ω = 1, ε = 1/3.

t

pT(`, t)

Figure 3.3. Received signal pT(`, t), ω = 1, ε = 1/3, RP = 1, RT = −0.63, ` = 35/r.

To match the data in Fig. 3.1, we take the base-10 logarithm of A and plot the result
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t

10 log10A(t)

Figure 3.4. Decibel-scale plot of A(t).

in Fig. 3.4. Note that there is some ringing for long time. Therefore, we have at least a
“proof of concept” of ringing for the linear model.

But the position of the ringing is much different from that in the experimental data.
Of course, we have not matched the experimental setup where the signal is measured
back at x = 0 after bouncing off a reflector at x = `. In the next section we outline the
mathematical analysis of such a system.



Section 4: Linear One-Layer Model,
Incoming Wave

Next we briefly consider a model problem for the waves reflecting back from an object
in the water. We use the same linear equations as in the previous section, which is more
justifiable due to the small amplitude of the reflected waves. In this problem we send a
pulse in from x = ` to the right, so

p(x, 0) = δ(x− `). (4.1)

x
`−π/2 0

t∗

t∗ + π/2

t∗ + π

t∗ + 3π/2
G←

1

G←
0

t

Figure 4.1. Characteristic diagram for Green’s function, incoming wave.

The characteristic diagram is shown in Figure 4.1. Note the similarity to Figure 2.2.
In particular, note that once the outcoming wave hits the layer at the to-be-determined
time t = t∗, the problem is essentially exactly the same as that in section 2 with t = π/2
replaced by t = t∗ and a different amplitude to the wave. In particular, we have

GT(x, t) = δ

(
x− `+

t

r

)
, 0 < t < `r ≡ t∗. (4.2)

When the wave hits the layer, part of the wave is reflected with reflection coefficient −RT,
since the roles of ZT and Z1 are reversed. Note that this is positive, since the wave is
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moving into a region of higher impedance. We assume that the water is semi-infinite, so
this reflected wave is lost and does not play a role in the analysis. Hence the transmitted
wave is the one of interest:

GL(x, t) = (1 +RT)δ (x+ (t− t∗)) , 0 < t− t∗ <
π

2
, (4.3)

where we again allow the interval of interest to move with x.
This transmitted wave then reflects again from the PZT boundary. We denote the

reflection coefficient distinctly as RP, though from the Appendix we see that the material
is designed so RP = −RT. Hence we have

GL(x, t) = (1 +RT)RPδ (x− (t− t∗) + π) , π/2 < t− t∗ < π. (4.4)

This wave will then reflect again, this time with reflection coefficient RT, to yield

GL(x, t) = (1 +RT)RPRTδ (x+ (t− t∗)− π) , π < t− t∗ <
3π

2
. (4.5)

But this is just the expression for GL in (4.3), scaled down by RTRP and phase-shifted
by π, and we have established our recursion pattern. We measure the signal at x = −π/2,
so the true signal of interest is

GL

(
−π

2
, t
)

=

K∑
k=0

G←
k

(t), t− t∗ ∈
[

(2K + 1)π

2
,

(2K + 3)π

2

]
, (4.6a)

where G←
k

(t) is the kth echo measured at x = −π/2:

G←
k

(t) = (1 +RT)(RPRT)kδ

(
t− t∗ −

(2k + 1)π

2

)
. (4.6b)

Note that G←
k

is a function of t only, since it is measured at a particular point (x = −π/2).

The left-pointing arrow shows this is an echo of an incoming wave. Note the similarity
in form between (4.6b) and (2.13). Again we have the attenuation factor RPRT for each
echo, and the travel time kπ (recalling that r` = t∗). The full result may be written in the
form of an infinite series:

GL

(
−π

2
, t
)

=
∞∑
k=0

G←
k

(t). (4.7a)

This result can then be used to construct analogous profiles to Fig. 3.3. In particular,
for a general pressure function at x = `:

pT(`, t) = p`(t),

the equation analogous to (2.17a) becomes

pL

(
−π

2
, t
)

=
K∑
k=0

p←
k

(t), t− t∗ ∈
[

(2K + 1)π

2
,

(2K + 3)π

2

]
, (4.8a)

p←
k

(t) = (1 +RT)(RPRT)kp`

(
t− t∗ −

(2k + 1)π

2

)
. (4.8b)



Haider et al. 4.3

x

`0−π/2

π

2t∗ + π

2t∗ + 2π

t∗ + π/2

t∗ + 3π/2

t

p↔
0

p↔
1

G→
1

G→
0

Figure 4.2. Characteristic diagram for Green’s function, reflected wave.

Again K is the number of echoes that have had time to travel from x = L back to x = 0,
and k indexes them.

To try to follow an initial wave through a reflection, we first go back to the transmission
of a single pulse in order to obtain insight. Substituting x = ` into (2.16), we have

GT(`, t) =
∞∑
j=0

G→
j

(`, t). (4.9)

We assume perfect reflection at x = `, so GT(`, t) = p`(t). Hence we have

p`

(
t− t∗ −

(2k + 1)π

2

)
=
∞∑
j=0

G→
j

(
`, t− t∗ −

(2k + 1)π

2

)
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p←
k

(t) = (1 +RT)(RPRT)k×
∞∑
j=0

(1−RT)(RPRT)jδ

((
t− t∗ −

(2k + 1)π

2

)
− jπ − π

2
− r`

)
,

pL

(
−π

2
, t
)

=
∞∑
k=0

(1 +RT)(RPRT)k
∞∑
j=0

(1−RT)(RPRT)jδ(t− 2t∗ − (j + k + 1)π)

= (1−R2
T)
∞∑
k=0

∞∑
j=0

(RPRT)j+kδ(t− 2t∗ − (j + k + 1)π), (4.10)

where we have used (2.13), (4.2), and (4.9). Note that the sum depends only on the
combination j+k. This is shown in Fig. 4.2, where we see that the pulse that reflects once
on the outgoing path (j = 1, k = 0) and the pulse that reflects once on the incoming path
(j = 0, k = 1) recombine to form a single signal. Hence we may rewrite (4.10) as a single
sum:

pL

(
−π

2
, t
)

= (1−R2
T)
∞∑
j=0

(RPRT)jδ(t− 2t∗ − (j + 1)π). (4.11)

Then for a general signal, we may derive an expression analogous to (2.17b):

pL

(
−π

2
, t
)

=

J∑
j=0

p↔
j

(t), t− 2t∗ ∈ [(J + 1)π, (J + 2)π] , (4.12a)

p↔
j

(t) = (1−R2
T)(RPRT)jpP(t− 2t∗ − (j + 1)π). (4.12b)

Here the two-headed arrow has been used to show that this echo comes from reflection.
Also, we assume that t∗ is so long that the outgoing signal has been shut off before the
reflections come back.



Section 5: Nonlinear Model
We now wish to incorporate nonlinear effects into our model. These effects occur if

we treat the constitutive relation between density and pressure more carefully. In liquids,
the Tate formula for the constitutive relation is (Naugolnykh, p. 4)

p̃(ρ̃) =
c2ρe
γ

(
ρ̃

ρe

)γ
− α, (5.1)

where α and γ are constants and the subscript “e” refers to equilibrium state. Using the
same notation for the pressure, we may rewrite (5.1) as

p̃ = pe +
c2ρe
γ

[(
ρ̃

ρe

)γ
− 1

]
(
ρ̃

ρe

)γ
= 1 +

γ(p̃− pe)
c2ρe

ρ̃ = ρe

[
1 +

γ(p̃− pe)
c2ρe

]1/γ
. (5.2)

From the values in the appendix, we know that while pc may be much larger than pe,
it is not larger than c2ρe (at least for water). Hence we introduce the following scalings:

p̃ = pe + pcp = pe + εc2ρep, ε =
pc
c2ρe

. (5.3)

Substituting (5.3) into (5.2), we obtain

ρ̃ = ρe (1 + εγp)
1/γ

, (5.4)

which motivates the scaling

ρ̃ = ρe(1 + ερ), (5.5)

and hence we see that the density of the water doesn’t vary much as a result of the pressure
waves. Substituting (5.5) into (5.4) and expanding to leading two orders, we have

ρe(1 + ερ) = ρe

[
1 +

εγp

γ
+

(εγp)2

2γ

(
1

γ
− 1

)]
ρ = p− εp2(γ − 1)

2
, (5.6)

which, after some manipulation, is exactly (2.3) in Novikov, whose analysis we follow here.
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But now we must careful, as the analysis is subtle. Suppose that we wanted to use an
approximation for y = ez that included the first three terms:

y = ez = 1 + z +
z2

2
.

One way to justify this formally would be to set y = 1 + εy∗, z = εz∗, where ε � 1, and
expand

1 + εy∗ = 1 + εz∗ +
(εz∗)

2

2

y∗ = z∗ +
εz2∗
2
. (5.7)

However, there is a problem with the above. If we continue to treat ε as a small param-
eter, then the quadratic term always appears at next order, which defeats the purpose of
expanding as a quadratic in the first place. Therefore, to make sure that we keep both
terms in (5.7), we must treat ε as an O(1) parameter once we’ve done the expansion. To
emphasize this, we add a subscript ∗ to the parameter and rewrite (5.7) as

y∗ = z∗ +
ε∗z

2
∗

2
.

Using this same sort of analysis in (5.6), we have

ρ = p− ε∗p
2(γ − 1)

2
. (5.8)

We will eventually use our new scaled constitutive equation (5.8) in the Navier-Stokes
equations. We begin with conservation of mass:

∂ρ̃

∂t̃
+
∂(ρ̃ṽ)

∂x̃
= 0

ρeωc
∂(1 + ερ)

∂t
+ ρe

ωc

cT

∂((1 + ερ)ṽ)

∂x
= 0

ε
∂ρ

∂t
+

1

cT

∂((1 + ερ)ṽ)

∂x
= 0, (5.9)

where we have used (2.4) (translated to tissue) and (5.5). Equation (5.9) then motivates
the following scaling for ṽ:

v(x, t) =
ṽ(x, t)

εcT
, (5.10)

which implies that velocity displacements are small as well. Substituting (5.10), and (5.8)
into (5.9), we obtain

ε
∂

∂t

(
p− ε∗p

2(γ − 1)

2

)
+ ε

∂

∂x
((1 + ερ)v) = 0

∂p

∂t
+
∂v

∂x
− ε∗

(γ − 1)

2

∂(p2)

∂t
= −ε∂(ρv)

∂x
, (5.11)
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where we have retained terms only up to O(ε).
The dimensionless form of the momentum equation is derived as follows:

ρ̃

(
∂ṽ

∂t̃
+ ṽ

∂ṽ

∂x̃

)
= −∂p̃

∂x̃
+ µ

∂2ṽ

∂x̃2

ρe(1 + ερ)

[
εcTωc

∂v

∂t
+ (εcT)2

ωc

cT
v
∂v

∂x

]
= −ωc

cT

∂(pe + εc2Tρep)

∂x
+ µεcT

(
ωc

cT

)2
∂2v

∂x2

(1 + ερ)

(
∂v

∂t
+ εv

∂v

∂x

)
= −∂p

∂x
+
µωc

ρec2T

∂2v

∂x2

∂v

∂t
+
∂p

∂x
− η ∂

2v

∂x2
= −ε

(
ρ
∂v

∂t
+ v

∂v

∂x

)
, η =

µωc

ρec2T
. (5.12)

where µ is the bulk viscosity, and we have again only kept terms to O(ε).
From the values in the Appendix, we see that η is very small, which says that viscous

dissipation is very small in water. This is consistent with our intuition about underwater
acoustics. In Girynk et al., the authors calculate a value for µ in soft tissue that is several
orders of magnitude higher, which drives η close to O(1).

Taking the t derivative of (5.11) and subtracting the x derivative of (5.12), we obtain

∂2p

∂t2
− ε∗

(γ − 1)

2

∂2(p2)

∂t2
− ∂2p

∂x2
+ η

∂2v

∂x3
= −ε∂

2(ρv)

∂x∂t
+ ε

∂

∂x

(
ρ
∂v

∂t
+ v

∂v

∂x

)
. (5.13)

Now we wish to write our leading-order equation in terms of p alone. There are many
tricks to do this, depending on the book used. For our purposes, we use the fact that η
is somewhat small to temporarily write η = η∗ε

1/2, and then keep all terms “at leading
order” (on the left-hand side) which are O(ε1/2) or greater.

To write the viscous term in terms of the pressure, we take the second derivative of
(5.11) with respect to x and substitute the result into (5.13), yielding

∂2p

∂t2
− ε∗

(γ − 1)

2

∂2(p2)

∂t2
− ∂2p

∂x2
− η∗ε1/2

∂3p

∂x2∂t
+ ε∗η∗ε

1/2 (γ − 1)

2

∂3(p2)

∂x2∂t

= ε
∂

∂x

(
v

(
∂v

∂x
− ∂ρ

∂t

))
+ η∗ε

3/2 ∂
3(ρv)

∂x3
. (5.14)

But now consider the last term on the first line. It now behaves like ε3/2, which is smaller
than the terms we decided to keep when using the quadratic expansion. Hence it is moved
over to the right-hand side as well:

∂2p

∂t2
− ε∗

(γ − 1)

2

∂2(p2)

∂t2
− ∂2p

∂x2
− η∗ε1/2

∂3p

∂x2∂t

= ε
∂

∂x

(
v

(
∂v

∂x
− ∂ρ

∂t

))
+ η∗ε

3/2

[
∂3(ρv)

∂x3
− (γ − 1)

2

∂3(p2)

∂x2∂t

]
. (5.15)

Therefore, we may write the leading-order form as

∂2p

∂t2
− ε∗

(γ − 1)

2

∂2(p2)

∂t2
− ∂2p

∂x2
− η ∂3p

∂x2∂t
= 0, (5.16)
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as in Novikov. Other books use the Westervelt approximation, as follows. Working with
the top line of (5.14), we have

∂2p

∂x2
=
∂2p

∂t2
− ε∗

(γ − 1)

2

∂2(p2)

∂t2
+ η∗ε

1/2 ∂2p

∂x2∂t
+ o(ε1/2)

η∗ε
1/2 ∂

2p

∂x2
= η∗ε

1/2 ∂
2p

∂t2
+ o(ε1/2), (5.17)

where we have again used the trick where ε∗ε
1/2 is taken to be small. Substituting this

into the top line of (5.14), the x-derivatives on p get swapped for t-derivatives and we have

∂2p

∂t2
− ε∗

(γ − 1)

2

∂2(p2)

∂t2
− ∂2p

∂x2
− η ∂

3p

∂t3
= 0, (5.18)

as in Hamilton. However, since we are moving to the traveling wave coordinate system
soon, this is a distinction without a difference.



Section 6: Envelope Equations
The Westervelt approximation yields a nonlinear partial differential equation that is

second-order in space and third-order in time. For our purposes, it is a singularly perturbed
two-way wave equation with signalling data issued at the leftmost boundary that consists
of a slowly modulated pulse-like envelope containing a rapidly varying carrier frequency.
It is convenient to exploit this disparity in scales in order to obtain envelope equations
that are analytically and computationally more tractable.

We start from a form of (5.18) that includes an additional term to account for bulk
scattering,

∂2p

∂t2
− ε∗(γ − 1)

2

∂2(p2)

∂t2
− ∂2p

∂x2
− η ∂

3p

∂t3
+ β

∂p

∂t
= 0. (6.1)

Noting that the carrier frequency has already been normalized in the above equation,
we introduce the small parameter δ = 2π/TP, where TP is a characteristic (dimensionless)
temporal pulse width produced at the transducer. We argue on physical grounds that
nonlinearity, viscosity and scattering are all small and of the same order for a dominant
balance. For reasons that will become clear later, we choose them all to be O(δ−2), leading
us to write their coefficients in the following form:

ε∗(γ − 1)

2
≡ δ2ε2, η ≡ δ2η2, and β ≡ δ2β2. (6.2)

Thus, we arrive at the rescaled equation

∂2p

∂t2
− ∂2p

∂x2
= δ2

[
ε2
∂2(p2)

∂t2
+ η2

∂3p

∂t3
− β2

∂p

∂t

]
. (6.3)

where we assume that the data have amplitude of order unity.
In keeping with the slowly varying envelope approximation (SVEA), we introduce

multiple time and spatial scales, xn = δnx and tn = δnt, and a solution in the form of
asymptotic series whose terms depend on all variables, i.e.,

p(x, t) = p0(x0, t0, x1, t1, . . .) + δp1(x0, t0, . . .) +O(δ2). (6.4)

We insert this Ansätz into (6.3), at each order setting inhomogeneous terms to zero that
would lead to secular growth in the asymptotic series above.

At first order, we simply have the homogeneous wave equation,(
∂2

∂t20
− ∂2

∂x20

)
p0 = 0, (6.5)

which has the standard d’Alembert solution of left- and right-moving waves. We work in
the complex plane and take a single mode of the right-moving solution

p0 = P0(x1, t1, . . .)e
iθ0 + P̄0e

−iθ0 , (6.6)
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where θj = xj−tj . Due to the nonlinearity in the equation, we cannot simply take the real
or imaginary part of the complex solution. However, using complex variables does simplify
later algebra. In the rest of this section, we will write the complex conjugate terms as
“c.c.”, and not treat them separately unless necessary.

Note also that the form in (6.6) reflects the underlying assumption of a slowly modu-
lated enveloped modifying a rapidly varying carrier oscillation.

At O(δ), we have(
∂2

∂t20
− ∂2

∂x20

)
p1 = −2

(
∂2p0
∂t1∂t0

− ∂2p0
∂x1∂x0

)
= 2i

(
∂P0

∂t1
+
∂P0

∂x1

)
eiθ0 + c.c. (6.7)

But we note that for any constant τ ,(
∂2

∂t20
− ∂2

∂x20

)
p1 = eiτθ0 =⇒ p1 =

x0
iτ
eiτθ0 + · · · ,

which is unbounded. Hence we must suppress the secular term on the right-hand side of
(6.7), which yields

∂P0

∂x1
= −∂P0

∂t1
(6.8a)

P0 = P0(θ1, x2, t2, . . .). (6.8b)

At this point, we simply observe that p1 will also satisfy the homogeneous wave equation
in x0 and t0; its particular functional form will be dictated by the next order, however.

At O(δ2), we have, after substituting in the appropriate form of p0,(
∂2

∂t20
− ∂2

∂x20

)
p2 + 2

(
∂2

∂t0∂t1
− ∂2

∂x0∂x1

)
p1 +

(
∂2

∂t21
− ∂2

∂x21

)
p0

+ 2

(
∂2

∂t0∂t2
− ∂2

∂x0∂x2

)
p0 = ε2

∂2(p20)

∂t20
+ η2

∂3p0
∂t30

− β2
∂p0
∂t0(

∂2

∂t20
− ∂2

∂x20

)
p2 = −2

∂2p1
∂t0∂t1

+ 2
∂2p1
∂x0∂x1

+ 2i

(
∂

∂t2
+

∂

∂x2

)
P0e

iθ0

− 4ε2P
2
0 e

2iθ0 + i(η2 + β2)P0e
iθ0 + c.c. (6.9)

Since the cross-terms in p20 due to the complex conjugate are constant, they do not survive
the differentiation with respect to t0.

The next step is to suppress the secularity. Since we are using an infinite set of slow
variables, we have the necessary flexibility to suppress the eiθ secularity by using only P0:(

∂

∂t2
+

∂

∂x2

)
P0 = −1

2
(η2 + β2)P0, (6.10)
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However, to suppress the e2iθ secularity, we must introduce a functional form of p1 that
includes the second harmonic:

p1 = P1(x1, t1, x2, t2, . . .)e
2iθ + c.c., (6.11)

which yields (
∂

∂t1
+

∂

∂x1

)
P1 = −iε2P 2

0 . (6.12)

We follow this method throughout, suppressing existing harmonics using existing terms
in the analysis, while introducing new lower-order terms only for new harmonics. Hence
as before, we leave p2 unspecified for now to allow for suppression of secular terms at the
next order.

Finally, at O(δ3) we see how the second harmonic couples back to the fundamental
wave, as we have(

∂2

∂t20
− ∂2

∂x20

)
p3 + 2

(
∂2

∂t0∂t1
− ∂2

∂x0∂x1

)
p2 +

(
∂2

∂t21
− ∂2

∂x21

)
p1

+ 2

(
∂2

∂t0∂t2
− ∂2

∂x0∂x2

)
p1 + 2

(
∂2

∂t0∂t3
− ∂2

∂x0∂x3

)
p0 + 2

(
∂2

∂t1∂t2
− ∂2

∂x1∂x2

)
p0

= 2ε2
∂2(p20)

∂t0∂t1
+ 2ε2

∂2(p0p1)

∂t20
+ η2

∂3p1
∂t30

+ 3η2
∂3p0
∂t20∂t1

− β2
∂p1
∂t0
− β2

∂p0
∂t1(

∂2

∂t20
− ∂2

∂x20

)
p3 + 2

(
∂2

∂t0∂t1
− ∂2

∂x0∂x1

)
p2 +

(
∂2

∂t21
− ∂2

∂x21

)
P1e

2iθ0

− 4i

(
∂

∂t2
+

∂

∂x2

)
P1e

2iθ0 − 2i

(
∂

∂t3
+

∂

∂x3

)
P0e

iθ0 + 2

(
∂

∂t2
+

∂

∂x2

)
∂P0

∂t1
eiθ0

= −4iε2
∂(P 2

0 )

∂t1
e2iθ0 + 2ε2

∂2(P0P1e
3iθ + P̄0P1e

iθ)

∂t20
+ 8iη2P1e

2iθ0 − 3η2
∂P0

∂t1
eiθ0

+ 2iβ2P1e
2iθ0 − β2

∂P0

∂t1
eiθ0 + c.c, (6.13)

where we have used (6.6), (6.8a), and (6.11). (Again the cross-term in P 2
0 does not survive.)

Hence there is now a third harmonic to be suppressed, requiring the following functional
form for p2:

p2 = P2(x1, t1, · · ·)e3iθ0 + c.c. (6.14)

Substituting (6.14) into (6.13) and grouping by mode, we have(
∂2

∂t20
− ∂2

∂x20

)
p3 =

[
6i

(
∂

∂t1
+

∂

∂x1

)
P2 − 18ε2P0P1

]
e3iθ

+

[
−
(
∂

∂t1
− ∂

∂x1

)
(−iε2P 2

0 ) + 4i

(
∂

∂t2
+

∂

∂x2

)
P1 + 8iη2P1 + 2iβ2P1

−4iε2
∂(P 2

0 )

∂t1

]
e2iθ0 +

[
2i

(
∂

∂t3
+

∂

∂x3

)
P0 + (η2 + β2)

∂P0

∂t1
− 2ε2P̄0P1

−(3η2 + β2)
∂P0

∂t1

]
eiθ0 + c.c., (6.15)



Haider et al. 6.4

where we have used (6.10) and (6.12). Then suppressing each mode, we have(
∂

∂t1
+

∂

∂x1

)
P2 = −3iε2P0P1, (6.16a)

4i

(
∂

∂t2
+

∂

∂x2

)
P1 = −2iε2

∂(P 2
0 )

∂t1
− 2i(4η2 + β2)P1 + 4iε2

∂(P 2
0 )

∂t1(
∂

∂t2
+

∂

∂x2

)
P1 = −

(
2η2 +

1

2
β2

)
P1 + ε2P0

∂P0

∂t1
, (6.16b)(

∂

∂t3
+

∂

∂x3

)
P0 = −iη2

∂P0

∂t1
− iε2P̄0P1, (6.16c)

where we have used (6.12). Equations (6.16) are called the envelope equations.
If we now multiply (6.8a), (6.10), and (6.16c) by the appropriate power of δ and sum,

we obtain an expression for the derivative with respect to the unexpanded variables:

3∑
j=1

δj
(
∂

∂tj
+

∂

∂xj

)
P0 = −1

2
δ2(η2 + β2)P0 − iδ3η2

∂P0

∂t1
− iδ3ε2P̄0P1(

∂

∂t
+

∂

∂x

)
P0 = −1

2
δ2(η2 + β2)P0 − iδ2η2

∂P0

∂t
− iδ3ε2P̄0P1 +O(δ4),

(6.17a)

where we have used the fact that P0 is independent of t0. Also note that the second term
on the right-hand side is formally of O(δ3), since P0 varies slowly with t. We may perform
a similar analysis for P1 using (6.12) and (6.16b) and P2 to obtain

2∑
j=1

δj
(
∂

∂tj
+

∂

∂xj

)
P1 = −iδε2P 2

0 − δ2
(

2η2 +
1

2
β2

)
P1 + δ2ε2P0

∂P0

∂t1(
∂

∂t
+

∂

∂x

)
P1 = −iδε2P 2

0 − δ2
(

2η2 +
1

2
β2

)
P1 + δε2P0

∂P0

∂t
+O(δ3),

(6.17b)

where again the third term on the right-hand side is formally of O(δ2). Lastly, using
(6.16a), we obtain the analogous equation for P2:

δ

(
∂

∂t1
+

∂

∂x1

)
P2 = −3iδε2P0P1(

∂

∂t
+

∂

∂x

)
P2 = −3iδε2P0P1 +O(δ2). (6.17c)

Then using our harmonics, we have that the full pressure field p(x, t) is given asymp-
totically by

p(x, t) = P0(x, t)ei(x−t) + δP1(x, t)e2i(x−t) + δ2P2(x, t)e3i(x−t) + c.c. +O(δ3).



Haider et al. 6.5

(Note that the error in p due to our computed solutions will be O(δ4).) Equations (6.17)
are the envelope equations for the Westervelt approximation. We observe the following
features from their form:

They are essentially one-way wave equations, greatly simplifying either analysis or
computation.
Each successive order in δ introduces coupling to the next harmonic. At the order
given above, the third harmonic is driven by the lower harmonics; however, the first
two harmonics form a closed system.
The two damping mechanisms, viscous diffusion and bulk scattering, have an identical
impact on the leading order, but have different effects on successive orders. This is
due to the fact that successive orders represent higher harmonics, and diffusion affects
these higher frequencies more severely.

Finally, we observe that while (6.17a) and (6.17b) have no obvious closed-form solu-
tion, if we stop at one order earlier, we obtain the system(

∂

∂t
+

∂

∂x

)
P0 = −1

2
δ2(η2 + β2)P0, (6.18a)(

∂

∂t
+

∂

∂x

)
P1 = −iδε2P 2

0 , (6.18b)

where we have used the fact that the derivative terms on the right-hand side of (6.17a)
and (6.17b) are really one order smaller than they are displayed. Equations (6.18) can be
solved subject to signalling data

P0(0, t) = f(t), P1(0, t) = 0

to give

P0(x, t) = f(t− x) exp(−1

2
δ2(η2 + β2)x) (6.19a)

P1(x, t) = − iε2f
2(t− x)

δ(η2 + β2)

(
1− e−δ

2(η2+β2)x
)
. (6.19b)

The form of (6.19b) would seem to violate our perturbation assumption where each
term should be smaller than the last. However, for x = O(δ−1), we see that P1 = O(1), as
required.

Figure 6.1 depicts a signal formed by a single pulse and five subsequent shifted super-
posed copies of the original pulse with geometrically decreasing amplitudes. The signal is
propagated through the medium using (6.19a) and (6.19b).

Figure 6.2 shows the growth in the second harmonic, which can be thought of as
either draining energy from the fundamental mode or as distorting the primary pulse,
where the nonlinear effects are strongest. Both phenomena decrease and possibly destroy
the effectiveness of the linear-based filter method.
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Figure 6.1. Transmitted signal composed of original pulse and five shifted, attenuated
superposed copies, and received signal resulting from propagation through dissipative non-
linear medium.
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Figure 6.2. Numerically obtained envelopes of the fundamental and 2nd harmonic frequen-
cies after propagation through the medium.



Section 7: Signal Processing Ideas
The ringing effects in Fig. 4.1 obscure the true nature of the reflected signal. Hence

it is advantageous to remove them. Currently they are removed through signal processing
software as follows.

pL(0, t)

t

1

Ad

td

Figure 7.1. Schematic of received signal.

Consider an idealized experiment where the received signal consists of a series of
discrete copies (not described as echoes, for reasons described below) of the first received
pulse, each phase-shifted and scaled down. At first glance, this may seem inconsistent with
the superposition shown in Fig. 2.3, but recall that that diagram refers to the initial signal
emitted, while this model assumes copies of the first signal received.

Since the copies are assumed exact, one can remove the second lobe entirely by com-
puting the ratio Ad (where the subscript “d” stands for “delay”) of the amplitudes of the
first and second humps, and td the distance between them. Then the postprocessed signal

pL(0, t)−AdpL(0, t− td)

will have the second hump removed, but the third hump will only be smaller, as shown in
Fig. 7.2.

Then this process can be repeated as often as necessary to remove successive humps
and refine the signal. Unfortunately, the computation of the Ad are too expensive to do
in real-time, and so the parameters from the experimental setup in the water tank must
be hard-coded into the software. But the signals reflected in tissue can be quite different.

Moreover, in the laboratory they run two experiments: one with low power in the
linear regime and one with higher power in the nonlinear regime. Using this approach
with the nonlinear data does not work as well. This was the original problem that was
brought to the workshop.
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Figure 7.2. Schematic of received signal.

Hence a group at the workshop worked on the empirical mode decomposition (EMD)
signal processing method.

Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is a novel signal processing method in-
troduced by Huang, et al. (1998). The EMD method is an empirically-based method. It
is a spectral analysis method meant for signals coming from underlying processes that are
nonlinear and non-stationary (aperiodic) in nature. The purpose of the method is to em-
pirically extract components of the signal corresponding to separate time scales inherent in
the signal. This is done through a process known as sifting. The extracted signals (called
intrinsic mode functions, or IMFs) give a full decomposition of the signal in the sense that
taking their sum returns the original signal. The intrinsic mode functions are different
from the familiar Fourier modes because their frequency can vary locally and because they
need not be periodic. Each of the individual IMFs can then be studied and can typically
be linked to the separate physical phenomena that are present in the problem. For our
problem, the reasoning behind using this method was the hope that performing the EMD
on the data would isolate the desired part of the ultrasound signal and the ringdown arti-
facts into separate IMFs, thus separating the desired part of the signal and removing the
unwanted artifacts.

Sifting process

An intrinsic mode function is a set of data satisfying two properties: (1) in the whole
data set, the number of extrema and the number of zero crossings must either equal or
differ at most by one; and (2) at any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is zero (Huang et al., 1998).
The intrinsic mode functions are obtained using an algorithm called sifting. First, the
“zero-mean” of the data is found. This is done by taking the local maxima of the data
and interpolating these points using a cubic spline interpolation, and by doing the same
for the local minima of the data. The average of these two splines gives the zero-mean
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of the data, and it represents the local average of the data. Subtracting this mean from
the data completes one “sift”. This sifting is repeated until some stopping criterion is
satisfied. Once this criterion is met, the sifted data supposedly satisfies the properties of
an IMF and is called the first IMF of the signal. This IMF is subtracted from the original
signal and the process is applied again to the remainder of the signal, giving the second
IMF. By successively subtracting out IMFs and repeating the process on the remainder of
the signal, the original signal is decomposed into a set of IMFs whose sum is the original
signal. Figure 7.3 illustrates the EMD applied to a set of ultrasound data.
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Figure 7.3. Empirical mode decomposition of one-dimensional signal. The first plot is the
original data, and the successive intrinsic mode functions follow. (Note the difference in
amplitude scales.) The first IMF contains the highest frequency data, while later IMFs
contain lower frequency (less oscillatory) data.

2D EMD

The sample data that we used can be seen in Figure 7.4. This data is two-dimensional,
consisting of one space dimension (corresponding to the set of transducers distributed in
space) and one time dimension. To analyze this data, we used a two-dimensional EMD
that is analogous to doing a two-dimensional Discrete Fourier Transform. The EMD is
performed on each column of the data independently, producing a set of IMFs for each
column. Then, the EMD is performed row-wise on each of the resulting IMFs. The final
result is a rectangular “grid” of IMFs as seen in Figure 7.5, with each direction on the grid
corresponding to successive IMFs in that direction, similar to how a 2D DFT gives a 2D
grid of outputs with each direction corresponding to higher frequencies in that direction.
Once this “grid” of IMFs is obtained, subsets of them are summed together to produce
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“summed modes”, whose plots are seen in Figure 7.6. The first of the plots in this figure is
obtained by summing each of the images lying in the first row or column of the 2D EMD
grid (Figure 7.5). The second plot is obtained by summing the remaining images that lie
in the second row or column, and so on.
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Figure 7.4. Two-dimensional data sample used.

Results

To see how the EMD method fared in isolating the desired signal from the artifacts, we
took a cross-section of the data (corresponding to the data from a single transducer) and
plotted the original data along with the “summed modes” from Figure 7.6. (See Figure
7.7.) Qualitatively speaking, the results look promising. By visually inspecting the first
mode (green curve), we see that it contains much of the wanted part of the original signal
(before 50 on the horizontal axis), but it does not contain the ringdown artifacts that occur
later in the signal (after 50). We see that some of the artifacts appear in the second mode
(red curve). While these preliminary results look promising, further work needs to be done
to determine the viability of the EMD approach to eliminating the ringdown artifacts in
the ultrasound signal. In addition, further analysis needs to be done on the IMFs in order
to obtain a physical interpretation of each of the IMFs.
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Figure 7.5. 2D EMD of the 2D data in Figure 7.2. Moving to the right corresponds to
higher IMFs in the spatial axis, and moving down corresponds to higher IMFs in the time
axis.
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Figure 7.6. Summed modes. The top left plot is the sum of all of the images that lie in the
first row or column of Figure 7.5, the top right plot is the sum of all the remaining images
that lie in the second row or column, the bottom left plot is the sum of the remaining
images in the third row or column, and the bottom right plot is the same as the bottom
right plot of the previous figure.
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Figure 7.7. Plot of time series from a single transducer, and the first two modes obtained
from Figure 7.4. The first mode (green curve) contains the desired data (data for times
less than approx. 50), but the ringdown artifacts (time> 50) are not present.



Section 8: Conclusions and Further Research
Internal interfaces in the impedance-matching layer of an ultrasound transducer in-

troduce echoes into the transmitted and received signals. The purpose of our study was
to develop an algorithm to reduce or filter out these echoes to improve the fidelity of
images obtained from the nonlinear propagation of acoustic signals through tissue. We
approached the problem from three perspectives: (1) by developing simple mathematical
models of the various physical processes, (2) by numerically simulating the nonlinear prop-
agation of the ultrasonic signal using mathematical models obtained from the literature,
and (3) by extracting the echoes from the signal data using the ensemble empirical mode
decomposition.

Considerable effort was invested in the forward problem, i.e., modeling the origin and
evolution of the echoes, in order to understand how best to remove them. The origin of the
echoes was studied using a linear model that incorporated multiple reflections of pulse-like
data through a single layer. The separation of scales inherent in the transducer signal was
exploited to obtain an asymptotic estimate of the time-decay observed in the analytical
signal, used as an approximation of the signal envelope modulating a fast carrier. This
provided a plausible interpretation of the echoes as a ringing phenomenon. However, by
the end of the week the group was unable to obtain a satisfactory match between the
period of the experimentally measured echoes and the ringing analysis based on the linear
model.

A standard model originally proposed by Westervelt was adopted to incorporate non-
linearity in the forward propagation problem. The separation of scales mentioned above
motivated a multiple-scales derivation of a set of envelope equations for the signal, which
can conveniently be decomposed into the fundamental frequency and its harmonics. In
particular, truncating the resulting envelope equations at the second harmonic provide
a simple model that can, in principle, be used to remove the second harmonic from the
measured signal. Time did not allow further pursuit of this direction.

Finally, signal processing techniques applied directly to the measured data offered the
most immediate success in extracting the echoes. In particular, the ensemble empirical
mode decomposition appeared to capture the usable signal and its echoes in different in-
trinsic mode functions. This early promise is mitigated by the fact that the empirical
mode decomposition is an ad hoc approach that lacks basic features important for rigorous
analysis, such as stability and orthogonality. Nevertheless, recent attempts by Liao et al.
(2010) to enhance blood-to-tissue contrast in acoustic data demonstrated that the empir-
ical mode decomposition was somewhat effective in removing the effect of microbubbles,
suggesting that the method’s effectiveness as a flexible and practical tool might outweigh
its mathematical limitations.



Appendix

We were told that the frequency at which the wave is sent into the medium is given
by

fc = 4 MHz =
4× 106

s
, (A.1)

which yields a typical value for ωc:

ωc = 2πfc = 2π

(
4× 106

s

)
=

2.51× 107 rad

s
. (A.2)

The sampling frequency is given by

fs = 33 MHz =
33× 106

s
, (A.3)

from which we have
fs
fc

=
33

4
= 8.25.

Tab. 1. Properties of transducer components.

Parameter backing PZT layer 1 layer 2 fluid

thickness (µm) 190 220 120 130
sound speed (m/s) 7000 4000 2700 2100 1500

Z (MRayles) 100 30 6.7 2.2 1.5
flight time (ms) 27 55 44 62

Various properties of the transducer components are listed in Tab. 1. Note that
cT < c1, as expected. Since the structures we wish to image are usually centimeters below
the surface, this does guarantee that L � 1, as required. In fact, other values quoted for
the wavelength λ are an order of magnitude smaller:

1× 10−4 m ≤ λ ≤ 5× 10−4 m.

There are a few anomalies. First, if the layer width is tuned to be 1/4 of the wavelength
of a certain frequency, it would seem that both should be tuned to have the same flight
time.

In particular, we may use the impedance values to calculate the reflection coefficient
from section 2:

RT =
1.5− 6.7

1.5 + 6.7
= −0.63, (A.4a)
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which is in the range claimed. Similarly, the reflection coefficient from section 3 becomes

RP =
30− 6.7

30 + 6.7
= 0.63, (A.4b)

which is also in the range claimed. Note the similarity in the values.
To calculate a typical value of L, we work with the water tank experiment, where the

steel reflector is about 1.5 cm away from the transducer. Then we have

L =
(1.5× 10−2 m)(2.51× 107 s−1)

2100 m/s
= 179. (A.5)

A typical pressure wave in the transducer can be

pc = 10 MPa = 107
kg

m · s2
. (A.6)

The density of water can be well approximated by

ρe = 103
kg

m3
, (A.7)

which yields a value of ε of

ε =
107 kg/(m · s2)

(1493 m/s)2(103 kg/m
3
)

=
10−2

2.23
= 4.49× 10−3, (A.8)

which is small, as expected.
Given a value for the viscosity of water

µ = 1 cP = 10−3 mPa · s = 10−3
kg

m · s
, (A.9)

we may calculate η:

η =
(10−3 kg/m · s)(4× 106 s−1)

(103 kg/m
3
)(1493 m/s)2

= 1.8× 10−6.



Nomenclature

Units are listed in terms of length (L), mass (M), or time (T ). If the same letter
appears both with and without tildes, the letter with a tilde has dimensions, while the
letter without a tilde is dimensionless. Boldface refers to vectors. The equation number
where a particular quantity first appears is listed, if appropriate.

C: matrix in discrete system.
c: wave speed, L/T (2.1).

F(·): Fourier transform (2.25).
G(x, t): Green’s function (2.7).

J : maximum value of j.
j: indexing variable.
K: maximum value of k.
k: indexing variable.
M : integer characterizing m (2.19).
m: sampling variable (2.19).
n: arbitrary constant, variously defined.

P (t): pressure envelope (3.1).
p̃(x̃, t̃): pressure, M/LT 2.

q: variable in discrete system.
R: reflection coefficient (2.8).
r: inverse of speed ratio (2.5b).
t̃: time, T .

ṽ(x̃, t̃): velocity in the x̃-direction, L/T .
x̃: distance from PZT interface, L.
ỹ: distance along transducer, L.
Z: the integers.
Z: impedance, ML2T−1.
α: constant in constitutive equation (5.1), M/LT 2.
β: dimensionless constant, variously defined.
γ: dimensionless constant in constitutive equation (5.1).
ε: dimensionless parameter (5.3)
λ: wavelength, L.
η: pressure ratio, (5.12).
θ: traveling wave variable.
ρ: density, M/L3.
µ: bulk viscosity, M/LT (5.12).
τ : dummy variable.
ω: frequency, T−1.
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Other Notation

c: as a subscript, used to indicate a characteristic value.
d: as a subscript, used to indicate delay.
e: as a subscript, used to indicate an equilibrium value.
L: as a subscript, used to indicate a matching layer (2.1).
P: as a subscript, used to indicate PZT (2.3).
R: as a subscript, used to indicate the received signal.
s: as a subscript, used to indicate sampling (2.18).

T: as a subscript, used to indicate tissue.
ˆ: used to indicate the Fourier transform of a quantity (2.21).
∗: as a subscript, used to refer to an O(1) quantity.
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