
Mini Max Wallpaper

Antonio Marigonda, Dragomir Aleksov, Jan Idziak,
Krasimir Georgiev, Mariusz Kozlowski, Mikhail Krastanov,

Milena Veneva, Monika Sikora, Slav Angelov

Executive summary

Problem: Mini Max company formulated a problem for automatic calculation
the number of wallpaper rolls necessary for decorating a room with wallpapers.
The final goal is the development of a web-based calculator open for use to both
Mini Max staff and the general public.

Proposed solution: We propose an approach for reducing the studied prob-
lem to the one-dimensional cutting-stock problem. We show this in details for
the case of plain wallpapers as well as for the case of patterned wallpapers with
straight match. The case of patterned wallpapers with offset match can be con-
sidered similarly.

The one-dimensional cutting-stock problem can be formulated as a linear in-
teger programming problem. The approach proposed by P. C. Gilmore and R.
E. Gomory in 1961 can be used for solving this problem for the case when the
number of variables is large. In our opinion, the dynamic programming approach
or the approach based on generating of all possible cuttings is more appropriate
for the case of separate room for which a relatively small number of wallpapers’
strips is needed.

We develop an approach for calculating the needed number of wallpapers for
relatively small problems, create an algorithm in a suitable graphical interface
and make different tests. The tests show the efficiency of the proposed approach
compared with the existent (available) wallpapers’ calculators.

1. Introduction

For 20 years now Mini Max Ltd company distributes in Bulgaria high quality
wallcoverings manufactured by leading European companies. In its showroom
can be found a wide variety of designs, original patterns and stylish combinations
appropriate for both residential and commercial environments. A professional

Mini Max Wallpaper ESGI’95

team assists clients in selecting the right wallpapers. But there is a problem:
how to calculate the necessarily amount of rolls.

Everyone can find different types of wallpapers’ calculators on the Internet
(cf., for example, the following WEB addresses

http : //www.diy.com/diy/jsp/bq/templates/contentlookup.jsp?content
= /content/knowledge/calculators/wallpaper/wallpaper.jsp

http : //www.tangletree− interiors.co.uk/wallpaper− calculator/
http : //www.praktiker.bg/praktiker− international/html/bgBG/

161211/index.html
http : //www.wallpaperdirect.com/wallpaper− calculator.php?)

requiring usually the sizes of the walls (and, in some cases, the sizes of a door
and/or windows).

Simple tests convinced us that these calculators are not appropriate for the
practical needs of clients. And this is our main motivation for studying this
problem.

2. Problem statement

Now we shall state the problem in full details.

2.1. Data of the problem

The client will provide:

– number of walls to be decorated;

– width and height of each wall;

– sizes of door and windows present in each wall (if any).

The wallpaper rolls are characterized by:

– width and length of the roll;

– design of the roll (plain, straight pattern, offset pattern).

– for each roll with straight pattern, it is specified the height of the pattern.

– for each roll with offset pattern, it is specified the height of the pattern and
the offset.

48

ESGI’95 Mini Max Wallpaper

2.2. Restrictions

(R1) On each wall can be used only one kind of roll.

(R2) Each wall should be fully covered with vertical stripes, without overlapping.

(R3) It is forbidden to join two stripes along horizontal in horizontal line.

(R4) In the case of straight pattern, two consecutive stripes must match their
pattern.

(R5) In the case of offset pattern, the patterns between two consecutive stripes
must have an offset specified by the offset parameter of the roll.

3. Basic example

We assume to have to decorate a standard room with two windows and one
door, using rolls of length 10 m, width 0.7 m, and straight pattern of height 0.64
m as in the following basic example:

4. Room analysis

Now we will begin our analysis of the room. Assume that the room has d
walls, we start considering a matrix W̃ whose i-th row contain the width wi and

49

Mini Max Wallpaper ESGI’95

the height hi of the i-th wall of the room.

W̃ :=

w1 h1

...
...

wd hd

.

In the basic example, the matrix is:

W̃ :=

4 2.6
3.5 2.6
4 2.6

3.5 2.6

.

We have to take into account the following further technical restriction:

(T1) When cutting the wallpaper to size for the required wall height, it is neces-
sary to take into account a 10 cm safety margin, which is used in the case
the ceiling or floor is not completely straight.

So we will consider all the walls as 10 cm longer than in the given data, forming
the new matrix:

W :=

w1 h1 + 0.1
...

...
wd hd + 0.1

,

in our example:

W :=

4 2.7
3.5 2.7
4 2.7

3.5 2.7

.

4.1. Plain wall

We will call plain walls the walls of the room in which there are neither
windows, nor doors. The situation is the one depicted in the First Wall of the
basic example. This is the most simple situation.

In the straight pattern case, since we have to match the pattern along consec-
utive stripes, we will impose that all the strips should begin with the beginning
of a pattern.

The number of patterns required on each strip with patterns of height hP in
order to fill the height of the i-th wall is:

ℓi
max :=

⌈

hi + 0.1

hP

⌉

,

50

ESGI’95 Mini Max Wallpaper

where we set:

⌈x⌉ = min{n ∈ N : x ≤ n},

⌊x⌋ = max{n ∈ N : x ≥ n}.

In our basic example, we have that hP = 0.64, hi = 2.6, i = 1, . . . , 4, whence

ℓi
max :=

⌈

2.7

0.64

⌉

= 5, i = 1, . . . , 4.

The number of strips of width wP needed to fill the i-th wall is given by

ni :=

⌈

wi

wP

⌉

.

In this computation it does not matter if the wall contains windows or door.

In our basic example, we have wP = 0.7 m, whence:

n1 = n3 =

⌈

4

0.7

⌉

= 6,

n2 = n4 =

⌈

3.5

0.7

⌉

= 5.

The First and Third wall of the basic example:
6 strips containing 5 patterns are needed.

51

Mini Max Wallpaper ESGI’95

The Second and Fourth wall of the basic example:
5 strips containing 5 patterns are needed.

The part exceeding the measure of the wall is considered wasted. In particular
we are assuming that the following condition holds:

(G1) The part of the strip that exceeds the width of the wall cannot be used to
another wall.

In other words, (G1) forbids us to fold a strip around a corner.

Assumption (G1) forbids to fold strips around corners.

52

ESGI’95 Mini Max Wallpaper

If we do not assume that (G1) holds, i.e. we allow folding, the problem is
reduced to the situation in which we have a single wall.

4.2. Managing obstacles

If a window or a door is present on a wall, then we say that there is an obstacle.
If the obstacle is sufficiently large, we may spare a certain amount of wallpaper.
However, since the exact knowledge of the position of obstacles in the wall is
unknown (we have information only about the size of each obstacle), we will
consider the worst case scenario, i.e. we imagine that the obstacles are always
placed in the position that minimize the spare of wallpaper.

All the information on obstacles is encoded in the following matrix:

O :=

o1

wl o1
w o1

h
...

...
ok
wl ok

w ok
h

,

where oj
wl denotes the index of the wall containing the j-th obstacle, and ok

w, ok
h

are its width and height, respectively. k is the total number of obstacles.
In our basic example, we have that:

O :=

2 1.5 1.5
3 1.5 1.5
4 1 2

 .

Consider now a generic obstacle of width ow and oh on a wall. We want to
compute the minimum number of strips that will be fully horizontally cut by the
presence of the obstacle. We will call them the strips blocked by the obstacle.

The maximum number of strips that can be entirely contained in the obstacle

are

⌊

ow

wP

⌋

. However, if we perform a slight horizontal translation to the right,

we have that the first strip now is not fully horizontal cut, and if the translation
was sufficiently small, we did not cut in full the last one in which the translated
obstacle is present. So the number of strips blocked by an obstacle of width ow

is

b(ow) = max

{

0,

⌊

ow

wP

⌋

− 1

}

.

The strips that encounter an obstacle, but are not blocked by it in the above
sense, will be considered as the one not encountering the obstacle at all. Ac-
cordingly, every obstacle whose width is strictly less that 2wP can be actually
neglected.

53

Mini Max Wallpaper ESGI’95

In our example, the number of strips blocked by each window is

b(1.5) = max

{

0,

⌊

1.5

0.7

⌋

− 1

}

= 1,

while the door is negligible since b(1) = 0.
The same argument is used to find the minimum number of patterns fully

contained in an obstacle: indeed if a pattern of the strip is completely contained
into an obstacle, we may cut the strip in order to save it. The worst case possible
is the one in which the number of patterns that can be saved is minimal.

So the number of patterns that can be saved due to presence of an obstacle of
height oh is

s(oh) = max

{

0,

⌊

oh

hp

⌋

− 1

}

.

The stripes that are blocked by a thin obstacle that does not allow any sparing
of patterns, will be considered as the one not encountering the obstacle at all.
Accordingly, every obstacle whose height is strictly less that 2hp can be actually
neglected.

In our example, we can spare from each window

s(1.5) = max

{

0,

⌊

1.5

0.64

⌋

− 1

}

= 1

pattern.
If in a wall there are more than one obstacle (i.e. many windows, or doors),

we make the following assumption (non interacting obstacles):

(G2) The sets of strips blocked by each obstacle are pairwise disjoint.

If assumption (G2) is not fulfilled, we start to ignore some obstacles until we
fulfill (G2) with the remaining ones.

Under assumption (G2), we are able for each wall to construct a list containing
the number of strips and the number of pattern for each strips allowing us to cover
it. Assume to have to cover the wall indexed by i, then we consider the rows of
the matrix O whose first element is i:

Ji = {j : the first element of the j-th row of O is i}.

If j ∈ Ji, j-th obstacle will allow us to spare s(oj
h) patterns for each of the b(oj

w)

stripes that blocks. So in that wall we can use b(oj
w) stripes with ℓi

max − s(oj
h)

patterns to cover the area where the obstacle is present. We stress on the fact

54

ESGI’95 Mini Max Wallpaper

that this is the worst case scenario, indeed if the obstacle is well-placed, the spare
of wallpaper can be much greater.

We partition Ji in the following way. For every 0 ≤ k ≤ ℓi
max − 1 we have the

(possibly empty) sets:

Jk
i := {j ∈ Ji : ℓi

max − s(oj
h) = k},

Given 0 ≤ k ≤ ℓi
max − 1, we will define

ni,k =

∑

j∈Jk

i

b(oj
w), if Jk

i 6= ∅,

0, if Jk
i = ∅,

ni,ℓi
max

= ni −

ℓi
max

−1
∑

k=0

ni,k,

ni,m = 0, if p > ℓi
max.

Finally, we have that to cover the i-th wall we need ni,k stripes of length k,
k = 1, . . . , ℓi

max. Summing up on the indexes of the walls, we end up with the
following matrix:

N :=

d
∑

i=1

ni,1 1

...
...

d
∑

i=1

ni,ℓ∞ ℓ∞

,

where

ℓ∞ := max
i=1,...,d

ℓi
max.

This matrix encodes the total number of strips for each length that are needed
in order to cover the room.

In our basic example, we have ℓ∞ = 5, J1 = J4 = ∅, J2 = J1
2

= {1}, J3 =
J1

3
= {2}, n1,5 = 6, n2,4 = n3,4 = 1, n2,5 = 4, n3,5 = 5, n4,5 = 5, in all the other

55

Mini Max Wallpaper ESGI’95

cases we have np,q = 0. So

N :=

0 1
0 2
0 3
2 4
20 5

,

which means that to cover the walls of the room we need 2 stripes of length 4
and 20 stripes of length 5.

5. The one-dimensional cutting-stock problem

The one-dimensional cutting-stock problem can be formulated as follows: We
assume that an unlimited number of wallpapers’ rolls of length L is given. We
need a given number bi of pieces of length li with li ≤ L for i = 1, 2, . . . ,m. We
say that the vector (a1, a2, . . . , am) whose components are nonnegative integers
is an admissible cut if the following inequality holds true:

a1l1 + a2l2 + · · · + amlm ≤ L.

Let us assume that n is the maximum number of all admissible cuts

aj = (a1j , a2j , . . . , amj)
T , j = 1, 2, . . . , n,

where by aT is denoted the transposed vector of the vector a. If we denote by
xj, j = 1, 2, . . . , n, the number of rolls needed to be cut using the admissible cut
aj , our problem consists in minimizing the sum

x1 + x2 + · · · + xn

in such a way that the needed amount of pieces of strips of wallpapers with fixed
length to be satisfied.

In this way we can formalize the one-dimensional cutting-stock problem by
considering the following linear integer programming problem (P):

x1 + x2 + · · · + xn → min

a11x1 + a12x2 + · · · + a1nxn ≥ b1

a21x1 + a22x2 + · · · + a2nxn ≥ b2

· ·
am1x1 + am2x2 + · · · + amnxn ≥ bm

xj is a nonnegative integer
for each index j = 1, . . . , n.

56

ESGI’95 Mini Max Wallpaper

5.1. An approach proposed by P. C. Gilmore and R. E. Gomory

To solve the problem (P) we can apply the approach proposed by P. C. Gilmore
and R. E. Gomory in [2] and [3] (cf. also, for example, [1] and [4]). In our case,
this approach consists in solving the linear problem (P0)

x1 + x2 + · · · + xn → min

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· ·
am1x1 + am2x2 + · · · + amnxn = bm

xj ≥ 0, j = 1, . . . , n.

Without loss of generality we may write this problem in the following form

< e, y > +
∑

i∈N

zi → min

By +
∑

j∈N

ajzj = b

yj ≥ 0, zk ≥ 0,

where B is the basic matrix, e is a vector of length m with components equal
to 1 and < ·, · > denotes the standard scalar product in Rm. When we start to
solve this problem we set

B =

⌊L/l1⌋ 0 0 . . . 0
0 ⌊L/l2⌋ 0 . . . 0

.
0 0 0 . . . ⌊L/lm⌋

.

Let us underline that the columns aj , j ∈ N , are unknown. Then from the
presentation

y = B−1b −
∑

j∈N

B−1ajzj .

we can replace each basic variable in the target function and to obtain that
the coefficient in front of the j-th nonbasic variable xj in the target function is
cj = 1− eT B−1aj, j ∈ N . If all coefficients cj , j ∈ N , are nonnegative, then this
will be the solution of the problem (P0).

57

Mini Max Wallpaper ESGI’95

But the columns aj are in fact unknown. In order to understand if there exists
an admissible cut a for which the coefficient 1−eT B−1a < 0, the following integer
knapsack problem (K0) is considered:

p1a1 + p2a2 + · · · + pmam → max

l1a1 + l2a2 + · · · + lmam ≤ L

aj is a nonnegative integer
for each index j = 1, . . . ,m.

where pT = eT B−1.
Let ā denotes its solution. If pT ā > 1, then ā is admissible and the cut should

be added as a new column to the matrix of the considered linear problem (P0)
and to repeat the same procedure. If pT ā ≤ 1, we are sure that there is no
admissible cut that has to be taken into account for solving the problem (P0).

5.2. “A brute force algorithm”

Data of the algorithm: We have a matrix Nm×2, where the first element of i-th
row Ni1 denotes the needed number of strips containing the number of patterns
specified by the second element Ni2.

Steps of the algorithm

Step 1: We calculate the vector w = (w1, w2, . . . , wm) with

wi = min

(⌊

L

li

⌋

, Ni1

)

which estimates the number of strips that is reasonable to be obtained from
a roll of wallpapers. Here L denotes the number of patterns contained in a
roll and li, i = 1, . . . ,m - the number of patterns contained in each needed
strip.

Step 2: We form a set of all possible different vectors v = (v1, v2, . . . , vm) such
that each component vi belongs to the set {0, 1, . . . , wi}. Each element of
this set represents an abstract cut of a roll. Then we form the matrix A
whose columns are the elements of this set.

Step 3: From the matrix A we form the matrix B by eliminating the zero vector
as well as all the columns v = (v1, v2, . . . , vm) of the matrix A satisfying
the inequality

v1w1 + v1w1 + · · · + vmwm > L.

58

ESGI’95 Mini Max Wallpaper

The columns of the matrix B represent all admissible cuts of a roll.

Step 4: From the matrix B we form the matrix C by eliminating all the columns
v = (v1, v2, . . . , vm) of the matrix B satisfying the following: m− 1 compo-
nents of the vector v are zeros and there exists another column v̄ of B also
with m− 1 zeros on the same places as v such that the nonzero component
of v is strictly less that the same component of v̄. The matrix C is a subset
of admissible cuts of a roll that are more efficient than the columns of B,
i.e. if we can fulfill some needs with the cuts from B we can do the same
needs with the cuts from C.

Step 5: We form the augmented matrix

D = [B : C : · · · : C]

where the number of copies of the matrix C is equal to

M = max

{⌈

Ni1

⌊L/li⌋

⌉}

− 1.

The number M + 1 gives us an upper bound of the needed number of cuts
to realize each kind of strip number separately. So the total cuts needed to
realize all requirements is bounded from above by the number of columns
of the matrix B + M ∗ (number of columns of C). We have to pay your
attention that replacing the matrix B with C we can not ensure to fulfill
the needed requirements as equalities.

Step 6: So we formulate the linear algebraic system Dx = b with b equal to the
first column of the matrix N , where the components of the unknown vector
x take values only 0 and 1. We are minimizing the sum of the components
of the vector x by using a standard procedure from Matlab. The minimum
of the sum of the components gives us the minimum rolls needed to fulfill
the requirements. The columns corresponding to the nonzero components
of x determine the optimal way of cuts of each roll.

5.3. The recursive solution

Our starting point is the two-column matrix N encoding the number of strips
needed for each length, together with the number of patterns in a roll L. Assume
that N has m rows. We can reduce N to the case in which the first element of
each row is nonzero. Define Ei to be the m× 2 matrix with 1 in the (m, 1) entry
and 0 elsewhere.

59

Mini Max Wallpaper ESGI’95

We define now the following recursive function
Roll : Matm,2(N) × {1, . . . ,m} by setting:

– Roll(M,p) = 1 if the first column of M is the zero vector

– If this is not the case, we form the m-dimensional vector c = (c1, . . . , cm)
as follows:

cj =

Roll(M − Ej , p − Mj2), if Mi1 > 0, p ≥ Mj2

+∞ otherwise,

and set

Roll(M,p) =

1 + Roll(M,L), if cj = +∞ for every j = 1, . . . ,m,

min
j=1,...,m

cj , otherwise.

This recursion procedure can be improved also keeping track of the decision
made at each step, hence providing not only the optimal number of rolls, but also
the optimal way of cutting. Unfortunately, the time needed to have a solution
with this procedure is considerably sensitive with respect to the size of the matrix
N and also to the size of the entries.

References

[1] A. C. Dikili, B. Barlas, A Generalized Approach to the Solution of One-

Dimensional Stock-Cutting Problem for small Shipiyards, Journal of Marine
Science and Technology, Vol. 19, No. 4, pp. 368–376, 2011.

[2] P. C. Gilmore and R. E. Gomory, A Linear Programming Approach to the

Cutting-Stock Problem, Operations Research, Vol. 9, No. 6 (Nov.–Dec., 1961),
pp. 849–859, 1961.

[3] P. C. Gilmore and R. E. Gomory, A Linear Programming Approach to the

Cutting-Stock Problem – Part II, Operations Research, Vol. 11, No. 6 (Nov.–
Dec., 1963), pp. 863–888, 1963.

[4] R. W. Haessler, P. E. Sweeny, Cutting-Stock Problems and Solution proce-

dures, Europenian Journal for Operations Research, Vol. 54, pp. 141–150,
1991.

60

