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Executive Summary

Reliable Data Systems have developed a video-based odometry system that
enables trains to measure velocities and distances travelled without the need
for trackside infrastructure. The Study Group was asked to investigate ways
of improving the accuracy of such a system, and to suggest any improvements
that might be made. The work performed in the week followed along these
strands: (a). Elimination of errors in video odometery induced by pitch and
height; (b) Robust calculation of (i) the train velocity and (ii) the track cur-
vature; (c). Accurate determination of the position of a train on a track by
assimilating Curvature information; (d). Determining where on UK’s railway
map a train journey takes place, based purely on video odometry and (e).
Drawing a track map.
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1 Introduction

1.1 Background

(1.1) There is an increasing need for railways to increase capacity within the network.
Installation of new signaling systems is an important step in capacity improve-
ment. More importantly, capacity improvement require better train positioning.
Conventional systems that rely on trackside infrastructure are expensive to install
and maintain. For systems on the train, there may be limitations on performance
in winter conditions, for example due to wheel slip for devices that measure wheel
rotations. Inertial methods are expensive. There has been much work done on
satellite positioning, but visibility is not consistent (for example in tunnels) and
so a secondary sensor system is needed to provide coverage during those periods.
The video system developed by RDS appears to overcome all these problems.

(1.2) RDS have developed a video-based odometry system that enables a train to mea-
sure distances travelled, using a forward-facing camera mounted in the cab. Such
a system can report train positions via a radio data link in real time to the
signalling control centre, which in turn can provide information to the train on
braking points, etc. The benefits of the video system are in terms of lower costs
and higher accuracy of positioning. In the longer term, there are possibilities for
allowing closer separation of trains, leading to higher capacity of the rail network.

(1.3) The overview operation of the video-based system is as follows. The camera
mounted in the cab images the track immediately ahead of the train, generally at
a frame rate in the range 25 to 50 frames per second. Each image is “unwarped”,
to provide a plan view as if viewed from directly above the track. The unwarped
images from successive frames are matched by looking at pixel blocks, to build up
an “optical flow” from one image to the next. This flow provides an estimate of
the distance moved between frames.

(1.4) The RDS video odometer measures forward and sideways displacement. The
latter is related to the track curvature. From this information it is possible to
estimate the 2D movement of the train. However a key challenge in this regard
is to get better estimates of the position that RDS are currently obtaining. RDS
mentioned that one area for investigation is the “cant” of the track, i.e. tracks are
slightly banked to improve cornering performance. Consequently, the assumption
that the motion of a train is planar may not hold.

(1.5) The video odometer measures displacement from a known point. To obtain cur-
rent position from the odometry, one or more “known” prior points are required.
Currently it needs an additional input (e.g GPS location) for this initialization.
However, GPS is not always available (and it does not distinguish between adja-
cent tracks reliably). As one has an estimate of track curvature for each journey,

1
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and the actual track curvature is invariant, it is possible that to use track curvature
“signatures” to determine train position.

(1.6) In a previous Study-Group report Shenton et al. (2008), it was considered how
errors in the camera positioning (e.g. caused by vibrations or suspension motions
in the train) would affect the relative displacement between two neighbouring
images recorded by the system. The work performed previously followed three
strands:

1. an understanding of how deviations from the cameras calibrated position
lead to errors in the trains calculated position and velocity;

2. development of models for the train suspension, designed to place bounds
on these deviations; and

3. the performance of the associated image processing algorithms.

1.2 Problem statement

(1.7) Richard Shenton posed the following problems to the study group that seek to
extend the existing capabilities of RDS’s video odometry system, building on the
efforts of the previous study group:

1. Elimination of errors in video odometery induced by pitch and height;

2. Robust calculation of (i) the train velocity and (ii) the track curvature;

3. Accurate determination of the position of a train on a track by assimilating
Curvature information and

4. Determining where on UK’s railway map, a particular journey takes place,
based purely on video odometry and

5. Building a track map from information gathered through camera and GPS
on routine train runs.

1.3 Data Available

(1.8) The following data were made available for the purposes of addressing the prob-
lems described previously:

1. Data on forward and sideways displacement captured by the odometry sys-
tem from selected railway journeys. This included: (a). a return journey
from Dorking to Leatherhead in the UK and (b). seven independent runs
over the same 4.2km length of track from New Alresford to Ropley in Hamp-
shire. We refer to the latter as the Mid-Hants dataset.

2
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2. UK railway map of tracks obtained from OpenStreetMap (www.openstreetmap.
org), including GPS coordinates and

3. Link-node diagram of the track changes.

2 Design guides

2.1 Definitions

(2.1) The geometry of a line of track can be described parametrically by its horizontal
position (x, y) and height z as a function of an along-track parameter. From these
functions, we may derive the local (horizontal) curvature κ and gradient angle δ.
In addition track may be banked to aid cornering, which leads to a camber angle
ε. See Figure 1.

ε

κ−1

δ

Figure 1: The geometry of the track, showing the horizontal curvature
κ, the gradient δ, and the camber angle ε.

(2.2) We define the horizontal curvature κ to be the curvature on a 2D map projection,
i.e. the rate of the change of horizontal direction per unit horizontal distance
travelled. So if the parametric representation of the track is (x(t), y(t), z(t)), then

κ =
ẍẏ − ẋÿ

(ẋ2 + ẏ2)3/2
. (1)

We define the track gradient angle as the angle made by the track centre line
above or below the horizontal, so

δ = sin−1
(

ż2

(ẋ2 + ẏ2 + ż2)1/2

)
= tan−1

(
ż2

(ẋ2 + ẏ2)1/2

)
. (2)

We define the camber angle ε to be the deviation that the cross-section of the
track makes to a horizontal line in the plane normal to the rails.

In practice the gradient of the track is small, so to good approximation, κ is the
same as the rate of change of direction per unit track distance, and the camber
angle is the same as the angle measured in a vertical plane.

3
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Parameter Symbol Estimator Max. value Ref. in Safety and Limited (2011)
Gradient angle δ sin−1(gz) 3.5× 10−2 rad §2.7.4
Camber angle ε sin−1(c/d) 1.3× 10−1 rad §2.5.4
Horizontal curvature κ R−1 8.0× 10−3 m−1 §2.5.1
Vertical curvature λ R−1 1.7× 10−3 m−1 §2.7.7
Torsion τ gc/(d cos ε) 1.7× 10−3 m−1 §2.6.4

Table 1: Constraints on the track geometry parameters (κ, δ, ε, λ, τ) from Safety and Limited
(2011), where R is the radius of curvature, d = 1435 mm is the track spacing, c is the cant

distance, gz = dz/ds is the track gradient, and gc = dc/ds is the cant gradient.

We also introduce the vertical curvature λ and torsion τ defined by

λ =
dδ

ds
, τ =

dε

ds
, (3)

where s is the distance along the track.

2.2 Constraints

(2.3) Railway Group Standard GC/RT5021 “Track System Requirements” Safety and
Limited (2011) provides constraints on the maximum gradients and curvatures
of the track. These can be used to derive constraints on the the track geometry
parameters (κ, δ, ε, λ, τ). These constraints are shown in table 1.

2.3 Instantaneous train rotation

(2.4) The geometry of the track and the motion of the train along it causes the train
to have an instantaneous angular velocity relative to the ground, which will not
always be zero. This angular velocity, as measured in the frame of the train,
will be added to the forward motion of the train to determine how neighbouring
camera images are related.

The instantaneous angular velocity caused by the bulk train motion can be de-
scribed in terms of three curvatures (α, β, γ) about three coordinate axes relative
to the train. The three components of the angular velocity are then given by
(αV, βV, γV ) where V = ds/dt is the velocity of the train. Alternatively, the
incremental rotations of the camera as the train moves forward a distance ds are
given by (αds, βds, γds). See Figure 2.

(2.5) We must now find the curvatures (α, β, γ) in terms of the track geometry param-
eters (κ, δ, ε, λ, τ). We do this by equating two expressions for the incremental
rotation matrix R for the rotation that the train undergoes after travelling a
distance ds along the track.

4
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βds

ds

γds

ds ds

αds

Figure 2: How the three curvatures (α, β, γ) in the frame of the train
give rise to rotations of the train body (in addition to the main trans-
lation) as the train moves forwards along the track.

We use coordinates aligned with the train at its initial position, so that the x axis
is forward along the track, and the z axis is normal to the plane of the track. The
y axis then completes the orthogonal set, and thus lies in the plane of the track
at right angles to the direction of travel.

We define the fundamental rotation matrices about the three coordinate axes:

R1(ψ) =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 , (4)

R2(θ) =

 cos θ 0 sin θ
0 1 0

− sinψ 0 cosψ

 , (5)

R3(φ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (6)

In terms of the rotations in the frame of the train, we have

R = R1(γds) · R2(−αds) · R3(βds) . (7)

Expanding the rotation matrices for infinitesimal ds and completing the matrix
multiplication, we obtain

R = I +R′ds , where R′ =

 0 −β −α
β 0 −γ
α γ 0

 (8)

and I is the identity matrix. It is apparent that changing the order of the three
rotations in (7) does not alter this result.

(2.6) We can also compute R from the track geometry, as follows. We first rotate the
train to a level horizontal plane by undoing the camber ε, and the gradient δ.

5
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We then apply a rotation of κds to account for the horizontal track curvature.
Finally,we re-apply the new gradient and new camber, which are given by δ+λds
and ε+ τds respectively. This yields

R = R1(ε+ τds) · R2(−(δ + λds)) · R3(κds) · R2(δ) · R1(−ε) . (9)

Multiplying out the matrices and expanding for infinitesimal ds we obtain

R = I +R′ds (10)

where

R′ =

 0 −κ cos δ cos ε+ λ sin ε −κ cos δ sin ε− λ cos ε
κ cos δ cos ε− λ sin ε 0 κ sin δ − τ
κ cos δ + λ cos ε −κ sin δ + τ 0

 .

(11)

Comparing equations (8) and (11), we find that

α = λ cos ε+ κ cos δ sin ε , (12)

β = κ cos δ cos ε− λ sin ε , (13)

γ = τ − κ sin δ . (14)

When δ = ε = 0 we have that α = λ, β = κ, and γ = τ . But when δ and/or
ε are non-zero (i.e. the track is banked or on a gradient) then the different track
curvatures have a more complicated effect on the train motion.

2.4 Constraints on α, β, γ

(2.7) Using the expressions in (12)–(14) and the constraints in table 1, we can derive
constraints for α, β and γ and determine which terms dominate in the expressions.

We observe that the angles ε and δ are both small, and that the horizontal cur-
vature κ is slightly larger than the the vertical curvature λ and the torsion τ .
Estimating the terms, we find

• The two terms in the normal curvature α are likely to have similar magni-
tudes

α ≈ λ+ κε . 1.7× 10−3 m−1 . (15)

(So there is as much normal curvature from the interaction of cant with
horizontal curvature, as comes directly from vertical curvature.)

• The in-plane curvature β is likely to be dominated by the horizontal curva-
ture κ, and we have

β ≈ κ . 8× 10−3 m−1 . (16)

6
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• The two terms in the torsion γ are likely to be of similar magnitude, so we
have

γ ≈ τ − κδ . 2.4× 10−3 m−1 . (17)

(So there is as much torsion from interaction of the gradient with horizontal
curvature, as comes directly from the cant gradient.)

3 Elimination of distortion due to curvature motion

3.1 Overview and setup

(3.1) We now perform some similar calculations to the previous Study-Group report
Shenton et al. (2008) for the case of the rotations caused by the track curvature.
In all cases we adopt a coordinate system fixed relative to the train camera, with
X being the distance forward along the track, Y being the distance sideways in
the plain of the track, and Z being the normal distance upwards from the plane of
the track. The camera on the train is located at (X, Y, Z) = (0, 0, H0) a distance
H0 above the track.

We consider a general point X1 = (X1, Y1, Z1) on the track ahead of the train,
and consider the point X2 = (X2, Y2, Z2) that an object at that point will appear
after a time δt when the train has moved forward a distance δs = V δt along
the track. These two points are then converted into observed positions on the
unwarped camera image, in order to compute the offset that will be seen between
at two images.

From Shenton et al. (2008), a point at (X, Y, Z) will appear on the unwarped
camera image at a point (X∗, Y ∗) given by(

X∗

Y ∗

)
=

H0

H0 − Z

(
X
Y

)
≈
(

1 +
Z

H0

)(
X
Y

)
, (18)

where the approximation has come from expanding for Z/H0 � 1 (i.e. the track
level always remains much below the camera height in the region of interest).
Considering the two points X1 and X2, the horizontal and vertical displacements
in the unwarped camera image will be given by

X∗2 −X∗1 = X2

(
1 +

Z2

H0

)
−X1

(
1 +

Z1

H0

)
, (19)

Y ∗2 − Y ∗1 = Y2

(
1 +

Z2

H0

)
− Y1

(
1 +

Z1

H0

)
. (20)

For later convenience, we define the differences

δX = X2 −X1 , δY = Y2 − Y1 , (21)

7
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and the mean values

X =
1

2
(X2 +X1) , Y =

1

2
(Y2 + Y1) , (22)

of the two object positions. To leading order X and Y are equal to the equivalent
quantities X∗ and Y ∗ in the unwarped image.

3.2 Normal curvature α

(3.2) The curvature here is normal to the plane of the track. For small curvatures we
can approximate the plane of the track by Z = 1

2
αX2. See Figure 3.

Z

X

Z = 1
2
αX2

X2
X1

V δt

H0

Figure 3: The geometry of the track with a normal curvature α, and
the positions X1 and X2 of an object on the before and after a time
interval δt.

The displacements of the object are given by

δX ≡ X2 −X1 = −V δt , δY ≡ Y2 − Y1 = 0 . (23)

From (19) and (20), the difference in the observed positions of these points is then
give by

X∗2 −X∗1 = X2

(
1 +

α

2H0

X2
2

)
−X1

(
1 +

α

2H0

X2
1

)
(24)

= (X2 −X1) +
α

2H0

(
X3

2 −X3
1

)
(25)

≈ δX +
3αX2

2H0

δX (26)

= −V δt− 3αX2

2H0

V δt , (27)

8
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and

Y ∗2 − Y ∗1 = Y2

(
1 +

α

2H0

X2
2

)
− Y1

(
1 +

α

2H0

X2
1

)
(28)

= (Y2 − Y1) +
α

2H0

(
X2

2Y2 −X2
1Y1
)

(29)

≈ δY +
αX2

2H0

δY +
2αXY

2H0

δX (30)

= −αXY
H0

V δt , (31)

3.3 In-plane curvature β

(3.3) The track curvature here is purely in the plane of the track, so all points on the
track have Z = 0. Therefore the observed position (X∗, Y ∗) of each point (X, Y, 0)
on the track is given simply by (

X∗

Y ∗

)
=

(
X
Y

)
(32)

X

X1

X2

δθ

Y

R

Figure 4: Coordinates (x, y) relative to the camera, and the positions
x0 and x1 of an object in two neighbouring frames a time δt apart.
When the train is instantaneously moving with velocity V on a track
with radius of curvature R, the apparent motion of objects is on arcs
of circles centred on the centre of curvature. The change δθ in angle is
given by Rδθ = V δt.

If the track curvature is β, then the radius of curvature is R = β−1. The path of
an object relative to the train is therefore an arc of a circle centred at (0, R, 0), as
shown in Figure 4. In a time δt, the angle of rotation is such that the arc length
along the track is V δt, i.e.

Rδθ = V δt ⇒ δθ = βV δt . (33)

9
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(3.4) Typical limiting values for the system are β ≤ 8 × 10−3 m−1, V . 50 ms−1,
δt ≈ 1/50 s. So δθ . 0.08� 1. This bound can probably be lowered even further
because faster tracks will have larger radii of curvature.

The position vectors of the two locations of the object are related to each other
by a rotation of δθ about (0, R, 0):

X ′2 = R3(−δθ) ·X ′1 , (34)

where

X ′1 = X1 −

 0
R
0

 and X ′2 = X2 −

 0
R
0

 (35)

are the position vectors relative to the centre of the rotation, and

R3(−δθ) =

 cos(δθ) sin(δθ) 0
− sin(δθ) cos(δθ) 0

0 0 1

 . (36)

Since δθ is small, we may approximate cos δθ ≈ 1 and sin δθ ≈ δθ. Then, multi-
plying out the matrix–vector product, we obtain

X2 −X1 = −V δt

 1
0
0

+ βV δt

 Y
−X

0

 (37)

Hence we have
X∗2 −X∗1 = −V δt+ βV Y δt , (38)

and
Y ∗2 − Y ∗1 = −βV Xδt . (39)

3.4 Axial torsion γ

(3.5) The distortion here is a twist in the plane of the track about its tangent. For
small torsions we can approximate the surface of the track in the vicinity of the
train by Z = γXY . See Figure 5.

(3.6) The displacements of an object on the track are given by

δX ≡ X2 −X1 = −V δt , δY ≡ Y2 − Y1 = 0 . (40)

From (19) and (20), the difference in the observed positions of these points is then

10
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H0

Z

Y
V δt

X

Z = γXYX2 X1

Figure 5: The geometry of the track with an axial torsion γ.

given by

X∗2 −X∗1 = X2

(
1 +

γ

H0

X2Y2

)
−X1

(
1 +

γ

H0

X1Y1

)
(41)

= (X2 −X1) +
γ

H0

(
X2

2Y2 −X2
1Y1
)

(42)

≈ δX +
2γXY

H0

δX +
γX2

H0

δY (43)

= −V δt− 2γXY

H0

V δt , (44)

and

Y ∗2 − Y ∗1 = Y2

(
1 +

γ

H0

X2Y2

)
− Y1

(
1 +

γ

H0

X1Y1

)
(45)

= (Y2 − Y1) +
γ

H0

(
X2Y

2
2 −X1Y

2
1

)
(46)

≈ δY +
2γXY

H0

δY +
γY 2

H0

δX (47)

= −γY
2

H0

V δt , (48)

3.5 Estimating track curvature from the image offsets

(3.7) The basic measure of track distance covered comes from assuming that the average
X∗ offset is precisely V δt, and not making use of the information in the Y ∗ offset
or any spatial variations in the offsets across the camera image.

We would like to be able to correct for any errors in the estimated velocity that
arise because of the three curvature effects, and also produce an estimate for
the in-plane curvature β, as this may provide useful information for the track
positioning system.

11
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(3.8) Combining the various offset expressions (assuming that the curvature-induced
discrepancies will add linearly) we obtain

X∗2 −X∗1 = −V δt− 3αX2

2H0

V δt+ βY V δt− 2γXY

H0

V δt , (49)

and

Y ∗2 − Y ∗1 = −αXY
H0

V δt− βXV δt− γY 2

H0

V δt . (50)

We see that the discrepancies from the three different curvatures have different
spatial dependencies within the image, so in principle it should be possible to
differentiate between them and extract estimates for α, β, γ and V . In practice
though, it may be difficult to reliably extract spatial variations given the level of
noise in the system.

(3.9) A simple procedure is possible when the unwarped image is centred on the track,
as would normally be the case. The the average value of Y ∗ in the unwarped
image will be zero. So to good approximation, the average value of Y will be
zero too. Then, taking equations (49) and (50) and averaging over the image, we
obtain

〈X∗2 −X∗1 〉 = −V δt− 3α〈X∗2〉
2H0

V δt , (51)

〈Y ∗2 − Y ∗1 〉 = −β〈X〉V δt− γ〈Y ∗2〉
H0

V δt . (52)

And taking the first moment with respect to Y ∗ we obtain

〈
(X∗2 −X∗1 )Y ∗

〉
= β〈Y ∗2〉V δt− 2γ〈X〉〈Y ∗2〉

H0

V δt , (53)

〈
(Y ∗2 − Y ∗1 )Y ∗

〉
= −α〈X

∗〉〈Y ∗2〉
H0

V δt . (54)

These can be regarded as four simultaneous equations for α, β, γ and V .

From §2.2 we have

α . 1.7× 10−3 m−1 , β . 8.0× 10−3 m−1 , γ . 2.4× 10−3 m−1 . (55)

From the system design guide, we also have

〈X∗〉 ≈ 10 m , 〈X∗2〉 ≈ 102 m2 , 〈Y ∗2〉 ≈ 1 m2 . (56)

Comparing the ratios of the terms on the right-hand sides of (51), (52) and (53),
we find:

3α〈X∗2〉
2H0

. 8.5× 10−2 ,
γ〈Y ∗2〉
β〈X〉H0

. 1.0× 10−2 ,
2γ〈X∗〉
βH0

. 2.0 . (57)

12
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So in (51) the α term should be fairly small, in (52) the γ term should be negligible,
and in (53) the two terms could be of similar magnitude.

Given these scalings and the likely levels of noise in the system, a proposed set of
estimates, aimed at recovering V and β, is as follows:

• Use (54) to obtain an estimate for αV

αV =
H0

〈
(Y ∗2 − Y ∗1 )Y ∗

〉
〈X∗〉〈Y ∗2〉δt

. (58)

• Use (51) and the estimate for αV to obtain an estimate for V :

V = −〈X
∗
2 −X∗1 〉
δt

− 3αV 〈X∗2〉
2H0

. (59)

• Finally neglect the small γ term in (52), and use the above estimate for v
in order to provide an estimate for β:

β = −〈Y
∗
2 − Y ∗1 〉
〈X〉V δt

. (60)

Equation (53) is unused, although it could be employed to provide an estimate
for the uninteresting parameter γ.

(3.10) Alternative estimates for β and V can be found by neglecting the α and γ dis-
crepancies altogether. This method will work with camera images that do not
necessarily have 〈Y ∗〉 = 0.

With α = γ = 0 and averaging over the image, (49) and (50) become

〈X∗2 −X∗1 〉 = −V δt+ β〈Y ∗〉V δt , (61)

〈Y ∗2 − Y ∗1 〉 = −β〈X∗〉V δt . (62)

Solving these simultaneously for β and V we find

V = − 1

δt

(
〈X∗2 −X∗1 〉+

〈Y ∗〉
〈X∗〉

〈Y ∗2 − Y ∗1 〉
)
, (63)

β =
〈Y ∗2 − Y ∗1 〉

〈X∗〉〈X∗2 −X∗1 〉+ 〈Y ∗〉〈Y ∗2 − Y ∗1 〉
. (64)

4 Elimination of errors from track line detection

(4.1) Trial results indicate that the dominant source of error is due to the position and
orientation of the camera being shaken by the movements in the train suspension
and slight bumps in the track. We have no reliable way of predicting these errors,
so we will seek a way of eliminating them frame by frame.

13
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4.1 The camera image

(4.2) The camera image is obtained by a projective transformation Shenton et al. (2008).
For more informations and illustrations on how cameras work see the website cam.
The starting point for assembling this transformation is shown in Figure 6. The
coordinate x measures distance along the track, from some fixed point on the
ground, with y being in the transverse direction. Let the camera be at position
(xD, yD), and at a height H above the plane of the track. Three angles describe
the orientation of the camera: a declination or ‘pitch’ θ from the horizontal, a
‘yaw’ angle φ around the vertical, and a ‘roll’ ψ around the axis of the camera.
To rotate this configuration about the camera, we use coordinates relative to the

Figure 6: The Camera in its calibrated position. Note that if view from above the y−axis
should be oriented in the opposite direction.

position of the camera (X, Y, Z), where X = x− xD, Y = y− yD and Z = z−H.
To simplify the geometry we rotate the image so that the camera axis is along the
X−axis, and so that both the vertical axis and transverse axis from the camera’s
perspective point respectively along the Z−axis and Y−axis. To achieve this
simplification we apply three rotation matrices, ξ

η
ζ

 = R1(ψ)R2(θ)R3(φ)

 X
Y
Z

 , (65)

where

R3(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (66)
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R2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (67)

R1(ψ) =

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

 (68)

In the (ξ, η, ζ) coordinates the focal lens of the camera is in the η× ζ plane. So to
obtain the camera image we project the 3D tracks onto the focal lens. This way
the coordinates (u, v) of the image on the camera’s focal lens, often refered to as
the camera image, become  f

u
v

 =
f

ξ

 ξ
η
ζ

 , (69)

where f is the focal length of the camera. For a convenient notation, we name F
the function that takes the angles θ, φ, ψ and a point in the (X, Y, Z) system to
the coordinates (u, v) on the camera image, so that(

u
v

)
= F [θ,X] , (70)

where θ = (ψ, θ, φ) and X = (X, Y, Z). Note that F is a nonlinear function in all
its arguments. If the camera is pointed inbetween the left and right rail, then the
point where the camera axis intercepts the flat track is given by

(H cot θ cosφ,H cot θ sinφ,−H) . (71)

Because the train shakes, and the camera is attached to the train, the camera
image will not be exactly as described above. Small errors in the angle and
position of the camera will be introduced. The camera may be initially setup
with the angles θ, φ and ψ, but unknowingly, in any given frame, have the angles
θ + δθ, φ + δφ and ψ + δψ, where δθ, δφ and δψ are usually considered small
disturbances. The position of the camera may also be incorrect, the camera may
in fact be located at δX = (0, δY, δZ) instead of (0, 0, 0). We do not include an
error for the X position of the camera δX, for the effect of δX on one frame of
the camera image can not be perceived. That is, if we assume we do not know
where the train is on the tracks. If the left rail is flat and the outer edge of this
rail is described by (X, YL,−H) for X ∈ [0, D], the perturbed camera image of
this outer edge will be(

u
v

)
= F [θ + δθ, (X, YL,−H) + δX] , for X ∈ [0, D], (72)

for some value of δθ and X, where δθ = (δψ, δθ, δφ). However in general the
tracks are not flat but have a small curvature. To model this we let the transverse
position and height of the rail be

Y = YL + β
X2

2
and Z = −H + α

X2

2
, (73)
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for some small parameters α and β. So the camera image could show the left
track as(

u
v

)
= F

[
θ + δθ, (X, YL,−H) + δX + (0, β, α)X2/2

]
, for X ∈ [0, D]. (74)

Note that the (X, Y, Z) coordinates are aligned with the tracks, so we can not
have a linear contribution in X to either Y or Z of the rail’s position.

4.2 Minimization method to determine track shape

(4.3) To accurately measure the rail curvature and undo the errors in the camera image
introduced by the train shaking, we require that the outline of rails can be detected
automatically. Without this automatic detection it is not clear how to accurately
recover the curvature.

(4.4) Let the outer edge of the left rail as seen by the camera be given by the set of
points RLM . According to our model of what the camera image, the edge of this
rail is described by

RL[δθ, δX, (α, β)] =
{
F
[
θ + δθ, (X, YL,−H) + δX + (0, β, α)X2/2

]
; X ∈ [0, D]

}
,

(75)
for some δθ and δX. This way if the train did not shake, and no errors were
present, and the track was flat then RLM = RL[0,0, (0, 0)]. However this is
generally not the case. Similarly let RRM be the automatically detected outer
edge of the right rail on the camera image and let RR be defined analogously to
RL.

To find out the curvature and errors we need to find δθ, δX, α and β that mini-
mize

min
δθ,δX,α,β

‖RL[δθ, δX, (α, β)]−RLM‖+ ‖RR[δθ, δX, (α, β)]−RRM‖, (76)

where ‖ · ‖ denotes some measure of distance between two sets. How we choose to
represent these sets, i.e. possible through a set of discrete points, and our choice
for ‖ · ‖ will determine how effective the resulting method will be. One generally
applicable norm ‖·‖ is the area between the two curves, such as the area delimited
by the curves and lines that join the end points of these two curves. This norm
can be applied to most any discretization of the sets. For example given the four
points (u1, v1), (u2, v2), (u3, v3) and (u4, v4), the area between them is given by

±(u1v2 − u2v1 + u2v3 − u3v2 + u3v4 − u4v3 + u4v1 − u1v4),

where the ± should be chosen so that the area is positive. However developing
the theory and a method along these lines is a bit beyond the scope of what
was achieved during the study group. The method we will develop here will
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assume that the points chosen on RRM and RL0 result from taking points evenly
spaced along X−axis and then mapping them with some F [θ′,X ′] to the (u, v)
coordinate system. This assumption simplifies the resulting calculations so that
we may easily demonstrate how to develop a minimization method. With this
assumption we let RLM and RRM be sets of discrete points. For convenience we
join all these points into one vector

UM = {RLM ,RRM} = {(u1M , v1M), (u2M , v
2
M), . . . , (u2NM , v2NM )}. (77)

where N is the number of points on each rail. We consider each (ujM , v
j
M) to be

an element of UM . So that the transpose (UM)T does not affect the order within
each element (ujM , v

j
M). Analogously the points RL and RR are evenly spaced on

the X−axis. To generate them we take the even spaced points along the left rail
and right rail and then map them to the camera image with

F [θ + δθ, (X, YL,−H) + δX] and F [θ + δθ, (X, YR,−H) + δX]

respectively. The values YL and YR are the transverse width to reach the outer
edge of the left and right rail respectively. In the same form as equation (78) we
line up the points from the left rail RL, followed by the points from the right rail
RR to form

U = {RL,RR} = {(u1, v1), (u2, v2), . . . , (u2N , v2N)}. (78)

Seeing that (uj, vj) and (uj0, v
j
0) are the result of mapping the same point from the

(X, Y, Z) to the (u, v) coordinate system, it makes sense to minimize the distance
between them. We therefore choose the measure distance in the following way

‖U −UM‖ = (U −UM)T (U −UM) =
2N∑
j=1

(uj − uj0)2 + (vj − vj0)2 (79)

4.3 Linearise and project

(4.5) The procedure for minimizing (76) for δθ, δX, α and β would result in a sys-
tem of nonlinear equations, which would likely require a more involved numer-
ical solution. Luckily, we expect both the errors in the camera δθ, δX and
the curvature parameters α, β to be much smaller than 1. For convenience let
δ = (δθ, δX, α, β), this was we can expand

U ≈ U 0 + ∂δU
0 · δ, (80)

where U 0 is U evaluated at δ = 0. The term ∂δU
0 can be seen as a matrix whose

elements are points in the (u, v) coordinate system. We substitute this expansion
in equation (79) to obtain

‖U −UM‖ ≈ (∂δU
0 · δ +U 0 −UM)T (∂δU

0 · δ +U 0 −UM). (81)
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At this point one should check that ‖U 0 −UM‖ < 1 as both these quantities are
known a prior and the method makes this assumption. To minimize ‖U −UM‖
we need to differentiate it in the parameters δ and then set the result to zero,

min
δ
‖U −UM‖ =⇒ ∂δ‖U −UM‖ = 0

=⇒ (∂δU
0)T (∂δU

0 · δ +U 0 −UM) = 0

=⇒ (∂δU
0)T∂δU

0 · δ = (∂δU
0)T (UM −U 0)

=⇒ δ =
(
(∂δU

0)T∂δU
0
)−1

(∂δU
0)T (UM −U 0). (82)

The last step assumes that (∂δU
0)T∂δU

0 is invertible, which is only possible if
each parameter in δ causes an independent change to the camera image. That is
if the columns of ∂δU

0 are mutually independent. To this end, it can be helpful
to graphically plot U 0 + ∂δjU

0δj, which we will call distortions, for each element
of δ, where we choose δj to be an small arbitrary number. In Figure 7 we draw
each distortion for the fixed parameters f = 1 m, H = 2.5, φ = π/50., ψ = 0.,
θ = π/30, track width 1.46 m with the rails range from X = 5 m to X = 20 m.
This figure reminds us that lines remain lines under rotations and translations,
which in turn leads us to an important question: how many dimensions has the
space of two lines with finite length? To describe each finite 2D line we need
3 parameters, so both of these lines together live in a 6 dimensional space. If
the distortions created by δθ, δφ, δψ, dY, dZ are independent they will span 5 of
these 6 possible dimensions. This means it is quite possible there exists a choice
for θ, ψ, φ, H and rail positions YL and YR such that these distortions are not
independent, implying that for this choice (∂δU

0)T∂δU
0 would not be invertible.

(4.6) An even worse scenario would occur, for example, if one chooses a measure of
distance ‖ · ‖ between curves, discussed in Section 4.2, such that it ignores the
length of the curves. In this case the space of two finite 2D lines would have
4-dimensions and (∂δU

0)T∂δU
0 would not be invertible. Though if one is only

interested in recovering α and β this problem can be easily worked around.

(4.7) For the method used in this section, in all the parameter choices we explored,
(∂δU

0)T∂δU
0 was always invertible. The further the determinant det

(
∂δU

0)T∂δU
0
)

the less numerical errors will be introduced when calculating the inverse of ∂δU
0)T∂δU

0.
The value of this determinant changes with the camera position and orientation,
so it is possible to choose the camera position and orientation so as to increase
this determinant and therefore lower the numerical errors introduced.

4.4 Results

(4.8) With the help of Richard Shenton, we created some synthetic data which would
give an extreme case. With the camera setup so that

f = 1 m, H = 2.5 m φ = π/36, ψ = 0, θ = π/12,
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Distortion Θ
Distortion Φ

Distortion Ψ

Distortion dY Distortion dZ

Figure 7: Distortion to the rails in the camera image due to errors in the camera angles and
position. The red rails are all perfectly straight rails with no camera errors. The blue rails are

the linearised disturbances to the red rail.

Distortion Α Distortion Β

Figure 8: Distortion to the rails in the camera image due to errors in the camera angles and
position. The red rails are all perfectly straight rails with no camera errors. The blue rails are

the linearised disturbances to the red rail.

with a track width of 1.46 m. We assume that the camera is calibrated to point
between the two tracks, so using equation (71) we find that the point where the
camera’s axis intercepts the flat rails is (X, Y ) = (9.3, 0.81) and therefore the left
and right rail have Y = 0.81−1.46/2 and Y = 0.81+1.46/2 respectively. We also
assume that the camera can see both the rails from X = 5 m to X = 15 m. The
extreme case for each of the errors and curvature parameters used was

|δθ| = |δφ| = |δψ| = 3.6◦, (83)

|dZ| = |dY | = 0.014, (84)

α = 0.01 and β = 0.03. (85)

This synthetic data was generated without linearising any of the equations. Errors
were simply included in the model (74), and the analogous for the right rail, to
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generate the synthetic data.

(4.9) The method developed in Section 4.3 was applied to this synthetic data, and to
illustrate we produced a video CompareRide.gif. The video compares the observed
position of the tracks in blue with the position of the tracks after using the method
to estimate the curvature parameters α and β in red. Some snapshots of this video
are shown in Figure 9. The video CompareRide.gif also shows the error made in
estimating α and β, the estimated values α∗ and β∗ is compared with the real
values for α and β use to generate the synthetic data in Figure 10. We believe
the errors are mainly introduced due to the nonlinearity of the camera image
model (74) in the parameters θ, φ, ψ, YL and H, whereas the method linearises
in terms of these parameters.

5 Matching curves

(5.1) The mathematical problem is as follows:

1. Reconstruct a curve from local measurements.

2. Match a section of a curve to a given set of curves (a map of tracks).

5.1 Measurements

(5.2) The video odometry system measures,

• dispacement forwards,

• displacement sideways,

both measured in pixels per frame. We start by assuming that the train moves in
a flat plane (2D). Let (x, y) denote the absolute coordinate system and (ξ, η) the
local coordinate system attached to the train.

(5.3) The η-axis points in the direction of travel and the ξ-axis points perpendicularly
to the right. We take the train to be a point moving on the curve representing
the track.

Let ∆t denote the time between frames (which is constant), measured in seconds.
We have ∆t = 1/f , where f is the number frames per second (typical values are 25
and 60). After being converted from pixels to meters, the displacement forwards
per frame gives the velocity of the train, i.e.,

v =
dη

dt
≈ kηFD. (86)
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Figure 9: Distortion to the rails in the camera image due to errors in the camera angles and
position. The red rails are all perfectly straight rails with no camera errors. The blue rails are

synthetic data from the full nonlinear model.

The sideways displacement per frame can be used to calculate the curvature of
the track,

κ =
dθ

ds
=

dθ

dt
/

ds

dt
=

dθ

dt
/v (87)

The angle θ represents the rotation of the local coordinate frame (ξ, η) with respect
to the absolute coordinate frame (x, y). The arc length s represents distance along
the curve. The sideways displacement is turned into an angle by dividing by L
which represents the distance from the camera to the point on the ground the
camera is pointing at. The curvature can be written in terms of the conversion
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Figure 10: The green points are either the true value of α or β, while the the black points are
either the estimated values α∗ or β∗. The horizontal axis is the time steps of the video.

from pixels to meters for each of the directions (kξ, kη).

κ ≈ kξ
kηL

SD

FD
. (88)

The above formula assume that ∆t is small enough that tan(∆θ) ≈ ∆θ. Further-
more, all 3D effects (pitch, yaw, roll) are neglected. In other words it is assumed
that the track is locally lying in a flat plane. We will discuss later on how the
vertical position of the track can be taken into account in the curve matching
process.

(5.4) By the above formulas the video odometry system directly gives the velocity v
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and the curvature κ as a function of time t. A natural way to represent a curve
based on local measurements is the intrinsic representation where the curvature κ
is given as a function of arc length s (i.e. distance along the curve/track). Since
we have v(t) and κ(t), we can find κ(s) by integrating v.

ds

dt
= v, (89)

∆s

∆t
≈ kηFD, (90)

s =

∫ t

0

v dt, (91)

s ≈
t∑
0

kηFD∆t. (92)

In addition to forward displacement (FD) and sideways displacement (SD) the
video odometry system also provides a quality measure Q. This measure can be
used to identify points on the curve where the system has failed to provide useful
measurements, e.g., due to poor lighting conditions. Like the measurements FD
and SD, the quality measurement Q has a lot of high frequency noise.

(5.5) It is recommended to use smoothing to get rid of this noise. This can be conve-
niently done by some kind of moving average process. A simple moving mean or
moving median filter with a window of 2 seconds turned out to be satisfactory in
experiments. It is also possible to use an exponential mean. For other options
(and caveats about the moving mean see the Wikipedia – Moving Average page).

Q̃i = (1− σ)Qi + σQ̃i−1. (93)

If σ = 0 there is no smoothing, if σ = 1 then Qi is ignored. Choose σ such that
σWf = σ

W
∆t = 1

2
where W is the smoothing window, e.g., 1 or 2 seconds. The

quality measure Q is a number between 0 and 255. The initial value can be set
to Q̃0 = 255. To clean up the data negative forward displacements (FD < 0) were
discarded, along with points that had the (smoothed) quality measure below a
certain threshold (when Q̃ < 0.5 × Qmax). Note that ∆t is no longer a constant
when measurements are ignored.

5.2 Curve reconstruction

(5.6) Angle Formulation

From κ(s) we can reconstruct the coordinate-arc length representation (x(s), y(s))
of the curve by using the formulas

dθ

ds
= κ,

dx

ds
= cos(θ),

dy

ds
= sin(θ). (94)
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By direct integration this gives

θ = θ0 +

∫ s

0

κ ds = θ0 +

∫ t

0

κ v dt, (95)

x = x0 +

∫ s

0

cos(θ) ds = x0 +

∫ t

0

cos(θ) v dt, (96)

y = y0 +

∫ s

0

sin(θ) ds = y0 +

∫ t

0

sin(θ) v dt. (97)

Using our video odometry measurements this becomes

∆θ

∆t
≈ kξ
L
SD, (98)

∆x

∆t
≈ kηFD cos(θ), (99)

∆y

∆t
≈ kηFD sin(θ), (100)

or, using integration notation

θ ≈ θ0 +
t∑
0

kξ
L
SD∆t, (101)

x ≈ x0 +
t∑
0

kη cos(θ)FD∆t, (102)

y ≈ y0 +
t∑
0

kη sin(θ)FD∆t. (103)

Note that the initial position (x0, y0) can be interpreted as a translation of the
reconstructed curve. The initial angle θ0 represents the orientation of the curve
and the forward pixels to meters conversion faction kη can be interpreted as a
scaling of the curve. All of these parameters can be incorporated in the curve
matching process discussed later on.

The coefficient K =
kξ
L

, however, determines the “curviness” of the curve. For
K = 0 we would get a straight line and as K increases the curve folds in on itself
more and more. In other words, changing K affects the curve in a nonlinear way.
Using K for calibration based on (x, y) information would require a nonlinear
optimisation process. It is suggested that this parameter should be determined as
accurately as possible from the parameters of the camera system. The parameter
K scales the angle θ, so calibration based on θ information (e.g., from compass
measurements) may be easier.

Note that θ, x and y are found by integrating measured values. Since integration
is a smoothing process, this suggests that no extra smoothing of the data may be
necessary. This was born out by our preliminary experiments.

Accumulation of errors, i.e., dead-reckoning errors, are unaffected by smoothing.
They are an inherent part of any system reconstructing a curve from only local
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Figure 11: The (a) forward and (b) sideways displacement against time from the seven runs.

measurements. Such errors could be addressed by calibration using other (glo-
barl) measurements (e.g., total distance travelled; initial and final positions and
orientations; positions and orientations along the way; e.g., form GPS or compass
readings). This will be discussed further in the curve matching section.

(5.7) Purely Cartesian Formulation Since we have assumed that ∆t is small enough so
that SD and therefore ∆θ are small (tan(∆θ) ≈ ∆θ), we can remove the need for
trigonometric functions in the curve reconstruction. For small ∆θ we have

cos(θ + ∆θ) ≈ cos(θ)−∆θ sin(θ), (104)

sin(θ + ∆θ) ≈ sin(θ) + ∆θ cos(θ). (105)

With p ≈ cos(θ) and q ≈ sin(θ) we get p and q by integrating SD and x and y by
integrating FD

∆p

∆t
≈ −kξ

L
SD q,

∆x

∆t
≈ kηFD p,

∆q

∆t
≈ kξ

L
SD p,

∆y

∆t
≈ kηFD q.

(106)

The vector (p, q) ≈ (cos(θ), sin(θ)) now represents the instantaneous orientation
of the (ξ, η) coordinate frame attached to the train. Note that the condition
p2 + q2 = 1 will not be preserved exactly.

(5.8) An Example of Curve Reconstruction

The data used was the Mid Hants dataset, which contained seven runs over the
same section of track, shown in figure 11.

The data shown in figure 11 has been smoothed using a moving average filter
over 25 frames, which is equivalent to one second of data. However, as discussed
earlier in this report, further smoothing is required. For example, the dips in two
of the runs from positive to negative displacement are physically unrealistic as
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Figure 12: The forward displacement against time from the seven runs.

this implies the train has accelerations that are improbably large. These points
were ignored and the quality measure was used to remove some points, leaving
the data shown in figure 12.

The curvature of the track is calculated from the forward and sideways displace-
ments and the distance of the camera from the focus point on the track as de-
scribed in equation 88. The distance of the camera from the focus point on the
track was approximated to be L ≈ 6m. To calculate the route from the mean
κ(s) the curvature must be calculated against distance, rather than against time.
The distance is calculated by integrating FD with time. This was done using the
trapezium rule (cumtrapz in MatLab).

As the velocity profile for each of the seven runs is different they will have recorded
the data over a different distance vector. Therefore they had to be mapped onto
the same distance vector in order to calculate the mean curvature at a certain
distance. This was done using linear interpolation and the results are shown in
figure 13. The average of the seven runs is shown in red. It was assumed that the
start point of each of the runs was identical, such that the curvature with distance
down the track would be common to all runs. If this was not known to be true,
one run could be taken as a basis and all other runs compared to that using cross
correlation, to correct for changes in starting position of the train.

The curvature was then integrated with distance to plot the track of the train
from the curvature results. The routes from data taken on each of the seven runs
and calculated from the mean curvature data (dashed line) are shown in figure
14.

Future suggestions would include pre-analysing the data using ideas from earlier
in this report and improving the matching of historical data (cross correlating to
improve the average κ(s)).
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Figure 13: The curvature κ against distance for the seven runs. The average curvature is
shown in red.

Figure 14: The curves generated using approximate calibration from each of the seven runs
(solid lines) and mean curvature data (dashed line) against the true route of the train from a

map provided.
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Figure 15: The (a) sideways displacement from the camera data and (b) The length required
to match a sample to the signal.

5.3 Curve Matching

(5.9) Our examination of curvature was on a couple of different scales. Firstly, curvature
itself occurs on two different scales. When the train changes track the signal from
the curvature spikes with a much higher magnitude than when the track curves.
The spikes in curvature when the train changes track was used in particle filter
description of the train network.

(5.10) We were asked about the possibility of calculating the position of a train from
curvature data. The position of a train on a particular stretch of track cannot
be determined from an instantaneous measure of curvature (even with perfect
data) because curvature is piecewise linear (i.e. the curvature is constant on any
particular curve and not unique to a point on the track). Therefore it could be
identified that the train was on a particular curve, but not where on that curve
it was. However, a longer measurement could potentially identify the position of
the train.

The signal of sideways displacement data for one journey is shown in figure 15a. If
a sample of some length is taken from this signal we could then try and calculate
where in the signal it was taken from. We will refer to the sample as f(i) and the
signal h(i). The initial method used to calculate this was the mean squared error,

ε(i0) =
1

N

i0+N∑
i0

(f(i− i0)− h(i))2 , (107)

where N is the number of data points in the sample. The mean squared error
is ε is calculated as a function of starting position i0 along the historical signal.
The best guess for where along the track the sample came from is where ε is a
minimum.
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This can be adapted to include information from the quality measure Q. This is
achieved simply by normalising by Q,

ε(i0) =
1

N

i0+N∑
i0

Q

Qmax

(f(i− i0)− h(i))2 . (108)

This method is very slow to run however. A more efficient method is to use cross
correlation (which is equivalent to 107 but makes use of fast fourier transforms to
speed things up). The position with the maximum correlation between the signals
is the location of the sample in the historical signal.

There are some possible problems with this method. The GPS is sufficient to
tell where in the country the train is. However, it cannot differentiate between
adjacent tracks. It seems likely that adjacent tracks will have similar curvature
and therefore this method would also be unable to differentiate between adjacent
tracks. Added to this the piecewise linear nature of the curvature along a partic-
ular track means that some stretches will be straight (or have constant curvature)
and measurements will have to continue for a long time before the position can
be deduced.

One thing that was tried was calculating the required length of a sample for its
location to be correctly (and uniquely) identified. This was calculated for many
random starting points in the signal in figure 15a. The results are shown in 15b
which shows length of signal (in % of the length of the original signal) against
fraction of starting points that require that length to uniquely identify the starting
point.

(5.11) Representation

The κ(s) representation of a train journey is very useful for detecting and locating
the distinctive signature of track changes. Track changes appear as significant
peaks in κ over a short distance. For example, 2 track changes in one direction,
followed by 2 track changes back, on an otherwise straight track may look like

By converting the map representation of the track to κ(s) representation, the
κ(s) representation of the journey could be used for matching as well. We posit
however that this is neither the most natural nor the most useful approach. Since
errors in the measurement FD can manifest themselves as a distortion of the s-
axis, this means that some kind of elastic matching or dynamic warping should
be used.

The (x(s), y(s)) representation can be used directly for matching. This requires
the map representation of the tracks to be converted into this form as well. It will
be convenient to use an equidistant sampling in s, for both the measured segment
and the reference curve. The parameter ∆s should be chosen carefully to balance
accuracy and computational cost (storage and processing time).

The measured journey will have a constant ∆t (except when measurements are
discarded), but ∆s will be variable. We propose a resampling using a constant
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∆s. A simple procedure like linear interpolation should be sufficient, but more
advanced interpolation methods or function approximation methods could be in-
vestigated.

The resampling can be done for the κ(s) representation, before (x(s), y(s)) recon-
struction or it can be done directly in the (x, y) space.

The former may be recommended, especially if the piecewise linear nature of the
κ(s) representation is exploited. This is not as natural for the map information
however, since the tracks are already given by a series of (x, y) points.

For a series of (x, y) points (either the reconstructed journey or a map representa-
tion of a track), the resampling can be done by piecewise linear interpolation (or
again by some more sophisticated interpolation or approximation, e.g., splines or
using the κ(s) representation).

(5.12) Comparing Two Curves

If we have two curves represented by equidistant (x, y) samples, then we can define
a distance metric d between them by

d2 =
∑

(δx2 + δy2) ∆s, (109)

where δx and δy represent the difference between corresponding points on the
two curves. We assume for now that the two curves have the same number of
points. We use the Euclidean version (exponent 2) since this will allow efficient
calculation for the matching of subsegments Let δxi = xi − x̂i and δyi = yi − ŷi,
where ·̂ denotes the reference curve.

(5.13) Curve Segments

Suppose a reference curve is given by equidistant samples (x̂i, ŷi), i = 0, . . . , n− 1
and we want to match and locate a given curve segment (xj, yj), j = 0, . . . ,m−1.
The curve segent is equidistantly sampled with the same ∆s, but it is shorter than
the reference curve, i.e., there are fewer samples (m ≤ n). We can find whether
and where the curve segment matches the reference curve by finding the value i
for which our previous distance metric is minimised. Define

d2i =
m−1∑
j=0

(
(xj − x̂i+j)2 + (yj − ŷi+j)2

)
∆s, (110)

and
d = min

i
di. (111)

If implemented directly, this will take O(mn) operations, where n and m are the
number of samples in the reference curve and the curve segment respectively. This
is acceptable if m is small. We can perform the calculation of the di values more
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efficiently using FFT, however, by rewriting the calculation as a cross-correlation.
We get

d2i =
∑
j

(
(xj − x̂i+j)2 + (yj − ŷi+j)2

)
∆s, (112)

=
∑
j

(x2j + y2j ) ∆s+
∑
j

(x̂2i+j + ŷ2i+j) ∆s+ 2
∑
j

xjx̂i+j ∆s+ 2
∑
j

yj ŷi+j ∆s.

(113)

The first term does not depend on i and can be calculated in O(m) operations for
the given curve segment.

The second term can be pre-calculated for each reference curve in O(n) operations.

m−1∑
j=0

x̂2i+j =
i+m−1∑
k=i

x̂2k =
i+m−1∑
k=0

x̂2k −
i−1∑
k=0

x̂2k = Xi+m−1 −Xi−1, (114)

where Xi =
∑i

k=0 x̂
2
k are cumulative sums of squares.

The last terms are two cross-correlations which can be calculated in O(n log(n))
operations using FFT. To do this, pad the reference with m zeros to a signal of
length n + m and pad the segment with n zeros to a signal of length n + m. We
then have

ci =
m∑
j=0

xjx̂i+j =
n+m∑
j=0

xjx̂i+j. (115)

By the convolution theorem the cross-correlation signal can be calculated by com-
ponentwise multiplication in the Fourier domain (the padding is necessary to han-
dle the periodic boundaries)

c = x ∗ x̂ = IDFT
(
DFT(x) · DFT(conj(x̂))

)
. (116)

The transformations can be calculated in O((n + m) log(n + m)) using FFT and
the componentwise multiplication and conjugation take O(n) operations. Note
that O((n+m) log(n+m)) = O(n log(n)) since m ≤ n. The transformations for
the reference curves can be pre-calculated. The x and y signals can be combined
as real and imaginary parts of a complex signal so that a single complex FFT
suffices for both cross-correlation calculations.

It may be possible to get extra efficiency gains by updating the calculations for
the curve segments of increasing number of samples, i.e., as the train moves along.

(5.14) Dealing with Translation, Scaling and Rotation

As was remarked in the section on curve reconstruction, it is possible to account for
uncertainties in the position, scale and orientation of the curve segment matched.
To keep the notation simple, we will asssume in this section that the curve and
the reference curve have the same number of samples.
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We consider here curves in (x, y) space. The parameter kη determines directly
the scale of the reconstructed curve. The initial position (x0, y0) determines the
location of the reconstructed curve. The initial angle θ0 (or the vector (p0, q0))
determines the orientation of the reconstructed curve. If these parameters are
known or determined from other measurements (e.g., GPS, compass), then this
can help the matching process. It is, however, possible to perform matching
without knowing some or all of these parameters. Specifically, we can find the
values of the parameters that give the best match. The parameter K = kξ/L
determines the “curviness” of the reconstructed curve and its effect is not as easy
to discount.

It may be useful to have bounds for K if its value is not known exactly.

In what follows we show how each of the parameters determining position (x0, y0),
scale (kη) and orientation (θ0) can be taken out of the matching process.

(5.15) Position

The position parameters (x0, y0) can be taken out of the matching process by
translating the reconstructed curve and the reference curve so that they have the
same mean position (e.g., (0, 0)). We have points (xi, yi), i = 0, . . . , n− 1 on the
reconstructed curve and points (x̂i, ŷi), i = 0, . . . , n− 1 on the reference curve. If
we do not know the position of the reconstructed curve (i.e., we used arbitrary
(x0, y0)), then we can find the translation (tx, ty) that minimises the distance
metric between the curves. Define

d2(tx, ty) =
∑
i

(
(xi + tx − x̂i)2 + (yi + tx − ŷi)2

)
∆s. (117)

The new distance metric is

d = min
(tx,ty)

d(tx, ty). (118)

Expanding the brackets gives

d2(tx, ty) =
∑
i

(
(xi − x̂i)2 + (yi − ŷi)2

)
∆s − (119)

2
∑
i

((xi − x̂i)tx + (yi − ŷi)ty) ∆s + (120)∑
i

(
t2x + t2y

)
∆s. (121)

The first term is the curve distance metric without any translation and does not
depend on (tx, ty). The other terms can be separated into terms that depend on
either tx or ty. For tx we have

−2tx
∑
i

(xi − x̂i) ∆s+ t2x
∑
i

∆s. (122)
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This is minimised for

tx =

∑
i(xi − x̂i) ∆s∑

i ∆s
= x− x̂, (123)

where the mean x coordinates are defined as

x =

∑
i xi ∆s∑
i ∆s

. (124)

Note that
∑

i ∆s is the total length of the curve (assumed to be the same for the
reconstruction and the reference for simplicity). Analogously, we find

ty =

∑
i(yi − ŷi) ∆s∑

i ∆s
= y − ŷ. (125)

We can therefore find the translation (tx, ty) that gives the best match with very
little extra calculation. The mean position can be pre-calculated for each reference
curve. The minimal curve distance metric can be obtained directly by translating
both curves so that they have the same mean position (e.g., (0, 0) or the mean
position of the reference curve). The position of the reconstructed curve that gives
the best match (smallest distance metric) could be compared to information from
other sources (e.g., GPS for initial, final or intermediate positions of the train).
Note that if x = x̂ and y = ŷ, we have

d2(tx, ty) = d2(0, 0) + (t2x + t2y). (126)

(5.16) Scale

We assume that the scale of the reference curve is correct. If we do not know the
scale of the reconstructed curve, then we can find the scale factor that minimises
the curve distance metric. Note that we can also use other information such as
known positions along the journey (e.g., GPS) or the total distance travelled to
calibrate the kη parameter, which determines scale.

Define
d2(λ) =

∑
i

(
(λxi − x̂i)2 + (λyi − ŷi)2

)
∆s. (127)

The new distance metric is
d = min

λ
d(λ). (128)

Expanding the brackets gives

d2(λ) = Aλ2 − 2Bλ+ C, (129)

where

A =
∑
i

(
x2i + y2i

)
∆s, B =

∑
i

(xix̂i + yiŷi) ∆s, C =
∑
i

(
x̂2i + ŷ2i

)
∆s.

(130)
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The minimum is reached for λ = B/A and the minimum value is given by d2 =
−B2/A+ C.

Note that the quantities A, B and C were already used in the efficient calculation
based on cross-correlation.

For λ = 1 (unscaled distance metric) we have

d2(1) = A− 2B + C. (131)

We can use this to eliminate B in the distance metric with scale, which gives

d2(λ) = Aλ2 − (A+ C − d2(1))λ+ C. (132)

The optimal scale factor is now

λ =
A+ C − d(1)

A
(133)

and the optimal distance metric is given by

d2 = −(A+ C − d(1))2/A+ C. (134)

This shows that one unscaled distance metric calculation can be used to find the
scaling factor that gives the best match. The only extra calculations are for A
and C. The quantity A only depends on the reconstructed curve and the quantity
C only depends on the reference curve.

Alternative Notations:

A = (x,x)+(y,y) = x2+y2, B = (x, x̂)+(y, ŷ), C = (x̂, x̂)+(ŷ, ŷ) = x̂2+ŷ2

(135)

A = ‖X‖F = tr(XTX), B = tr(X̂TX), C = ‖X̂‖F = tr(X̂T X̂) (136)

(5.17) Orientation

The orientation that minimises the distance metric can be found by reformulating
the problem as an Orthogonal Procrustes Problem Schnemann (1966); Kabsch
(1976)

It is convenient to use matrix notation to formulate this problem. Let X and Y
denote the matrices containing the coordinates of the curves, i.e.,

X =

[
x0 · · · xn−1
y0 · · · yn−1

]
, X̂ =

[
x̂0 · · · x̂n−1
ŷ0 · · · ŷn−1

]
. (137)

The Constrained Orthogonal Procrustes Problem aims to find a orthogonal matrix
Q (QTQ = I), with det(Q) = 1 (to exclude reflections, so that Q is in fact a
rotation matrix), which minimises

d2(Q) = ‖X̂ −QX‖2F . (138)
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The subscript F denotes the Frobenius matrix norm, which means this is the same
as the curve distance metric we used before, but now between the reference curve
and the curve rotated by the matrix Q.

The solution can be found by singular value decomposition Schnemann (1966);
Kabsch (1976). Compute the SVD of the 2 × 2 matrix XX̂T = UΣV T . The
rotation matrix is given by

Q = V Σ′UT , Σ′ =

[
1

s

]
, s = det(V UT ) = det(U) det(V ). (139)

The angle θ can be found from

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (140)

5.4 3D Effects

(5.18) It could be suggested that the cant of the track does not have a great influence
on the results.

We suggest that it may be possible to take into account the incline and decline of
the track by “flattening” the 3D track information.

Suppose the map data for a track is given as a set of points (xi, yi, zi), i =
0, . . . , N−1. The goal is to turn this into a reference curve (x̂i, ŷi), i = 0, . . . , n−1
such that distances and curvatures along the curve are (approximately) preserved.
For convenience the reference curve representation should also be equidistantly
sampled (see curve matching section). This could be achieved by approximating
distance s and curvatures κ along the curve using 3D formulas. (Or equivalently
FD and SD, e.g., for v = 1.) The “flat” representation could then be obtained
using the techniques described in the curve reconstruction section. Torsion could
also be calculated, but it is ignored in the “flattening” process. The system could
check that the values for torsion are small.

6 Mapping a train journey to a map

(6.1) Part of the problem is to determine where on the railway map of the UK a partic-
ular train journey is taking place, based purely on the train odometry extracted
from the video. There are three considerations to take into account:

1. the state of the railway map, as extracted from OpenStreetMap (www.
openstreetmap.org), discussed in section 6.1,

2. the features of the train’s journey that may allow it to be uniquely matched
to the railway map, discussed in section 6.2, and

3. possible methods for performing the match, discussed in section 6.5.
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6.1 The railway map

(6.2) The railway track is defined as a series of 42 636 segments, each made up of a
number of waypoints (minimum 1, maximum 555, mean 9). A waypoint is defined
by its location, given in latitude and longitude, and may appear in more than
one segment. Waypoints that appear in more than one segment may represent
branches in the line, but they may just link non-branching segments together.
Figure 16 shows the current railway map, as defined in the GBTrackMap.csv file
provided by RDS.

(6.3) A single journey is assumed to consist of a start point and an end point and the
track between these two points is visited only once during the journey. We would
like, therefore, to match a journey to a plausible stretch of track containing no
repeated sections and no branches. Given a randomly-selected waypoint, we may
construct a single track by stitching together the segments from that point to
either end of the track, randomly selecting branches to follow along the way. The
end of the track is defined as any end-point in a segment that is not linked to
any other segments. Figure 17 shows one possible track extracted in this way.
Its position is shown in red in Figure 16 and each segment is coloured differently
from its neighbours to highlight how the track is constructed. 1 000 random tracks
were constructed in this way and Figure 18 shows histograms of the number of
segments and the number of waypoints in each track.

(6.4) Analysis of the railway map highlights a number of potential issues:

• There are 311 segments that are not connected to any other segment. It is
likely that only a small number, if any, of these are be correct. Figure 19
shows the area around King’s Cross and St. Pancras stations in London;
note that King’s Cross is disconnected from the rest of the network because
some of the segments (shown in red) are not connected to any other segment.

• Junctions in the map are directionless, that is, they do not record whether a
train is physically able to take a particular branch. Figure 20 shows a section
of track south of Exeter. There are a number of branches in the track, but
there is no direction information, so nothing to determine whether a train is
able to turn the sharp corner at, for example, the junction indicated by the
blue arrow.

• Any waypoint associated with more than one segment may have more than
one set of feature values associated with it. For example, the point indicated
by the blue arrow in Figure 20 will have different curvature values associated
with it depending on which route the train takes through the junction.

• A single station may be represented by multiple waypoints (for example, the
two stations shown in Figure 19).

(6.5) It would also be very helpful for the map to include the locations of bridges
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Figure 16: The railway map, as provided in the GPTrackMap.csv file provided by RDS and
originally extracted from www.openstreetmap.org. The red section is the track segment

shown in Figure 17.
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Figure 17: Example track showing the segmentation. This is the track shown in red in figure
16.
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Figure 18: Histograms of (a) the number of segments and (b) the number of waypoints in 1 000
randomly-extracted tracks.

and tunnels, which would increase the number of features available to enable the
localisation of a train journey to a particular section of track.

6.2 Train journey features

(6.6) A particular train journey is currently recorded as a series of forwards and sideways
displacements, and a quality measure, at the frame rate of the video (in the range
25 to 65 frames per second). The quality measure is an integer in the range 0
to 225, with higher numbers representing higher confidence in the displacement
values. The displacements are recorded in pixels, with pixel sizes estimated to be
19.1mm in the forward direction and 16.7mm in the sideways direction. Figure 21
shows the forwards and sideways displacements in green, plotted over the quality
measure which is shown in grey. The continuous section of low quality towards
the centre of these plots shows where the track goes through a tunnel.

6.3 Noise

(6.7) We can see from Figure 21 that the data are noisy. The effect of this noise is
shown in Figure 22, which shows (in blue) the path allegedly taken by the train if
we just ignore the noise and assume that the displacements are true. Applying a
crude, 1 000-observation moving average to smooth out the outliers results in the
equally unlikely path shown in red.

(6.8) A common way to deal with the noise and estimate the underlying true displace-
ment values is to use a Kalman Filter (or a Kalman Filter/Smoother if we are
able to see into the “future”). This assumes that the noise follows a Gaussian
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St Pancras

Kings Cross

Figure 19: The railway map of the area around King’s Cross and St. Pancras stations in
London. The red sections are segments that are not linked to any other segments; note that

this includes the track connecting Kings Cross station to the rest of the network.

(Normal) distribution. However, the Gaussian is known to be badly affected by
outliers and, ignoring the tunnel section, we can see that the forwards displace-
ments in particular are subject to occasional, but rather large excursions from the
range of values that seem likely given the adjacent data, which we would consider
to be outliers.

(6.9) Gaussian models, such as the Kalman Filter, are known to be particularly sensitive
to outliers. Figure 23 demonstrates the effect of a small number of outliers on
the estimation of the parameters of a Gaussian distribution. Plot (a) shows a
histogram of 30 samples taken from a Gaussian distribution with mean zero and
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Figure 20: A section of the railway map south of Exeter. There are a number of branches in
the track, but there is no direction information, so nothing to determine whether a train is

able to turn the sharp corner at, for example, the junction indicated by the blue arrow.

standard deviation of 0.5. Overlaid in green is the Gaussian distribution estimated
from these data. Plot (b) shows the same, but with the addition of three outliers.
Notice how both the mean (location of the centre) and the variance (width) have
been substantially adversely affected. There are many different ways of dealing
with outliers. Following Lange et al. (1989), we could replace the Gaussian noise
model with one based on the Student-t distribution. This enables the outliers
to be absorbed into the noise without a significant impact on the shape of the
distribution. This effect is shown in Figure 23, where the red plots show the
Student-t equivalents of the green Gaussian plots.

(6.10) A type of Kalman Filter (or Kalman Filter/Smoother) that assumes the noise to
be distributed according to a Student-t distribution, rather than Gaussian, has
been developed (journal paper in preparation), but a small amount of work will
be required to apply it to this particular problem.

6.4 Extracting features

(6.11) In order to match a journey to a section of track, we need to extract some fea-
tures from it to make a unique “fingerprint” through which the matching may
be performed. We do not know in an absolute sense where a journey is (we are
not allowed to use GPS); the features we choose to try and match to the railway
map can only be extracted from the video data. Curvature of the track is the
most obvious choice (see sections 5 to 5.3) as it can be inferred from the recorded
displacements. It has been recognised that pitch and roll of the locomotive may
contribute to erroneous displacement and curvature measurements, but it may
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(a) forwards displacements

0 0.5 1 1.5 2

x 10
4

0

200

400

observation number

q
u

a
lit

y
 m

e
a

s
u

re

0 0.5 1 1.5 2

x 10
4

−10

0

10

fo
rw

a
rd

s
 d

is
p

la
c
e

m
e

n
t 

(p
ix

e
ls

)

(b) sideways displacements

Figure 21: A particular train journey is recorded as a series of forwards and sideways
displacements (shown in green), and a quality measure (in grey). These plots show the (a)

forwards displacement and (b) sideways displacements for a train journey between
Leartherhead and Dorking.

also be the case that yaw makes a contribution, given that the video camera is
placed forward of the train’s front wheels. As was pointed out in section 5.3, it is
unlikely that curvature on its own will be able to distinguish between adjacent,
parallel tracks.

(6.12) Other potential features that might be used in addition to curvature are the
locations of

• points, identified by a particular pattern of displacement noise,

• speed limits, identified by a particular pattern of forward displacements,

• tunnels, identified by darkness in the video, or the switching of the video
camera to night vision,

• bridges, identified by significant structure passing over the train, and

• (possibly) stations and signals, identified by periods when the train is sta-
tionary.
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Figure 22: The train journey from Leatherhead to Dorking, as calculated by dead reckoning
based on the original forwards and sideways displacements (shown in blue) and by crudely

smoothed displacements (in red). The crude smoothing is achieved by applying a
1 000-observation moving average. The true track is shown on the right. The distances are

shown in kilometres.
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Figure 23: Demonstration of the effect on the maximum likelihood solution for Gaussian and
Student-t distributions of a small number of outliers. Plot (a) shows a histogram of 30 samples
taken from a Gaussian distribution with mean zero and standard deviation of 0.5. Overlaid in

green is the Gaussian distribution estimated from these data, and in red is the Student-t
distribution similarly estimated. Plot (b) shows the same, but with the addition of three
outliers. Notice how both the mean and the variance have been adversely affected in the

Gaussian case, but the Student-t distribution is largely unaffected.

but these would be dependent on knowing the true locations of these physical
objects on the railway map.
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offset

Figure 24: Two example one-dimensional datasets that are matched when the marked offset is
applied to the shorter dataset. We might imagine that the red plot represents the features of a

train journey and the blue plot a section of track.

6.5 Matching a journey to the map

(6.13) Given a set of journey features and the same set of features extracted from a
section of track, we would like a method of matching the journey to a subset of that
track. Given a pair of one-dimensional sets of time-series data, for example, cross-
correlation (referred to in section 5.3) calculates the time offset that maximises
the correlation between the two traces by finding the x that maximises∫

S1(t+ x)S2(t) dt (141)

where S1(·) and S2(·) are the two traces and t is the timestamp index. This is
quickly and conveniently calculated in one step using the Fast Fourier Transform
(FFT). If S1 and S2 are the FFTs of S1 and S2 respectively, and the asterisk
denotes complex conjugation, then the location of the maximum of

S1S∗2 (142)

enables the calculation of the offset x. Figure 24 shows two example one-dimensional
datasets that are matched when the marked offset is applied to the shorter dataset.
We might imagine that the red plot represents the features of a train journey and
the blue plot a section of track.

(6.14) In this example the match is straightforward because the short section is an exact
copy of a portion of the longer dataset. The method will still work with a certain
amount of noise in the measurements of the features (i.e. noise in the y-axis), but
it is unlikely to work if the journey features are compressed or dilated (or made
up of a number of sections with different compressions and dilations) in time
compared with the track. In this case we would like to generalise the expression
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for cross-correlation in (141) as follows Belmont and Hotchkiss (1997); Belmont
et al. (1997); Belmont and Jardon (2000):∫

S1(t+ f(t))S2(t) dt (143)

where f(t) is some function of t that allows for localised compression and dila-
tion. The function needs to be constrained; allowing any function will enable any
journey to be matched to any section of track. Uchida and Sakoe (2005) provide
a survey of other elastic matching techniques. Muller (2007) describes dynamic
time warping and Thanawin et al. (2013) provide a recent paper on dynamic time
warping for big time-series data.

7 Dynamic train tracking

7.1 The forward model

(7.1) We implemented the Sequential Importance Resampling (SIR) filter of Gordon
et al. (1993). To do so, a forward model of the train, f , moving in relation to the
link-node network of the rail system was created.

(7.2) The state vector, x ∈ R4, was defined as follows:

x =


x1

x2

x3

x4

 =


Train line index

Distance along train line x1

Distance moved since last assimilation step
Current track curvature

 . (144)

(7.3) In order to apply a particle filter, it is necessary to have a forward dynamical
model of the system. To do so, we created an artificial rail network similar to that
given in the example of a train approaching a station. The layout of the track
was as shown in Figure 25.

(7.4) The network was split into sections with O(1) length. When a train is within a
small distance of the junction, it will change lines randomly with probability 0.5.
A database of piecewise linear tracks was created to store the curvature of the
tracks, which is looked up depending on the train position at the given iteration.
At each iteration, the train will move a random O(1) distance along the network.
The main lines were numbered 1–4 and the link tracks were numbered 5–10.

7.2 Observations for particle filter

(7.5) The data available for the particle filter are the df and ds measurements coming
from the video camera. We do not use them directly in a frame-by-frame basis.
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Figure 25: Artificial rail network
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Instead, we group together multiple frames so that we have d̄f = O(1), i.e. we
compute the sum of K frames of information so that,

y =

[
d̄f
d̄s

]
=

K∑
j=1

[
df
ds

]
. (145)

(7.6) To use the SIR filter, we must know the structure of the errors in observations.
For simplicity we assume that these errors are Gaussian with covariance matrix
R. i.e.

y =

[
d̄f true

d̄strue

]
+R

1
2 ε (146)

where ε ∼ N (0, I). Hence the errors in the observations y are N (0, R).

(7.7) This Gaussian choice was made for simplicity and is not necessary for the method.
If another distribution is more suitable, it can be used provided the equation to
compute the likelihood of each particle is adjusted accordingly.

(7.8) With this observation structure, we must define the observation operator H, which
will map the state vector into observation space. In this case, H is given by

H =

[
0 0 1 0
0 0 0 1

]
. (147)

7.3 The assimilation method

(7.9) We assume that we have a prior distribution for where the train is. Typically this
will be anchored at the start of the journey in a station, or the track matching
methods discussed in Section 6.5 could be used to obtain this.

(7.10) We will propagate forward in time an ensemble of particles, each of which repre-
sents the same train. The initial ensemble is created by generating multiple copies
of a particle at the known initial point.

(7.11) The SIR filter algorithm is used to assimilate the data, a pseudocode for which is
given below.

• Create initial ensemble {xi, i = 1, . . . , N}.

• Run the following steps.

1. Apply the forward model x = f(x)

2. Read in the data y
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3. Compute the weights of each particle

wi = exp(−1
2
(y −H(xi))

TR−1(y −H(xi))) (148)

4. Resample the particles based on the weights wi.

5. Repeat steps.

(7.12) Resampling is done by implementing stochastic universal sampling Baker (1987).

7.4 The octave (matlab) code

(7.13) The octave code is designed to run a twin experiment. Firstly, it is run with the
logical flag gen data set to true. This will simulate a train running through the
network and output files containing simulated observation data at each timestep.

(7.14) Secondly, the code is run again with gen data set to false. This will use the
simulated data in the particle filter to constrain the particles to follow the same
path as created the original data.

7.5 Results

(7.15)

Figure 26: Simulated forward motion data d̄f

(7.16) Figures 26 and 27 show the simulated data used as observations for the twin
experiment. Note the realistic signature in the curvature data of track switching.
Running an ensemble of 4 members ensured that the ensemble mean precisely
followed the path of the truth run used to generate the data. The results are
shown in Figure 29.
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Figure 27: Simulated curvature data d̄s

(7.17) Note that in doing so, errors accumulated by the forward df measurements are
reset each time there is a large change in the track curvature data.

Figure 28: Track number of train used to create observations

8 Drawing a track map

8.1 The constrained optimization model

(8.1) In calculating the real-time location of a train, having an accurate track map
is fundamental. We look into building a track map from information gathered
through camera and GPS on routine train runs. We do not consider precise equip-
ment such a survey-grade differential GPS equipment, but rather standard GPS
equipment. Such cheap mapping techniques are also important when alterations
are made to the train tracks, as one can obtain new train maps inexpensively.
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Figure 29: Ensemble of particles when simulated observation data has been assimilated into
the model. Note there is no spread in the ensemble with regards which line the particles are on

- all the trains are on the right track!

(8.2) Our approach is that of a constrained and regularized least-squares to draw a
track from a single run. Later in the conclusion, we suggest how to use techniques
in the map inference literature to combine solutions from repeated runs of the
same route.

(8.3) Let u : Rn → R2 be our desired track map, described as a sequence of Latitude and
Longitude coordinate pairs. Let ū be our collected data that has some unknown
noise. The optimization problem that we use to regularize this data and assist in
determining the true track u is given by

min
u
F (u, ū) +R(u)

s.t Physical Track constraints,

where F (u, ū) is the fidelity function which measures the distance between the
data and true track and R(u) is the regularization function that penalizes noise
present. We minimize the Fidelity and Regularizer functions subject to physical
track constraints.

(8.4) Our choice of fidelity function is a sum of weighted L2 norms. Let w ∈ Rn be
weights that determine our confidence in the measured data ū. The weighted L2

norm is defined as

‖u− ū‖L2(w)
=

√√√√ n∑
i=1

wi(ui − ūi)2.

As a short-hand we use ‖u− ū‖L2
:= ‖u− ū‖L2(1)

, where 1 is a vector of ones of
the appropriate size. For each set of observed data ū, we add a L2 norm to the
fidelity function that measures the distance between the solution u and ū. In the
case of the GPS readings ūGPS ∈ R2n, we add the term µGPS ‖u− ūGPS‖L2

to
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the fidelity function. On the other hand, the sequence of forward and sideways
dislocations d̄odo = (df, ds) ∈ R2n as provided by the odometry videos, are not
directly comparable to that of the solution u which is in latitude and longitude
coordinates. Instead, the dislocation pairs (df, ds) represent the tangent vector in
local coordinates. To remedy this, we apply a transformation Tloc : R2n → R2n

that receives coordinates longitude and latitude coordinates u and returns the
tangent field in local coordinates. See subsection 10.1 for details.

(8.5) In choosing a regularizor, we set out to promote the inertia of train and its in-
capacity to make sharp turn. The TV (total variation) norm does just this by
minimizing changes in the gradient, thus “encouraging” the train to maintain the
same direction

‖∇u‖TV =

√∑
i=1

(∆ui+1 −∆ui)2

=

√∑
i=1

(ui+2 − 2ui+1 + ui)2,

where ∆ui := ui+1 − ui.

(8.6) The physical constraint we considered in this initial experiment is to bound the
curvature of the track. Turning to the UK Track System Requirements, the mini-
mum radius for the tracks is given by Rmin = 125m. From each sequences of three
points in our discretized track u, we can find the radius of the circle that intersect
them with the formula

fR(∆ui,∆ui+1) =
‖∆ui‖ ‖∆ui+1‖ ‖∆ui + ∆ui+1‖

2|∆ui × (∆ui + ∆ui+1)|2

=
‖∆ui‖ ‖∆ui+1‖ ‖∆ui + ∆ui+1‖

2|∆ui ×∆ui+1|2

= R.

As large portions of the track have infinite radius, namely the line segments, we
choose to bound curvature κ = 1/R which is bounded between 0 and κmax :=
1/Rmin. Combining the above, we have the nonlinear constrained optimization
problem

min
u
µGPS ‖u− ūGPS‖L2

+
∥∥Tloc(u)− d̄odo

∥∥
L2(wodo)

+ µTV ‖∇u‖TV
s.t 1/fR(∆ui,∆ui+1) ≤ κmax, i = 1, . . . n− 1. (149)

8.2 Numeric Tests

(8.7) We extracted GPS and odometry data, from the data set “LHD DKG data” pro-
vided by RDS, and implemented the objective function and constraint (149) as
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functions in Matlab. To solve (149), we used the fmincon function with the
Interior-point algorithm option. The initial track map we use as input for the
solver is a linear interpolations of the GPS points.

(8.8) The discretization used for u is a refinement of the GPS mesh ūGPS and d̄odo. A
moving average filter with a window of 100 was applied to the odometry data
in an attempt to remove some of the noise present, Figure 30. In Figure 31a is
the plot of the extracted GPS data, though altered so that (0, 0) is the starting
point of the train and transformed to km by the Haversine formula1. The gap in
the path from x = 2.6km to 3.3km is due to a tunnel. Turning to approximately
x = 130s in Figure 30, this tunnel also affected the odometry reading. The GPS
signal was also lost around x = 6km.

(8.9) In Figures 31b, 32 and 33 we have plotted different solutions by incorporating
different parts of the model (149) as to appraise their affects on the solution. By
incorporating the TV-norm and the GPS Fidelity term, In Figure 31b, the solution
interpolates the GPS points and also closes the gaps of lost signal with a smooth
curve. Additionally using the curvature restriction, the solution in Figure 32 has
an apparent displacement from the GPS points. Visually looking at the trail map
from Dorking to Leatherhead, there is displacement between the true trap and
GPS curve. Finally, incorporating the odometry data in Figure 33, the time to
find a solution surpassed an hour on our Intel i5 1.7Ghz personal laptop. The
solver returns a feasible point (one that satisfies the curvature constraint) with
improved objective function over the initial track map.

9 Conclusions and Future Work

(9.1) It is apparent that there are multiple directions along which the aforementioned
works could be enhanced and improved. This will constitute future work, resulting
in an improved video odometry system that will yield operational and technical
improvements over the existing system. Some of these ideas are as follows:

9.1 Enhancements to the work presented in Section 4

(9.2) The method implemented here is not readily applicable to a realistic scenario,
as was noted earlier. Work has to be done on how best to choose a measure of
distance between two curves in the camera image. The assertion made that“the
combined errors introduced in theta, phi, psi, and camera position Y and Z have
the same effect as a 2D rotation and translation” needs to be verified. If it checks
out to be true then one can build a basis for 2D rotation and translation to use

1http://en.wikipedia.org/wiki/Haversine formula
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Figure 30: The forward and sideways displacement extracted from odometry.

(a) The GPS coordinates in Kilometers, starting
point set arbitrarily to zero

(b) The solution to
minu ‖u− ūGPS‖L2(w)

+ ‖∇u‖TV

in the method detailed. Finally there would then be the possibility to use the
determinant that appears in the method to study optimal position of the camera.
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9.2 Enhancements to the work presented in Section 5

(9.3) We believe that more thought could go into the work described in this section. In
particular: (a). What signal would be best to match to – curvature, (x, y), or dSD
and dFD? (b). What qualities should a signal have to make this signal matching
type of method work? (c). How could these qualities be measured? E.g. entropy
or surprise of a signal. (d). Include the quality measure Q in the calculation
of the cross correlation. (e). Investigate elastic matching and dynamics warping
to make the cross-correlation more adaptable to changes in the signal between
different runs.

(9.4) Angle Measurement

We suggest that in addition to FD, SD and Q the system could also measure the
angle of the rails. This could be done either in the warped or unwarped image. It
would probably be good to exclude the parts of the image away from the rails.

It should be possible to use image processing to detect and isolate the rails (also
the sleepers). The angle of the track in the image is related to the curvature
of the track. This measurement can be taken from a single frame (FD and SD
require comparing two consecutive frames). Unless the lighting conditions are
very bad, the rails should stand out very clearly and the measurement should be
very reliable. This measurement should also be fairly independent of the small
scale movements of the train.

The angle φ is assumed to be small (sin(φ) ≈ φ). We have sin(φ) = L
R

= Lκ, so
that

κ ≈ φ

L
. (150)

In principle a parabola or a circle could be fitted instead of a line to obtain second
order information directly from a single frame. However, this can only work if the
camera is pointing far enough ahead of the train.

Note that the positions of the intersection of the rails with the edge of the image
do depend on the small scale movements of the train. These positions may be
useful, but their measurements can be expected to be quite noisy.

(9.5) Methods for Displacement Measurement

Techniques similar to those explained in the curve matching section could be
used to find FD and SD. Their values could be determined so as to minimise
the difference between two consecutive (unwarped) frames. It is possible to also
include rotation, again by a constrained orthogonal Procrustes problem. Whereas
the curves were represented by lists of points, an image can be thought of as a list
of points with weights.

A distance metric for two images can be defined by the mean squared difference
between the weights of corresponding points in the region where the two images
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overlap. For M×N images this can be calculated in O(MN log(MN)) operations
via a 2D FFT (see cross-correlation section). The weights of each pixel could be
intensities (grey scale levels), but it would probably be better to do some image
processing first (e.g., contrast enhancement, histogram equalisation, thresholding,
edge detection, elimination of lighting effects, etc.) Some of these image processing
steps could be done in Fourier space.

To handle noise better, it may be beneficial to consider more than 2 frames at a
time. It is also possible to use a Kalman filter or other filtering techniques.

9.3 Other possible enhancements

(9.6) An interesting direction to take could be to build a software simulator for the video
odometry system in action. This would enable RDS to investigate the effects of
different types of trains, video positions, train motions, track characteristics, etc..

(9.7) With the information available from running once through a certain track (GPS
and possibly odometry readings), one should use a constrained regularized least-
squares routine to build a single viable track. From repeated runs of the same
track, it is possible to have a collection of possible tracks. Next, one can borrow
ideas from the“Road map inference” literature on how to combine these multi-
ple track runs into a single viable track. When adapting these road inference
techniques to train tracks, it will become necessary to incorporate the physical
constraints of trains, e.g., different from road maps, there are no sharp corners in
tracks.

10 Appendices

10.1 Drawing Track Map Appendix

(10.1) The transformation Tloc : R2n → R2n from latitude and longitude coordinates to
local tangent coordinates is composed of two steps. The first transforms Lati-
tude and Longitude coordinates into kilometers on a North-South and East-West
plane. The second step brings these North-West coordinates to the local coordi-
nates used in the odometry reading. The odometry reading does not supply the
“up and down” motion of the train, in contrast to Latitude and Longitude coordi-
nates which specify a point in three dimensional space. Therefore to compare the
forwards and sideways dislocations to Latitude-Longitude coordinates, we assume
that the distance of the desired track is such that the curvature of the earth is
negligible.

(10.2) With this simplification, we can assume that all track maps points are in the same
tangent plane to the earth, with a common North-South and West-East bearing.
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The difference in kilometers between Latitudes and Longitudes of sequential points
is assumed to be in the North-South and West-East orientation, respectively. To
calculate distance, we use the Haversine formula2. Specifically, given Latitude
and Longitude coordinate pairs ui−1 = (u1i−1, u

2
i−1) and ui = (u1i , u

2
i ), the resulting

difference in kilometers on the North-South East-West plane is calculated by

∆u1i = Haversine Distance
(
(u1i−1, u

1
i−1), (u

1
i−1, u

2
i )
)

∆u2i = Haversine Distance
(
(u1i−1, u

2
i−1), (u

1
i , u

2
i−1)
)

(10.3) To transform from distance in kilometers on the North-South East-West plane to
local coordinates we use the previous direction vector ∆ui to define the axis of a
plane, then figure out the coordinates of ui+1 on this plane. In detail,

∆uloci+1 =

(〈
∆u⊥i ,∆ui+1

〉
‖∆iu‖

,
〈∆ui,∆ui+1〉
‖∆iu‖

)
,

where ∆u⊥i is a perpendicular vector to ∆ui, specifically ∆u⊥i = R(π/2)∆ui where
R(π/2) is a rotation of π/2 in the clockwise direction. This transformation to
∆uloci+1 brings u to the same coordinate system as d̄i+1 so that they are directly
comparable.

2http://en.wikipedia.org/wiki/Haversine formula
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Figure 32: Four close-up frames solution to (149).
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Figure 33: The solution to minu ‖u− ūGPS‖L2(w)
+ ‖∇u‖TV +

∥∥Tloc(u)− d̄odo
∥∥
L2(wodo)

, s.t.

Curvature(u) ≤ κmax
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