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Executive Summary

The problem of scene content in moving images was brought by Aralia.
The goal in this study group was to consider two problems. The first
was image segmentation and the second is the context of the scene.
These problems were explored in different areas, namely the Bayesian
approach to image segmentation, shadow detection, shape recognition
and background separation.
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1 Introduction

(1.1) Automated scene content analysis is a software analysis programme that is
widely used in the surveillance and security industry. It is the detection
and determination of events, both spatially and temporally, from a scene.
The motivation for the software is the ability of the biological visual cortex
to separate a spatio-temporal event of interest (the foreground) from the
uneventful scene in which it takes place (the background). The primary ap-
plication of this software, for Aralia, is to provide high-tech security solutions
in airports, rail networks, cities, ports and many more locations.

(1.2) Aralia’s technology is specifically designed for object detection and tracking,
perimeter surveillance, left luggage detection, crowding, loitering, infractions
and counting statistics. The scene analysis consists of a number of steps:

1. comparison of the first-order derivatives of current and average scenes
to determine regions that may contain objects that have moved in the
scene,

2. identification of all pixels in the scene that are significantly ‘different’
from the average background,

3. rigorous segmentation of the changed pixels,

4. a coalescing process on the segments that reconstructs moving objects
in the scene,

5. classification of the objects from their characteristic signatures deduced
from the coalesced segments, and

6. testing of the classification results against their scene context.

(1.3) This strategy has a number of advantages. By comparing the first-order
derivatives, that is, the changes from one frame to another, it is only the
moving regions of the scene that are analysed. Hence, moving objects are
easily detected and separated from the more static background. Further-
more, by working solely with the moving images, this may significantly in-
crease the efficiency of the analysis as this often represents a small proportion
of the scene. Analysis, including segmentation, of the changing pixels due
to a moving object allows for object classification without resorting to more
complex algorithms. Finally, by testing the classifications against the scene
context, Aralia report a reduction in the incidence of false classifications by
an order of magnitude.

(1.4) However, there are also a number of drawbacks to this strategy. An object
that is brought into the scene may be detected by its movement. However, if
such an object remains stationary in the scene over a long period of time, it
becomes difficult to detect. In effect, it may become part of the background.
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In many cases it becomes difficult to determine the scene context, the back-
ground. Shadows, reflections and weather play an important role in a scene,
both spatially and temporally, e.g., shadow in an outdoor scene moves and
changes in size slowly during the day, yet a sudden snowfall changes a scene
dramatically in a short time interval. In addition to this, the intensity of nat-
ural light changes during the day, distorting the colour information. Moving
surveillance cameras present a further problem by removing a fixed refer-
ence frame for the background. Finally, segmentation loses its precision for
objects that are close to one another.

2 Problem statement

2.1 Scope of the Problem

(2.1) The goal of the study group is to consider some proposed techniques to
improve the information extracted from a scene, as well as exploring new
techniques for the problem.

(2.2) There are two main areas of the problem that Aralia wish to focus on. The
first is on image segmentation. Currently, it is performed by maintaining
two moving averages of the scene. Aralia propose segmenting the moving
images and then coalescing them using additional information such as a
3D depth map, a 2D or 2.5D texture of principal component analysis of
illumination. An important part of image segmentation to be considered is
shadow detection.

(2.3) The second area is the context of the scene. Aralia apply scene content rules,
typically to prevent impossible situations from arising. This includes people
moving at too high a speed or objects changing their classification. Aralia
wish to extend context analysis by identifying specific objects within the
scene. Identification of the types of static objects in a scene may then be
useful as a method to identify or narrow-down the full context of the scene.

2.2 Aspects considered during the Study Group

(2.1) We consider a new technique for image segmentation, using a Bayesian in-
verse problem approach. This requires a prior, i.e., an idea of the background
context of the scene. This is achieved using an averaging process of the raw
video data. A further method for image segmentation is via a low-rank sparse
matrix decomposition, specifically a Robust Principal Component Analysis.

(2.2) Shadow detection and removal is considered using a variety of techniques.
We discuss their merits and drawbacks, and consider improvements using a
combination of techniques.
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(2.3) Object classification is explored via Deep Learning algorithms.

3 Image Segmentation

3.1 Inverse Problem Formulation

(3.1.1) We consider the simple problem of background and foreground separation
in image segmentation. Given the foreground at time n, denoted by a
column vector unf , the foreground at time n+ 1 is given by

un+1
f = unf + ηn+1, (1)

for some ηn+1. The image, denoted by a column vector un, is being ob-
served, and is given by

un = unf + unb , n = 1, · · · , N, (2)

where unb is a column vector which denotes the background at time n.
We model the background as a random term, governed by a Gaussian
distribution, that is, we have

unb ∼ N(unb ,W
−1
n ), (3)

where unb and W−1
n is the mean and covariance of the background at time

n. The task is then to estimate unf for n = 1, · · · , N .

(3.1.2) Since it is unclear how ηn+1 is determined, it would seem reasonable to
model ηn+1 as a random variable governed by a probability density func-
tion. Nevertheless, for simplicity in this problem, we use an averaging
technique described in Section 3.3 to compute ηn+1.

3.2 Solution using Bayesian Inference

(3.2.1) The Bayesian approach to solve an inverse problem involves treating the
parameters and variables as random variables. In this sense, the task is to
determine the probability density for unf given the image.

(3.2.2) In order to do this, we first specify a prior density for the initial state,

u0f . We construct a Gaussian for the prior density, with mean u0f and
covariance L−1. The probability density of u0f , π(u0f ), is given by

π(u0f ) = z exp

(
−1

2
(u0f − u0f )

TL(u0f − u0f )
)
, (4)
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where z is a normalisation constant.

(3.2.3) Then, it follows that the foreground at each time step, unf , is Gaussian,
and the mean and precision (or inverse covariance) updates are given by

Ln+1 = Wn + Ln, (5)

Ln+1u
n+1
f = Wn(un+1 − un+1

b ) + Ln(ηn+1 + unf ). (6)

For more details, we refer the reader to [1].

3.3 Updating the Background

(3.3.1) The background is required as a prior for the Bayesian inverse formulation
of the problem. We consider two approaches to calculating the background
image by way of first-order changes in the scene. First-order changes are
significant differences, at the pixel level, between subsequent frames.

3.3.1 First Approach

(3.3.2) Our first approach to separating the background and foreground (1) arises
from considering how the background scene changes due to a moving ob-
ject. An object of interest in one frame appears as a still object. It covers
up a part of the background scene, blocking all information behind it in
that one frame. In a subsequent frame, this moving object now covers up
a different section of the background scene. We can track the movement of
the foreground object by comparing subsequent frames, whereby the mov-
ing object of the foreground is the first-order change in the scene between
two frames,

un+1
f = un+1 − un. (7)

(3.3.3) Working with this sequence of foreground frames, {unf}, tracking the mov-
ing image, we can extract a sequence {unb } of partial background images
available in each frame from (2), where

unb = un − unf . (8)

(3.3.4) As described, each frame in the sequence of background images, {unb },
gives a partial description of the background. However, as the foreground
object moves in the scene, it reveals background from behind and covers
background as it moves forward. The full background may be computed
by running a long-time average of the background sequence, {unb },

ûnb =
1

n

n∑
i=1

uib, (9)
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where ûnb is the average background after n frames.

(3.3.5) This method is successful when the number of frames is large so that the
background information lost by an object moving in the scene is averaged
out, in the sense that there are many more frames in the video that include
the actual background in each location.

(3.3.6) There are limitations to this method, such as if an object moves into the
scene, or is moved within the scene, but then remains still in the scene,
e.g., a person walking on a platform and stopping to wait for a train, or
a chair is moved to another location. The algorithm gradually recognises
the object by its outline, with the actual background appearing within this
outline. In essence, it is like a ghost in the scene. It eventually becomes
part of the background. This can be seen in Figure 1.

Figure 1: An empty scene (top left) shows the full background image of a train
platform. After some time, a person enters the scene, walks around and eventually
stands still on the platform (top right). The algorithm of computing the partial
background average (9) recognises the person. However, when the person remains
static for a period of time, their outline become part of the background (bottom,
in greyscale).

5



Segmentation and Scene Content ESGI107

(3.3.7) A solution to this problem may be to keep a running average of the back-
ground, but also more local (temporally) averages of the background, for
comparison. These more local averages are less affected by the change in
daylight and movement of shadows. Further comparison, by first-order
changes between the local and long-time averages may give insight to how
the background has changed over time.

3.3.2 Second Approach

(3.3.8) The second approach takes into account the appearance of new objects,
or movement of existent objects, that remain static in the scene for a
significant period to time.

(3.3.9) From (1) and (2), we have

ηn+1 = (un+1 − un)− (un+1
b − unb ). (10)

For this reason, it is reasonable to take ηn+1 to be the difference of the
change in current and previous images, and the change in the mean of
current and previous backgrounds. We then have

ηn+1 = (un+1 − un)− (un+1
b − unb ), (11)

where the background mean is updated as described in the following para-
graphs.

(3.3.10) At time n + 1, we want to update the background, unb , using the new
observation, un+1. To use this method we need an initial background u0

b

which we will update to capture the variation of the background. Treat-
ing the greyscale images as integer matrices, the equation to update the
background can be written as:

un+1
b =

cnu
n
b + un+1

cn + 1
◦ (I−αn+1) + unb ◦αn+1 (12)

where ◦ denotes the Hadamard product and unb and un are the matrix
representations of the pixel values of the background and whole images re-
spectively. The matrix αn+1 is defined as αn+1(i, j) = f (|un+1 − unb |(i, j))
where f(x) is a non-decreasing function that satisfies f(0) = 0 and f(x) =
1 ∀x ≥ σ. A non-zero value reflects a significant change in pixel value at
that point in the image, suggesting an object is moving. The constants,
{cn}, are parameters of the algorithm.

(3.3.11) The main goal behind this algorithm is to take advantage of the good prop-
erties of averaging the values in the background but removing what we call
ghosts. Ghosts are dark blurry silhouettes that appear when a moving ob-
ject stands still for enough time. This is because when averaging the value
of the pixels to get the background, the moving object introduces a steep
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variation of the value of those pixels and distorts the average. The idea is
to take the weighted average of the background and the new image only
for the pixels where the change is smaller than a threshold, σ, determined
by αn+1. This should allow us the capture the changes in illumination but
remove the ghosts. This method can be easily extended to colour images
using three-dimensional arrays. Working in colour images usually provides
better results as we compare colours in a three-dimensional space instead
of their projection to a one-dimensional space.

3.4 Examples

(3.4.1) We applied the method of Bayesian inference to a dataset provided by
Aralia for the purposes of the study group. We used 581 frames of size
640 × 480, and a time-independent background mean was used, defined
to be a frame in the dataset, and the covariance of the background was
set to be a diagonal matrix for simplicity, where each component variance
computed as the variance of the background mean. This corresponds to
considering the background as white noise.

(3.4.2) The prior mean is the zero vector, with prior precision matrix L = 0.01I,
where I is the appropriate identity matrix, and L−1 is the covariance. This
represents a white noise prior with component-wise variance of 100. We
updated the mean and precision using the update formula given in (5)
and (6). Although the dataset given were frames of RGB, for simplicity
and limited computational resources, we decided to work on the greyscale
frames instead.

(3.4.3) For the dataset 11817BWI 139, we began from frame 0901 and used frame
0900 as the background mean. Figures 2–6 show scaled image plots at
particular time steps.

(3.4.4) At observation n = 151, we observe a man coming onto the platform hold-
ing a suitcase, and this is segmented as the foreground by the algorithm.
The man then sets down his suitcase and therefore it remains stationary
for long periods of time. In the following frames, at n = 251, 351 and
451, the bag remains stationary but does not fade into the background, as
the knowledge that the bag is part of the foreground is preserved by the
algorithm. At n = 451, we observe the shadow of a person coming into
the scene. In the image, only his shadow is visible. Such an observation
questions the necessity of shadow detection and removal procedures as it
may remove significant information in a scene.

3.5 Future work

(3.5.1) We have considered a simple case of image segmentation in this section,

7
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Figure 2: Observed image and foreground after 1 observation.
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Figure 3: Observed image and foreground after 151 observations.

and defined it as the separation of the foreground from the background.
One possible extension of this approach would be to rerun the simulations
on the dataset using a time-dependent background mean and covariance,
where the mean and covariance will be updated with time. At the mo-
ment, numerical simulations suggests that the approach detects shadows
of stationary objects in the background which move through the day as
the position of the Sun changes. In this regard, Section 4 may be useful
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Figure 4: Observed image and foreground after 251 observations.
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Figure 5: Observed image and foreground after 351 observations.

to eliminate such artefacts to improve background and foreground sepa-
ration. Nevertheless, it is questionable if the shadow removal techniques
should be applied to remove all shadows in a scene, in particular shadows
of actively moving objects in the foreground, as it is believed that such
shadows may content significant information within a scene. It is suggested
shadow removal techniques should be embedded into the image segmen-
tation algorithm described here to segment the background, foreground
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Foreground at n=451

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Obs at n=451

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 6: Observed image and foreground after 451 observations.

and shadow instead of merely the background and foreground. This will
enable us to keep track of the shadows, will should be more beneficial in
terms of extracting scene content from images.

(3.5.2) Finally, more research could be done to examine the Bayesian approach to
image segmentation and scene content, as it provides a systematic frame-
work to integrate the prior knowledge of a particular scene with current
observations.

4 Shadow Detection and Removal

4.1 Introduction

(4.1.1) Shadows have been a big issue in image processing over the past few
decades, in particular due to the undesirable problems they bring to im-
age segmentation algorithms. In surveillance systems at a train station,
for instance, or on a moving overground, the presence of shadows may
jeopardize an effective detection of immobile luggage that may constitute
a potential threat.

(4.1.2) Our aim is to detect and remove shadows from a single 2-D image. With-
out 3-D perception, we can only rely on the colours to detect shadowed
regions. A shadow can be defined as a part of the image that is not directly
illuminated by a light source due to an obstructing object. Based on the
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intensity, the shadows can be classified as soft (retaining the texture of
the background surface) and hard (retaining almost no texture). From a
single 2-D image it is difficult to distinguish between hard shadows and
dark objects. Therefore, we will focus on soft shadows only.

(4.1.3) In the following, we briefly discuss two methods proposed in the litera-
ture ([11], [12]). Subsequently, our approach “Shadow removal using the
Orthogonal Plane” is presented, followed by some suggestions and im-
provements.

4.2 Shadow detection using the YCbCr colour space

(4.2.1) We implemented a method for shadow detection based on the one proposed
in [11], which uses the luminance Y as follows:

• convert the image from the RGB colour space to the YCbCr colour
space, where Cb and Cr denote the blue-difference and red-difference
chroma components;

• compute the average µ and the standard deviation σ at Y channel;

• the pixels with luminance below µ − σ are classified as shadow
points.

(4.2.2) This method produces a binary matrix with the classification of the shadow
(white) and non-shadow regions (black) which can be seen in Figure 8.

Figure 7: Original image of a train station platform.

(4.2.3) The detection works reasonably well, however it appears to fail to detect
the shadow in the snowy regions (Figure 8).

4.3 Shadow removal using the LMS colour space

(4.3.1) We studied a paper on visual difference prediction from psychologists [12],
suggesting a special transform of the pixels of the image based on the way
the visual cortex perceives colour:

11
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Figure 8: Binary shadow image.

• convert the image from the RGB colour space to the LMS colour
space;

• compose a greyscale image with pixels equal the following values:
L−M
L+M

.

(4.3.2) The LMS color space represents the response of the three types of cones
of the human eye, named after their responsivity (sensitivity) at long (L),
medium (M) and short (S) wavelengths.

(4.3.3) It is believed that this transformation makes shadows less visible, helping
the human being to distinguish them from real objects. This approach is
promising for the first sample provided (Figure 10). However, this method
does not seem to work well in general as we can see in Figure 11, although
it is not clear why this is so.

Figure 9: Original image of a girl.

4.4 Shadow removal using the Orthogonal Plane

(4.4.1) The observation that the previous transformation works apparently quite
well for some images but not so well for others suggests the use of a different
transformation on each image. We then tried to compute the transforma-
tion that minimizes the presence of shadows as follows:

12
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Figure 10: Image obtained from Figure 9 by applying the transformation described
in [12].

Figure 11: Image obtained from Figure 7 by applying the transformation described
in [12].

• Pick two pixels in the RGB colour space from the image (this pro-
cess may be automated, see Section 4.5): pixel p1 of the shadowed
region and pixel p2 of the non-shadowed region of the same surface;

• Compute the vector v := p2−p1 and the plane Π orthogonal to v;

• Project all pixels of the image onto Π.

(4.4.2) The idea is that the shadowed and unshadowed pixels will project to the
same point on a plane and therefore they will look the same in the resulting
image.

(4.4.3) However, we encounter some problems. Various pixels of the shadowed and
unshadowed regions vary in colour. It is not guaranteed that other shad-
owed and unshadowed pixels, different from p1 and p2, will still project to
the same point. However we hope that their projections will still be very
close to each other and the visibility of the shadow will be very low. This
problem may be minimized by subdividing the image and applying this
method to each part.

(4.4.4) Another problem is the light variation within the image and, consequently,
the existence of different types of shadows. The vector v will depend
greatly on the source of light and significantly on the reflection properties
of the particular surface from where p1 and p2 were choosen, consequently,

13
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v will be optimal for one shadow but may not work for other shadows.
This problem may be overcome by adjusting the vector v depending on
the mean luminance of the image (or some other global parameter of it).
We did not have time to investigate this correction.

(4.4.5) Finally, for some images the projection becomes too blurred. In that case
the resulting image becomes useless for segmentation algorithm. In that
case some other algorithm is needed to remove the shade.

(4.4.6) We applied the procedure to both images from Figures 7 and 9. This
produced the results depicted in figures 12 and 13, respectively. As we
can see, the shadow is indeed much less visible as expected, however it
does not disappear completely, especially near the boundary with the non-
shadow regions (see figure 12). As in [11], we may smooth the boundary
by applying a Gaussian mask. This may increase its applicability to image
segmentation algorithms. On the other hand, contrarily to the image in
Figure 11 produced by the previous method, the image in Figure 12 is
much more clear.

Figure 12: Image obtained from Figure 7 by applying the method of the Orthogonal
Plane.

Figure 13: Image obtained from Figure 9 by applying the method of the Orthogonal
Plane.

4.5 Improvements and future work

(4.5.1) In order to automate the first step of picking two pixels in Section 4.4,

14
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we may use the shadow detection algorithm described in Section 4.2 as
follows: two adjacent points of the binary matrix with values 1 and 0,
respectively, are selected. Those points correspond to two pixels on the
same surface with and without shadows, respectively.

(4.5.2) Finally, combining the ideas discussed before we get the following proce-
dure:

• Shadow detection using the YCbCr colour space (computing the
binary matrix);

• Subdivide the image in parts and compute a “good” orthogonal
plane for each part by using the binary matrix;

• Shadow removal using the Orthogonal Plane;

• Apply a Gaussian mask to the shadow’s boundary.

(4.5.3) There was no time to implement this last method nor the corrections and
improvements discussed above, whereby we leave them for future work.
Nevertheless, since the idea behind the ”Shadow removal using the Or-
thogonal Plane” is to find a transformation that makes the shadowed and
unshadowed points to look the same we expect it to work reasonably well in
general. This procedure should now be more rigorously compared to other
methods presented in the literature, in particular with the one proposed
in ”Describing Reflectances for Colour Segmentation Robust to Shadows,
Highlights and Textures” [13], which seems to be efficient as well as quite
successful on dealing with shadows.

5 Shape Recognition

5.1 Deep Learning

(5.1.1) An approach for shape recognition is to classify segmented objects by de-
termining their shape signature and then comparing it against an existing
set of known shape functions. To determine the shape signature of some
closed area Ω, we assume that Ω is star-shaped with respect to its centre
of mass O. Then, we can parametrize the boundary ∂Ω with respect to
O using some function r(θ), θ ∈ [0, 2π), and so we call r(θ) the shape
signature of Ω.

(5.1.2) For a given set of parametrizations {s1, . . . , sn} of shapes, we can refor-
mulate the problem of recognizing a shape with given signature f as the
minimization problem

min
s∈{s1,...,sn}

min
θ∈[0,2π)

∥∥∥∥fs − 1

2π

∫ 2π

0

f(θ + φ)

s(φ)
dφ

∥∥∥∥ . (13)

15



Segmentation and Scene Content ESGI107

Note that the shape signature is unique, if the given area satisfies the con-
ditions outlined above. Also, the minimization problem is independent of
the scaling of the signature. Recognizing a shape by its signature is a valu-
able theoretical concept but is not suitable for real-world applications, as
the shape signature heavily depends on the underlying image segmentation
and comparing a given signature against a set of signatures is computa-
tionally expensive. Furthermore, shapes in real-world images are usually
projections of three-dimensional objects, thus they depend on the angle of
the projection of the object. To make use of the shape signature in this
instance, a catalogue of all signatures for every projection angle would be
necessary, this is in general not feasible.

(5.1.3) Motivated by the famous problem ”Can one hear the shape of a drum?”,
we also thought about characterising shapes by solving a linear, time-
dependent scalar partial differential equation (PDE) with the shape being
the domain and zero Dirichlet boundary conditions and then using the
average value over time as the signature. As an example, we solved the
heat equation

ut −∆u = 0, (14)

subject to
u(x, 0) = img(x) and u = 0 on ∂Ω, (15)

where img(x) is the {0, 1}-valued function arising from the image seg-
mentation, and used the average temperature ū(t) as the signature of the
shape Ω. This ansatz has the advantage that it is independent of the 2-
D rotation of the shape and is more stable with regard to noise than the
shape signature, it also does not impose any conditions on the shape of the
area. However, the signature obtained by solving the heat equation is no
longer unique and at the same time numerically expensive. Nevertheless,
the general idea, combined with some refined PDE, might be of interest
for offline classification problems.

6 Background separation

6.1 Motivation

(6.1.1) Given a surveillance video, we want to be able to separate out the static
background from the dynamic foreground, both of which may be of inter-
est. Separating the background from the foreground may provide useful
context in object classification, since very different objects exist in the
background (chairs, signs, rail) and foreground (people, bags).

(6.1.2) Whilst the background is almost constant, the fact that it is expected to
change slightly throughout the day—e.g., due to the sun—means that we
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cannot simply look for a video frame of an empty station and use this as the
background. The reason for this is that we are obtaining the foreground by
subtracting the background from the scene, which would pick out regions
of changed lighting as foreground elements. In addition, we would like our
method to be as widely applicable as possible, and do not want to make
the assumption that an empty scene is ever observed.

6.2 Inpainting Method

(6.2.1) The intention of this approach is to generate a set of baseline images that
could be used to represent the background of a particular scene and to
represent this background in a reduced format by means of a Principal
Component Analysis (PCA). By comparing a scene’s principal compo-
nents (background and background+foreground), we hypothesize on the
possibility of quickly detecting any aberrations of a scene, such as the pres-
ence of anomalous stationary objects or moving objects (people). In some
ways the initial stage of the analysis, which we have termed “Inpainting”,
overlaps with the method of the next section, but in other ways is distinct.
During the week of the study group we only succeeded to complete the
first element of the program: that of developing an in-principle method
of generating a set of baseline images. The second goal, of developing an
algorithm that would extract for comparison a set of underlying principal
components of the background image set, was only was drafted but not
tested.

(6.2.2) With regard to the overall aim of the proposal, there are some of difficult
aspects that need to be considered.

1. Firstly, there is the problem of achieving the initial goal of produc-
ing a set of clean background images. In an operational setting it is
not possible to assume that one can identify a time instance when
the scene in question is devoid of extraneous objects.

2. Secondly, it is not possible to assume that one knows a priori how
a scene is supposed to appear. That is, any devised method must
work independent of knowledge of stationary object features. In-
deed, there exist the possibility that elements of the background
scene (location, form and structure of public seating or litter bins,
or signage, etc.) could be altered during filming. The possibility of
such sudden scene changes need to be considered and a means of
modifying the background set of images and new principal compo-
nents.

3. Finally, for outdoor scenes one needs to consider the natural day-
time variation resulting from the movement of the sun (the prin-
cipal light source), such as the associated movement of shadows
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of stationary objects. Similarly, there is a possibility that between
dusk and dawn, new light sources, i.e., the onset of artificial lighting
becomes significant and eventually dominant, which will introduce
sudden changes to the scene.

(6.2.3) Such complications require consideration in any analysis but particularly
in the implementation of the method proposed in this section. The natural
variation of a scene due to sunlight changes, for instance, can be accommo-
dated by the procedure outlined below. For surveillance cameras capturing
an outdoor public transport facility, the aspect of lighting condition and
shadow position changes following the relative movement of the sun’s posi-
tion can be taken into account by accumulating a finite set of background
images that is continually being updated with time. The premise for this is
that natural lighting variations and stationary object shadow movements
occur on a much longer timescale than variations due to embarking and
disembarking commuters or arrival and departure of transport vehicles.
Thus, with a continually updated set of background images one can pro-
duce an evolving set of representative principal components, that reflects
the long term time scale variation in lighting and shadow position. Sudden
changes in background object setting due to human intervention or sudden
light source changes may require more sophisticated approaches.

6.2.1 Inpainting: Algorithm and Implementation

(6.2.4) During the week of the Study Group, we did not attempt to produce a fully
automated way of identifying an initial foreground-free image. Instead,
we generated a set of background images based on the assumption that
at least one image is available. The problem of producing this image
autonomously remains to be solved. Thus, the underlying assumption for
the method proposed in this section is that at least one clean background
image is available. Let this image be denoted by I0.

(6.2.5) The fundamental goal here was to develop a procedure that would generate
a set of training images that could be used to fully characterize the back-
ground of a video scene. As mentioned above, one fundamental difficulty
that needed to be overcome was that of establishing a portfolio compris-
ing a sufficient number of images containing only background information.
Thus, the need was to capture only images devoid of any transient objects
(people, trains, etc., moving in or out of the scene) that would otherwise
interfere with the background scene characterization. As also mentioned,
the method devised needs to be mindful of any natural scene evolution
such as long term lighting variations and shadow movement.

(6.2.6) The approach taken during the study group can be summarized in the
following algorithm:
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• Load a set of n < N images, {Iα}nα=1, from a video stream, where N
is the number of frames. In a real application, this would performed in
blocks, stepwise during operation.

• Identify at least one image, call it I0, which contains only background
data. (This was assumed during the study group, but needs a pre-
processing stage in an actual application.)

• Set mean image I = I0.

• Assign I0 to the set of background images, B.

• Compare sequentially image Iα for α = 1, . . . , n with image I: is ∆α =
‖Iα − I‖ < ε? Here, ‖·‖ is a given matrix norm and ε > 0 is a threshold
value.

Yes: • Assign Iα to B.

• Update I = 1
m

∑m
β=0 Iβ, where m = size(B).

No: • If ∆α(i, j) 6= 0, set Iα(i, j) = I(i, j) for pixel (i, j).

• Assign revised Iα to B.

• Update I = 1
m

∑m
β=0 Iβ.

(6.2.7) The above algorithm is applied to each new block of m images in order to
keep I in sync with the long term variation of lighting conditions.

(6.2.8) An example of this process is shown in Figure 14 which depicts a typical
original image, difference image and an updated background image (left,
middle and right panels, respectively). Note that for simplicity in the
implementation during the study group, we used the preceding, updated
image Iα−1 as I in the above steps rather than the true mean.

6.2.2 PCA of Background

(6.2.1) The aim of this exercise is to produce a succinct descriptive measure of
the background to a scene. Using this measure, we should base any de-
viations in scene content. During the study group, only a skeleton code
was developed. This was, however, not tested nor refined for any specific
application. With regard to applications, there are several directions that
could be considered. These are listed at the end of this section for future
consideration.

(6.2.2) The method of principal component analysis (PCA), also called the dis-
crete Karhunen-Loève transform, is essentially a statistical version of the
eigenvalue-eigenvector representation of a discretized linear operator. Given
a set of observations, the PCA attempts to represent the variables by a
set of linearly uncorrelated “principal components”. The representation
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Figure 14: Example of the results of the Inpainting algorithm. Left panel shows
a still from the original image sequence Iα, the middle panel shows the difference
image ∆α, which highlights the image of a man walking along a railway platform
and the right panel shows the updated background with man and shadow deleted,
I.

is such that the most significant component is the first one, subsequent
components appear in order of decreasing importance.

(6.2.3) Consider a matrix of observations of an array of sensors, X, where the n
rows are sensor observations, x(i), and the p columns represent the sensors.
A PCA attempts to map the row vectors into new vectors which are the
principal component scores t(i):

tk(i) = x(i) ·w(k)

where the weights w(k) are determined through the Rayleigh quotient op-
eration:

w(1) = arg max
wTXTXw

wTw

with subsequent weights defined by first following a Gram-Schmidt orthogonalisation-
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like procedure defined via the ”orthogonalised” matrix

X̂k = X−
k−1∑
m=1

Xw(m)w
T
(m)

and then reapplying the Rayleigh quotient operation to X̂.

(6.2.4) What is effectively achieved through this process is a matrix equation

T = XW

where W is a p× p matrix of eigenvectors of XTX.

(6.2.5) For the ultimate goal of a principal component analysis of our background,
one may consider three possible directions. We outline these below. Al-
though no option was properly explored during the study group, these
options nevertheless offer opportunities to be followed up by the industry
partner.

1. For the matrix X, one could take the sequence of background stills de-
termined through the previous process (Section 6.2), varying over a time
period commensurate with the long term variation of lighting. Thus,
the repeat observations are represented by the images in the set and
the pixel content of each image (repeated across images) adopts the role
of the sensor information. With this application the derived principal
components would represent the variation of the scene with time.

2. As a variant of the previous option, one partitions the image into sections
(both vertical partitions and rectangular block partitions were discussed).
One then applies a PCA to each partition of the set of images. Again,
the subset of principal components for each partition would describe the
variation of that partition with time. The rationale for partitioning the
image into sections is to achieve more efficient comparison with sub-
sequent background+foreground images wherein sudden scene changes
occur. The expectation is that not all of the image will be altered with
the appearance of a foreground object. Consequently, only one or more
affected partitions would need further scene analysis.

3. Considering the mean image, X = (1/N)
∑

i Xi, from the training set,
{Xi}, of background images in Section 6.2 as the matrix X, the princi-
pal components derived would represent, in concise form, the dominant
characteristics of the background. This concise data would then form
the basis of comparison with all new images, in order to rapidly iden-
tify a variation in the image. Given that the training set and hence the
mean image would be continually updated as mentioned in Section 6.2,
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the principal components would similarly evolve in time and provide a
current descriptive summary of the background scene as lighting and
shadows gradually change during the course of a day.

4. As a variation of the last item, PCA analyses could instead be applied
to partitions of the mean image, X. The system of time-evolving, rep-
resentative principal components would then be utilized in comparisons
with corresponding partitions of new images. As in point 2 above, this
would offer a more efficient program of further scene analysis.

6.2.3 Future Work

(6.2.1) Two aspects need immediate addressing. The first is to establish a means
of generating at least one clean scene image as initial input into the training
set of background images. We have worked on the assumption that such
a scene exists, but a first step would be to create this image. It is possible
that a variation of the scheme outlined in Section 6.2 could be employed for
this purpose. The second aspect relates to a qualification of the intended
application of the PCA method and its subsequent implementation as
applied to the training set of background images.

(6.2.2) In this regard, there is the subsequent, additional ambition, to analyze
the principal components so as to identify and classify scene objects for
the dual purpose of (a) recognising and accommodating when an existing
background-related object (such as a public bench) has been moved to a
different location in the scene, and (b) identifying and recognising when
new objects have been introduced into the scene (such as a left baggage).
A Gaussian Mixture Model (GMM) approach applied to the principal com-
ponents could be considered for this purpose.

6.3 Low-rank plus sparse matrix decomposition

6.3.1 Proposed approach: RPCA

(6.3.1) Our approach is to use Robust Principal Component Analysis (RPCA).
Given a sequence of greyscale images, we stack each frame into a vector of
pixel intensity values, and concatenate each of these vectors into a matrix
X ∈ Rm×n. RPCA looks to perform the matrix decomposition

X = L+ S (16)
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where L is low-rank and S is sparse, which correspond to the background
and foreground, respectively. The intuition behind this approach is that
objects in the foreground only take up a small region, leaving most of the
scene unchanged, and thus foreground vectors (columns of S) are sparse.
The background is allowed to change over time, but only in a small number
of ways, such as the shadows sweeping across the scene throughout the day.
This corresponds to the allowed backgrounds (columns of L) spanning
a low dimensional subspace of possible images, and thus the matrix of
backgrounds is low-rank.

(6.3.2) We use existing MATLAB code inexact alm rpca [14] to perform the de-
composition (16). This code implements the inexact Augmented Lagrange
Multiplier method, which is convenient for our decomposition. Indeed, this
method is experimentally shown to be the fastest among other commonly
used approaches to compute (16). Moreover, an approximated decomposi-
tion is fine when dealing with images. In Figure 15 we provide an example
of such decomposition.

Figure 15: Decomposition by RPCA. We pick two different snapshots of the orginal
video, and we display the corresponding decompositions row-wise. In each row: the
leftmost frame displays a snapshot of the original video (rearranged column of X);
the middle frame displays a snapshot of the background (rearranged column of L);
the rightmost frame displays a snapshot of the foreground (rearranged column of
S).

(6.3.3) RPCA is mathematically formulated as the following convex optimization
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problem:

min
L,S
‖L‖∗ + λ‖S‖1, subject to X = L+ S, (17)

(6.3.4) where ‖ · ‖∗ denotes the nuclear norm of a matrix (i.e., the sum of its
singular values), ‖ · ‖1 denotes the sum of the absolute values of matrix
entries, and λ is a positive weighting parameter. In our experiments, we
take

λ = (max(m, n))−
1
2 . (18)

(6.3.5) After the decomposition has been performed, it becomes easy to track
the foreground. Moving objects (e.g., human, trains), can be detected
by looking at the non-zero elements of S. Smoothing over each frame
with a 2-D Gaussian filter (in order to remove noise) and employing edge-
detection (e.g., the Watershed Algorithm [8]) allows foreground objects to
be highlighted in the original video.

6.3.2 Link to PCA

(6.3.6) RPCA is related to Principal Component Analysis (PCA) except with dif-
ferent assumptions on the structure of the noise. It is common to perform
PCA on some data matrix and say the top few principal components cor-
respond to signal, whilst the remainder correspond to noise. Thus we are
performing the matrix decomposition

X = L+N (19)

where L is the ‘signal’ part of our data and is low-rank due to being a
linear combination of a small number of principal components. N is a
dense matrix of low magnitude since it is made up of only the ‘small’ di-
rections of variation in the data. Comparing to RPCA, PCA assumes X to
be a combination of a background with dense, low-magnitude corruption,
whilst RPCA assumes the corruption to be sparse and of arbitrary magni-
tude. The RPCA model better matches surveillance video, since what we
actually observe is an almost constant background with spatially localised
foreground elements which cause large magnitude, sparse perturbations to
the background.

6.3.3 Drawbacks

(6.3.7) Performing RPCA is computationally expensive, since it requires the com-
putation of the SVD of the data matrix. For the test data made available
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by Aralia Systems Ltd, the dimension of the data matrix is approximately
300000 x 5000. We managed to run preliminary tests after reducing the
size of each frame image, and discarding every other video frame.

(6.3.8) When some objects are static, i.e., when they become still for some time,
they are incorporated into the background. For instance, this is the case
for left luggage, or people standing still (see Figure 16). In order to avoid
such a shortcoming, some ‘control’ procedures can be implemented. For
instance, one can try to detect standing people as they move from being
part of the foreground to being incorporated in the background. This may
be done by evaluating differences between consecutive frames. Alterna-
tively, we expect that using a much longer video would fix this issue. For
instance, in the two-minute video sample provided, the algorithm classi-
fies a static bag as part of the background after ' 30 seconds. Given
a video over a longer period (possibly at a reduced frame rate) such ob-
jects would remain part of the foreground whilst the background captures
slower timescale changes such as the weather.

Figure 16: Snapshots displaying a potential failure of the RPCA approach. The
layout is the same as Figure 15, i.e., in each row we display different snapshots of
the original video and, from the left, the corresponding decompositions. From the
top, we display a still person detected as foreground at first, but then progressively
incorporated into the background.
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6.3.4 Future work

(6.3.9) One can use machine learning techniques [15], such as convolutional neural
nets, in order to identify the moving objects once they have been sepa-
rated from the background. One approach may be to use pre-trained
models from the Caffe framework [16], saving the expensive data collection
and training process. However, for tracking people across video frames, a
lighter weight approach may be more appropriate.

(6.3.10) The method of Convolutional Neural Network (CNN) is one of the meth-
ods of Deep Learning. An example of its application was in 2012 when
Andrew Ng, along with Google, constructed an experiment by building a
neural network with 16,000 processors and learned for three days from im-
ages in Youtube [2]. This experiment demonstrated the usefulness of this
approach in the image classification. The work [2], [3], [5], [6], [9] demon-
strated that this method can successfully be used for classification of static
images. Further, [4] and [9] show the high utility CNN in recognition and
classification cameras. It is therefore strongly recommended to use differ-
ent Deep Learning algorithms to solve the problem. Unfortunately, due
to limited computational resources at the time, this was not implemented.
However, using the basic algorithms for image classification were at 80% -
half of the learning completed (with each new epoch of learning the error
was reduced by about 2-3%). The idea was to use Deep Learning meth-
ods for segmentation, then each of the segments pass by CNN or DBN or
another algorithm that has been classified.

(6.3.11) Computationally more efficient methods can be devised by avoiding to
compute the SVD of the data matrix. For instance, Krylov methods may
be employed to approximate the SVD [10]. However, this approach is not
immediate and requires a deep theoretical study.

(6.3.12) It should also be underlined that the RPCA procedure is a post-processing
procedure performed on the video. An ultimate goal would be to devise
an online procedure, which is able to process the video as soon as a new
frame is added. Adopting an approach based on the computation of the
SVD of the data matrix, this may be achieved by using special formulas
for the SVD update when one column is added to the original matrix.

(6.3.13) The RPCA decomposition of X into L and S is theoretically exact. How-
ever, the video frames are corrupted by noise which we do not want to
incorporate into either the background or foreground. Thus it would be
preferable to instead perform the decomposition

X = L+ S +N, (20)

where L and S are as described above, and N is a dense matrix of low mag-
nitude noise. This decomposition may be performed with Stable Principle
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Component Pursuit (SPCP), and should result in a sparser S, enabling
easier object identification.

7 Conclusion

(7.0.1) During this study group, we have examined the method of Bayesian in-
ference to scene content, methods used for shadow detection and removal,
shape recognition and background separation. We introduced the Bayesian
method as an approach to keep track of what is being learned of the back-
ground and foreground, so that stationary objects in the foreground do
not dissolve into the background. Within the Bayesian framework pro-
posed, we devised several methods to update the background, which was
integrated within the algorithm.

(7.0.2) The numerical experiments showed that this method works fairly well, al-
though it detects movements in the shadows of stationary objects through-
out the day. This problem may be mitigated by applying shadow removal
techniques. Such techniques were explored in the study group, and prelim-
inary results were encouraging, although there is much room for further
explorations.

(7.0.3) In terms of updating the background was concerned, we also explored
several methods for decomposing an image into its foreground and back-
ground, centered around the Principal Component Analysis. Issues sur-
rounding changing slowly varying lighting conditions were addressed, and
numerical experiments reported encouraging results.

(7.0.4) Although the ultimate goal is to apply these methods to 3-D data, most of
the numerical experiments were performed on 2-D data. This is because it
was important for us to first demonstrate these principles and gain a better
understanding of them by working within in a simpler 2-D setting (perhaps
with the exception of shadow detection and removal), before moving on to
applications on more complicated data.

(7.0.5) There were several common themes in the approaches that were taken.
Within the sections of image segmentation and background separation,
the issue of choosing an initial background was a recurring problem. Since
every scene in different settings has a different background, it is therefore
not possible to pick a suitable background for any given scene of moving
images. Another issue that plagues the issue of image segmentation is
that of shadows. Since shadows move according to changes in the lighting
conditions, it may be necessary to remove shadows of a background, but
not necessarily to remove shadows of a foreground, as it may be the case
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that shadows of foreground objects need not be removed as they may
contain significant information concerning a scene.

(7.0.6) Both the challenges of choosing a suitable starting background and mov-
ing shadows of the background may be addressed when working within
a Bayesian framework, as it provides a systematic way of learning the
changes in the background, illumination and foreground whilst keeping
track of assumptions we have made when solving the problem. In the
study group, we considered a simple case of foreground and background
separation, but further extensions can be made to track shadows, sudden
changes or to update the background as we step through the frames.

(7.0.7) The background is determined by averaging out the moving objects that
appear in the short term in the scene. The algorithm computes first-order
changes in subsequent images. A further correction to this is made for the
case of the changing illumination during the day. As the intensity of light
changes slowly, a threshold measure of the first-order change is introduced,
above which the change is considered significant. This threshold ensures
that we neglect the slow and small changes in illumination.

(7.0.8) Once the foreground and background can be identified, we may then be
able to apply shape recognition techniques to perform object classification.
However, due to time constraints, no significant numerical simulations were
performed during the study group, and this is subject for future work.

(7.0.9) All in all, the subject of image segmentation and scene content in moving
images continues to be an exciting and challenging area of research.
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