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Abstract

Two questions regarding minimizing fuel costs while delivering ice along a
pre-set route are tackled.

The first question is when demand exceeds the load of a single truck, so
that a second truck of ice has to be taken to some point of the route for the
driver/salesman to continue with that for the rest of the route: Is it better:
1) for the first truck to deliver starting from the costumer nearest to the base,
or
2) for the first truck to start the delivery from the last costumer (the most
distant from the base)?
We show that the second strategy was better for the particular data looked at,
and we have the basis of an algorithm for deciding which strategy is the better
for a given delivery schedule.
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The second question concerns how best to modify a regular sales route when
an extra delivery has to be made. Again, the basis for an algorithm to decide
how to minimize fuel costs is derived.

Keywords: 90B06, 90B22, 90B50

1 Introduction

Party Ice is the oldest ice manufacturer in Cyprus, headquartered in the industrial
Nissou area of Nicosia. The distribution of Party Ice products is carried out with
a proprietary modern refrigerated truck fleet, perfectly suited for the distribution
of frozen foods. The company has recently applied route control systems to achieve
fuel savings and to do the best service at the best prices. By participating in the
Study Group with Industry, the company aimed to make use of their available data
to further optimise their distribution system and make it even more cost e�cient.

Two logistics problems of delivering ice cubes in an area of Cyprus were posed.

Deliveries are generally made to a fixed set of costumers on a fixed route. When
the demand for ice increases, delivery takes place using two trucks. The problem then
arises as to how to optimize fuel consumption. In other words, we are looking for the
best schedule for the trucks, taking into account their load (an empty truck o↵ers
lower consumption, while a full truck’s consumption is higher). Two strategies are
examined: 1) the first truck starts delivering from the costumer nearest to the base
(depot) up to a costumer say m1, where the first truck gets empty, then a second full
truck continues the delivery starting from the next costumer until all customers are
served; 2) now the first truck starts delivering from the farthest costumer, working
back to a costumer say m2, where it gets empty, then a second full truck continues
delivering from m2 towards the base to end the process. The study-group team
analysed both strategies and concluded that the second strategy is the optimum
(o↵ering lower cost) in most cases, according to a real data set which was provided
by the company. We have ignored any e↵ect of varying speed, congestion, road
gradient etc. and also assumed that delivery time does not matter (either through
a↵ecting ice quality or because of having to meet certain customers’ requirements
on when their ice is supplied).

On other occasions an extra delivery must be arranged. The second problem
to be looked at was again how to minimize fuel costs, now fitting in an extra sales
point into an otherwise standard delivery route. Again time constraints and so on
were not considered during the Study Group.

A similar problem concerning consumption is the green maritime transportation.
This involves the selection of an appropriate speed of vessels, so as to optimize a
certain objective like the fuel consumption, see [1]. Another related problem is that
of the cold chain logistics by the national express refrigerated transport company.

2



Cost Optimization of Ice Distribution ESGI125

If the transportation cost and the number of customers are consistent for mileage,
then the longer the service mileage from the distribution centre to the customers, the
greater the total transportation cost is. Therefore, the total cost of vehicle transport
is proportional to the service mileage, see [4].

Similar works concerning deliveries of goods, transportation and optimization of
the cost, can be found in [2, 3, 6].

The report is organized as follows. In Section 2 the description of the challenges
posed by the company is described. In the next section mathematical models are
discussed. In the same section, a discrete and a continuous model are studied, and
the mathematical model examined to find which of the strategies minimizes the fuel
cost. The following section briefly discusses the second challenge. Finally, in the
last section, we summarize the conclusions and recommendations to the company.

2 Description of the Challenges

The company identified two priority challenges:

Challenge 1: Selecting the optimal distribution schedule for distant-from-base
areas when using two vehicles. Each driver is responsible for a particular route
each day. On the occasion his supplies are depleted before completing his route, a
new fully loaded truck is dispatched to a location near his next delivery stop. The
driver then continues his route with the newly stocked truck while the empty truck
returns to base (Nicosia). In the case that deliveries to distant-from-base regions
(e.g. Famagusta) require a second truck, it is important to fix the schedule over the
delivery route in order to optimize fuel costs. One strategy is to begin by delivering
at the customer closest to the distribution centre (the base), having the benefit of
progressively unloading the truck, hence potentially saving on fuel costs due to the
overall lower truck weight. A second strategy is to drive to the furthest destination
and begin delivering from there, coming backwards towards the distribution centre.

Challenge 2: Short-term handling of urgent orders. The choice of optimal route
based on geographical location is often disrupted due to urgent (unplanned) orders.
The company would like to identify how to optimally cater for these urgent requests
in the short term (how to alter the route for one day). Certain rural areas are not
visited every day. Hence, if a customer from such a region has an urgent request
the driver has to modify his route and leave his assigned district to make the urgent
delivery. In that case the driver must optimize his route by selecting at what point he
should deviate from his normal schedule to make the extra delivery, before returning
to the regular route at the next normal delivery point.

3 Mathematical Models and Analysis for Challenge 1

Trucks always leave the base in Nicosia fully loaded, carrying 3 tonnes of ice, and
usually one truck is su�cient to supply the requested amount of ice per day. How-
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ever, in summertime (July and August where there are high temperatures), the
demand sometimes increases, and a second truck must then be sent to deliver extra
ice. The second truck is again sent fully loaded.

The key assumption we make is that labour expenses are fixed so that the varying
costs will be dominated by the fuel used by the trucks. We may then take the cost
associated with a day’s delivery to be equivalent to the amount of fuel used. It is then
clear, for a delivery needing only one truck, and with mileage (km/litre achieved by
a truck) decreasing with load, that it is best to make deliveries as a route is driven
away from base, the driver then returning with any remaining ice on the truck from
the farthest point of the route directly to base.

3.1 Discrete-demand model

We order the delivery sites visited on a route from 1 to n, where site 1 is the closest
to the base on the route, and site n is the farthest. The base can be thought of
as being both site 0 and site n + 1. Each site, a village, can have more than one
customer to be served. The delivery cost, i.e. fuel used, for a route is then given
by going from base (site 0) to the first delivery point, travelling between successive
sites, and then returning directly to base (site n+ 1).

Where this problem begins to be interesting is that typically a route will require
more than a single truckload. Thus, a second truck is necessarily involved.

We examine two strategies, see Figure 1.

Base

n

n� 1

j

`m1

`m2

1

2

j � 1

m1
m2

`n = dn+1

dj

d1

Figure 1: The representation of the two strategies.

Strategy 1: Truck 1 goes to point 1 and begins delivery. It then runs out at
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point m1, and is there met by a full truck 2, sent out (directly) from the base. The
empty truck 1 returns (directly) to base, and truck 2 completes the delivery. Truck
2, still partially loaded, returns to base.

Strategy 2: Truck 1 goes to the end point n and begins delivery in the reverse
order. It will then run out at a point m2. It returns directly to base. A full truck 2
goes straight to pointm2, completes the delivery, and returns to base, again partially
loaded.

To write formulas for fuel used for the two strategies, we introduce some param-
eters and variables.

The routes are firstly characterized by distances along the segments: d

j

is the
distance j between point j � 1 and point j.

D

j

is the mileage, [km/litre] over segment j. The mileage depends on how much
ice is present on the truck at segment j. The mileage can vary between two limits:
D

F

for the full truck, and D

E

for the empty truck. We always have that

D

F

 D

j

 D

E

, j = 1, 2, ...n.

Since D
j

is dependent on strategy (whether we are at segment j as a consequence
of strategy 1 or strategy 2), we add a superscript to indicate this, e.g., D2

5 is the
mileage over segment 5 with strategy 2.

Between the base and the critical, change-over, points m1 and m2 there are
short cuts, of lengths `

m1 and `

m2 to/from base. These are, in general, shorter road
segments, because no deliveries need be made when driving trucks directly to, or
from, these points. The shortest distance between the base and the farthest delivery
site, n, is denoted by `

n

.
In the following we assume that mileage is a linear function of the amount of ice

remaining on a truck:

D

j

= D

E

+ (D
F

�D

E

)
i

j

i

Full

,

where i

j

is the amount of ice being carried over segment j of the route and i

Full

is the amount of ice carried by a full truck, namely 3 tonnes. (Cost is inversely
proportional to (load + constant).) It would be possible to repeat our analysis with
a more realistic variation of mileage on load, given accurate information.

With our linearity assumption, for a two-truck trip, where the load generally
decreases because ice is being delivered, but at some point the truck is refilled, the
mileage will be a piecewise linear function of the amount of ice delivered I, see
Figure 2.

Here, IT is the total amount of ice delivered on the route.

The values of i
j

for the individual strategies can be given by subtracting o↵ the
amount of ice delivered earlier in the route:

For Strategy 1, and using tonnes,

i

j

=

8
<

:

3 for j = 1

3�
P

j�1
k=1 sk for j = 2, . . . ,m1

6�
P

j�1
k=1 sk for j = m1 + 1, . . . , n

,

5



Cost Optimization of Ice Distribution ESGI125

1

mileage [km/litre]

ice delivered 
[truckloads]

Figure 2: The graph of mileage D as a function of the ice delivered I. The unit of
measure used for I is a truck load (equivalent to 3 tonnes).

where s

j

is the amount of ice delivered at site j.
Likewise, for Strategy 2,

i

j

=

⇢
6�

P
n

k=j

s

k

for j = 1, . . . ,m2

3�
P

n

k=j

s

k

for j = m2 + 1, . . . , n
.

We can now write down the cost (fuel) functions for each of the two strategies.
Strategy 1: (delivering up to m1) + (truck 2 going full out to m1) + (truck 2
finishing the delivery route) + (truck 1 returning empty) + (truck 2 returning with
the remaining ice):

C1 =

m1X

j=1

d

j

D

1
j

+
`

m1

D

F

+
nX

j=m1+1

d

j

D

1
j

+
`

m1

D

E

+
`

n

D

1
n+1

.

(D1
n+1 is the mileage for the remaining unsold ice i(n+ 1) = 6�

P
n

k=1 sk.)
Strategy 2: (driving a full truck to n) + (truck 1 delivering up to m2) + (truck 2
going full out to m2) + (returning empty truck 1) + (truck 2 finishing the delivery
route):

C2 =
`

n

D

F

+

m2+1X

j=n

d

j

D

2
j

+
`

m2

D

F

+
`

m2

D

E

+
1X

j=m2

d

j

D

2
j

.

Consequently,

C2 � C1 = `

n

✓
1

D

F

� 1

D

1
n+1

◆
+ (`

m2 � `

m1)

✓
1

D

F

+
1

D

E

◆
+

nX

j=1

d

j

 
1

D

2
j

� 1

D

1
j

!
. (1)
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We can interpret the terms as follows: the first term is the cost di↵erence with
respect to connecting the endpoint and the base; the second term is the cost di↵er-
ence caused by the di↵erent distances of m2 and m1 from the base; the third term
totals the leg-by-leg cost di↵erences.

3.2 The continuous-demand model

A continuous optimization model is based on the general model now using a supply
function S(x). This is the amount of ice being delivered per unit length (e.g. per
km) along the route:

S(x) ⌘ demand

length
.

For convenience we now normalise length so that the total length of the route is 1.
With two trucks being required, the total amount of ice delivered satisfies

1 < I

T =

Z 1

0
S(x) dx < 2 ,

again measuring ice in truck loads.
Then the functions giving the ice supplied up to a point x for the given strategies
are:

I1(x) =

Z
x

0
S(⇣) d⇣ and I2(x) =

Z 1

x

S(⇣) d⇣ .

The cost function expression (1) is, in the continuous case, replaced with the ex-
pression

C2 � C1 = `

n

✓
1

D

F

� 1

D(2� I

T )

◆
+ (`

m2 � `

m1)

✓
1

D

F

+
1

D

E

◆

+

Z 1

0

✓
1

D

2(x)
� 1

D

1(x)

◆
dx .

(2)

Here we have still written `

m1 and `

m1 as the direct distances between the change-
over points and base, although sites m1 and m2 might now be replaced by points
x1 and x2 respectively, likewise, `

n

still denotes the shortest distance between base
and the furthest point on the route, and D(2� I

T ) is the mileage corresponding to
the load once all the ice has been delivered (i = 2� I

T , using truck loads).
To analyse the continuous-function model a simple case is looked at.

3.3 Simple case: Uniform demand along a straight road

Suppose that S(x) ⌘ I

T , a constant demand. We can in this case easily get the
mileage D as a function of x in each of the two strategies. This model might be
thought of as representing the supply of ice to a succession of evenly spread and
closely spaced small shops or kiosks, with very similar demand, along a long road.
Since supplied ice is in direct proportion to travel distance, we have:
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1

mileage [km/litre]

x

Strategy 1

Strategy 2

Figure 3: The position variation of mileage D for the two strategies.

Strategy 1: Supplied ice = I1(x) = I

T

x, x1 = m1 =
1

I

T

.

Strategy 2: Supplied ice = I2(x) = I

T (1� x), x2 = m2 = 1� 1

I

T

.

Figure 3 illustrates the dependencies of D1 and D

2 of x. Clearly the situation is
symmetric, and for this reason the integral in (2) vanishes when the demand function
is constant.

For extra simplicity, we also take the route to lie along a straight road leading
away from the depot. Then

l

n

= 1 , `

m1 = x1 = 1/IT and `

m2 = x2 = 1� 1/IT .

The cost di↵erence (2) then simplifies to

C2 � C1 =

✓
1

D

F

� 1

D(2� I

T )

◆
+

✓
1� 2

I

T

◆✓
1

D

F

+
1

D

E

◆
. (3)

Writing µ = D

E

/D

F

> 1, a normalised cost di↵erence can, from (3), be written as

D

F

(C2 � C1) =

✓
1� 1

µ+ (1� µ)(2� I

T )

◆
+

✓
1� 2

I

T

◆✓
1 +

1

µ

◆
. (4)

Figure 4 shows the variation of the situation (4) as a function of total ice demand
I

T when µ = 1.5, which is close to the true ratio of mileages. We see that, at least
for this idealised case, the costs for Strategy 2 are lower, so that this strategy is
better, for I

T less than about 1.75, but for I

T greater than this Strategy 1 is the
more cost e↵ective.

8



Cost Optimization of Ice Distribution ESGI125

1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

Figure 4: Normalised cost di↵erence for mileage ratio µ = 1.5.

Note that the critical value I
cr

of IT , such that Strategy 2 wins for IT < I

cr

and
Strategy 1 wins for IT > I

cr

, can, for this situation, be got by solving the quadratic
equation

µ(µ� 1)(I � 1)I � (µ+ 1)(2� I)[µ� (µ� 1)(2� I)] = 0

to find the root between 1 and 2.

During the course of the study group, some other explicit demand functions S(x),
such as those having exponential dependence on position, S(x) = ↵e

�x, were looked
at. However, the calculations became rather intricate and no additional insights
were gained.

3.4 Stochastic simulations of the discrete demand model

More realistic calculations were based on a genuine delivery route, with delivery at
discrete sites, i.e. villages, using data supplied by Party Ice.

All trucks start from the base, located south of Nicosia, see Figure 7.
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Figure 5: Data provided by the company. P.O.S. (Points Of Sales) = number of
customers. Party Ice also provided the amount of ice bought by individual customers
but this is not displayed here.

The given example is for a Famagusta route that is between 220 and 278 km
long based on the served customers. A fully deployed truck has 3 tonnes of ice. The
data refers to the route from the base to Famagusta on a Tuesday, during the high
season, in which the delivery of a second truck was needed. This day was considered
quite representative of the usual situation. The data is shown in Figure 5. The
extreme mileages are 3.9 km/litre (for a fully loaded truck, D

F

) and 5.5 km/litre
(for an empty truck, D

E

).
Note that the demand in the last two sites is approximately 93% of a truck

load, where there is a high number of points of sales (P.O.S.). This indicates that
ice demand varies considerably over the route, in contrast to the uniform model of
Subsection 3.3.

We decided to test, with stochastic simulations based on real data, how sensitive
the cost di↵erence (1) is to random variations in the sales, and thus how much
uncertainty there is in the choice of the best strategy.

By computing the histogram of the frequencies of the customers’ requests, as
shown in Figure 6, we observe that the amount of ice which is most frequently sold
to each customer is 96 kg. (The reason of such frequency is that most of refrigerators
which Party Ice supplies to its customers contain a maximum of 96 kg of ice. A small
amount of customers instead have been provided with a bigger refrigerator. These
customers are the ones who usually buy the higher amounts of ice shown in the
histogram.)

We then simulated the discrete model for both strategies, using the real number
of sites (i.e. villages) visited by the truck during the route to Famagusta, the real
distances between the sites, the number of P.O.S. reported for each site in the data,
but we used two methods to introduce randomness in the demands:

a) we generated random demands according to the sample distribution of the
given data
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Figure 6: Distribution of ice requests from the customers. Left: absolute frequencies;
right: proportions (and thus estimate of probabilities) of the requests.

b) we generated random demands distributed uniformly around the observed
data, with a fixed maximum deviation of a fraction p.

All the simulation have been performed using Matlab R2016a.

Figure 7: Working Example: Route 1 - From base to Famagusta.

3.4.1 Simulation using the sample distribution: method (a)

We generated for each P.O.S. a random number distributed according to the discrete
distribution of the real data, shown in Figure 6 on the right. A random number
following a given discrete distribution can be generated by the inverse transform
method (see e.g. [5, Chapter 4]). Such numbers represent the ice demand of each
P.O.S. in one simulation.

We performed 100 simulations of the discrete model with such random ice de-
mands, obtaining thus 100 estimates of the costs di↵erence (1). The result is that
about 60% of times Strategy 2 is better than Strategy 1, as is shown by Figure 8.

For each simulation we also computed the total amount of ice sold when each
of the two strategies wins. The distributions of the amount of sales are shown in
Figure 9.
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Figure 8: Distribution of the di↵erence C2 � C1 using Strategy (a) to simulate the
ice demand.

Figure 9: Distributions and means of ice sales with the two strategies. The amount
of sold ice is measured in kilograms.
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By observing the distributions, and taking into account that one full truck con-
tains 3000 kg, we have that the mean ice sold when Strategy 1 wins is about 1.7 full
trucks (f.t.), while the mean ice sold when Strategy 2 wins is about 1.5 f.t. Thus,
roughly speaking, we could say that

• Strategy 1 is more likely to be better when sold ice > 1.7 f.t.;

• Strategy 2 is more likely to be better when sold ice < 1.5 f.t.;

• when 1.5 f.t.  sold ice  1.7 f.t. the strategies are about equivalent.

This result is in accordance with the existence of a specific threshold of amount of
sold ice over which the preference on the two strategies is switched, as we found in
the study of the simplified continuous model. In the more realistic case that we sim-
ulated here, an additional “uncertainty region” is added, because of the introduced
randomness.

3.4.2 Simulation using a maximum deviation: method (b)

Since the variation in ice demand is strictly connected to the size of refrigerators
of each customer, and is thus not varying much when the temperature is high, we
also used a second strategy to simulate the randomness, which allows one to control
the maximum deviation from the typical demand values that the company observes:
we took as reference amounts the data shown in Figure 5, and we added to each
reference amount s

j

, sold at the j-th P.O.S., a random number uniformly distributed
in the interval (�p · s

j

,+p · s
j

), where p 2 (0, 1) is a proportion of allowed maximum
variation.

We then performed 100 simulations of the discrete model by fixing p = 0.1
(i.e. allowing a maximum random deviation of 10% from the real data), and we
computed the cost di↵erence (1) on each simulation, obtaining that about 95% of
times Strategy 2 is better than Strategy 1, as shown in Figure 10.

We observe that actually for the given real data Strategy 2 is better than Strategy
1, and from our simulations we deduce that a small deviation from the given data
does not influence the results much. Furthermore, considering that presently the
company is using Strategy 1 for ice delivering, by computing the ratio (C2 � C1)/C1

in each simulation, we observe that the mean cost reduction that Party Ice would
obtain by choosing Strategy 2 ranges between 1.5% � 2% of the present fuel costs
when the demand variation does not exceed 10% of the given data.

4 Second Challenge: An Addition Delivery Point

We now consider the question of how best to fit in an extra delivery into an otherwise
normal route (with just one truck being used). The new demand might arise before
the driver has started, or he might only be notified that he must fit this sale into his
schedule while he is proceeding around his regular route. The extra site can be on
the planned route, or outside the planned route, see either Figure 11 or Figure 12.
The new delivery can be fitted into a revised schedule by the driver proceeding as
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Figure 10: Sign of costs di↵erence 1 when p = 0.1 over 100 simulations with simu-
lation method (b).

normal to a site m, proceeding to the new point, say Z, returning to the regular
route at site m+ 1, and then continuing in standard fashion. The question is then
how best to choose m so as to minimize costs, i.e., fuel used.

Z

Z

Figure 11: An additional delivery point Z.

The strategy taken was as follows: If Z belongs to the route beyond where the
truck presently is, just continue along the route. If Z belongs to the route but back
from the present position, or is o↵ the route, evaluate additional the cost (using
formulas similar to those for Challenge 1) got by making the diversion between sites
m and m+ 1 and then see what m gives least cost.
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As in Section 3, the distance between sites j � 1 and j on the route is denoted
by d

j

. (For extra ease of notation, this now also includes d
n+1 = distance from final

(regular) site n back to base, i.e. site n+ 1.)
The mileage D(i

j

) is that achieved over segment j before the detour (and on the

first section of the detour). Here i1 = 3 and i

j

= 3�
P

j�1
k=1 sj for j = 1, . . . ,m, now

taking i

m+1 = 3�
P

m

k=1 sj to mean the amount of ice left on the truck over the first
section of the detour, which is of length d

Z1 (see Figure 12).
The mileage D(i0

j

) is that achieved over segment j after the detour (and on the

second section of the detour). Here i

0

j

= 3� s

Z

�
P

j�1
k=1 sj for j = m+ 2, . . . , n+ 1,

now taking i

0

m+1 = 3 � s

Z

�
P

m

k=1 sj to mean the amount of ice left on the truck
over the second section of the detour, which is of length d

Z2 (see Figure 12); s
Z

is
the amount of ice (in tonnes) delivered to the extra site.

Without the extra delivery, when the deliveries go by plan, the fuel costs are
equal to

C =
n+1X

j=1

d

j

D(i
j

)
.

With the detour between sites m and m+1 to make the extra delivery, these costs,
as for Challenge 1 in Section 3, become

C

Zm

=
mX

j=1

d

j

D(i
j

)
+

d

Z1

D(i
m+1)

+
d

Z2

D(i0
m+1)

+
n+1X

m+2

d

j

D(i0
j

)
.

We then simply choose m from possibilities r, . . . , n so as to minimize the extra cost
di↵erence C

Zm

� C, where site r gives the driver’s present position. (If the extra
delivery is known about before the driver starts then r = 0.)

Base

1

n

2

m
m + 1

Z

dZ2
dZ1

dm+1

d1

dm

dm+2

dn+1

Figure 12: An additional delivery point Z between sites m and m+ 1.

The strategy might be modified if there are time constraints on deliveries, to the
regular sites or extra customer, but we have not considered these.
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5 Conclusions and Recommendations to the Company

In answer to the company’s first challenge, it is possible to estimate the relative costs
of carrying out the “forward” and “reverse” strategies, Strategies 1 and 2, according
to the modelling of Section 3. For the particular real situation considered, Strategy
2 was better. Likewise, similar modelling in Section 4 indicated how it would be
possible to best fit in an extra delivery, Party Ice’s Challenge 2.

It should be possible to encode the algorithms arising from the modelling so
that the company can make day-to-day decisions, given appropriate information on
demand etc.

Ideally, better representation of how fuel consumption depends on load, road
conditions and so on should be included in the model and any algorithm. Con-
straints, coming from customers’ requirements on when their deliveries are made
might also have to be allowed for.

It is also recommended that a statistical analysis is carried out on the company’s
historical data of variation of demand. This will allow realistic variations to be
included in codes, giving more reliable forecasts of the best strategy.
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