
Better Junction Control with Bus Priority ESGI91

Better Junction Control with Bus Priority

Problem presented by

Bruce Slattery

Halcrow

Executive Summary

The problem was to design a traffic light controller for a set of neigh-
bouring junctions, which gives priority to incoming buses while ensuring
a degree of fairness to the general traffic.

The team has developed three complementary approaches, that present
different strengths and weaknesses and might be applicable in different
junction configurations or traffic conditions:

1. A continuous-variable, discrete-time optimisation approach for de-
termining the fraction of green time to give to each arm of a junc-
tion during the next traffic light cycle, in order to minimise total
weighted squared vehicle waiting times, with more weight on buses
than on cars.

2. A piece-wise linear ordinary differential equation model of queue
length dynamics on a junction arm, based on flux of vehicles into
and out of that arm.

3. A discrete-variable, discrete-time Markov Decision Process approach.
The state of the system is comprised of vehicle queue lengths and
the junction’s current stage. The action is to stay in the current
stage or move to the next stage. An optimal policy minimises long
run expected discounted weighted delay.

Version 1.0
May 7, 2013
iii+22 pages

i

Better Junction Control with Bus Priority ESGI91

Report author

Helge Aufderheide, Alessandro Colombo, Torran Elson,
John Lees-Miller, Sean Lim, Kat Rock, Matt Saxton,

Piotr Świerczyński

Contributors

Helge Aufderheide (University of Bristol)
Alessandro Colombo (Politecnico di Milano)

Torran Elson (University of Bristol)
John Lees-Miller (University of Bristol)

Sean Lim (University of Oxford)
Kat Rock (University of Warwick)

Matt Saxton (University of Oxford)
Piotr Świerczyński (University of Warsaw)

ESGI91 was jointly organised by
University of Bristol

Knowledge Transfer Network for Industrial Mathematics

and was supported by
Oxford Centre for Collaborative Applied Mathematics

Warwick Complexity Centre

ii

Better Junction Control with Bus Priority ESGI91

Contents

1 Introduction 1

2 Problem statement 1

3 Lumped-element Discrete Time Model 2
3.1 Parameterizing the Problem . 2
3.2 The Model . 5
3.3 Weaknesses of the Approach . 7

4 Ordinary Differential Equation Approach 10
4.1 Introduction . 10
4.2 Cars-only model . 10
4.3 Bus model . 12

5 Markov Decision Process Approach 15
5.1 MDP Formulation 1 . 15
5.2 Exact Solution Methods . 16
5.3 Example Results from MDP Formulation 1 17
5.4 MDP Formulation 2 . 18
5.5 Example Results from MDP Formulation 2 19
5.6 Possible Extensions of the MDP Approach 20

Bibliography 21

iii

Better Junction Control with Bus Priority ESGI91

1 Introduction

(1.1) The original problem was to design a traffic light controller, for a set of
neighbouring junctions, which gives priority to incoming buses while en-
suring a degree of fairness to the general traffic. This is required if the
controller is to work under heavy traffic conditions without generating too
much delay for regular cars. Given the complexity of the problem, the team
focussed on a single junction.

(1.2) The team has developed three competing approaches, that present different
strengths and weaknesses and might be applicable in different configurations
or traffic conditions. The degree to which the three proposed solutions
can be extended to work efficiently in neighbouring junctions is discussed
separately for each approach.

2 Problem statement

(2.1) Bus priority schemes aim to reduce the time that buses spend waiting at
traffic lights. This can make buses faster and encourage people to use public
transport instead of their cars. The idea is simply that buses tell the traffic
control system their positions using the existing real time data feeds, and
the system tries to give buses green lights when they approach junctions.

(2.2) Modern traffic control systems measure traffic and try to optimise their ac-
tions based on current conditions. However, they were not designed with
bus priority schemes in mind. Bus priority is often implemented by adding
a crude ‘exception’ rule for buses, which causes the system to give an ap-
proaching bus a green light regardless of other traffic. This often leads to
poor performance, which leads operators to disable bus priority at peak
times, when it would be most useful. A better system would feature full
integration of all vehicles into the defined traffic model to enable the har-
monious transition of buses through a region or network without artificial
interventions.

(2.3) The problem is: how do we build a better traffic light control system that can
fully integrate and handle bus priority properly? There are many factors to
consider, including:

• Delay, throughput and fairness. Bus priority requires the control
system to trade off delay to buses against delay to other vehicles. In
addition to low delay, high throughput and fairness between different
inputs are also desirable. How should these objectives be combined
and made harmonious?

• Sensors. Advances in technology have dramatically increased the
amount and quality of data available to the controller. Typically,
inductive loop sensors measure flows on the inputs (and sometimes

1

Better Junction Control with Bus Priority ESGI91

outputs) for all vehicles, and buses report high frequency (say every
10s) positional data (Automatic Vehicle Location). If similar posi-
tional data were available for all vehicles, how much could be gained
by using these data?

• Human factors. Drivers are used to traffic lights that follow a pre-
dictable sequence of ‘stages’ — they anticipate their green light based
on who had the last green light. The controller can in principle set
the lights in any way that does not create a conflict, which may lead
to increased efficiency (how much?) but also increased incidence of
driver error. It is desirable to use the traditional stage sequence, as
this increases the marketability of the end solution.

• Network Effects. Buses typically run down corridors with multiple
junctions and may intersect with other bus corridors. How much might
be gained by centralised coordinated control compared with current
decentralised control?

(2.4) The evaluation data available for the problem include several road network
fragments, origin-destination flows for cars, schedules for buses, and several
real life datasets that show the performance of existing control systems (e.g.
replications of MOVA and SCOOT, which are widely used in practice) on
these examples.

3 Lumped-element Discrete Time Model

3.1 Parameterizing the Problem

(3.1) This approach utilizes a lumped-element discrete time model to optimally
control the traffic flow through a junction. In simple terms, this means that
current traffic conditions on each arm are represented by a single variable
–the queue length– and these variables are updated at discrete time steps.
The control law is designed to give priority to incoming buses, all the while
ensuring a degree of fairness for the remaining traffic. This is achieved
by defining a common metric for buses and regular traffic, which weights
bus delays more heavily than other delays. By using a common metric,
rather than employing exceptions as in the standard MOVA implementa-
tions, buses are given priority under regular traffic conditions, but if an
arm is subject to excessively heavy traffic, this is automatically taken into
account in the assignment of green times. The metric, which is essentially
a weighted distance of the current state from the ideal state of zero delays
on all arms of the junction, constitutes the cost function that is minimized
by the optimal controller.

(3.2) Control of the junction is considered over one full cycle, Tc, the time taken
for each arm to recieve a green light. The cycle length Tc, the sequence in
which arms are allocated greentime, and the amount of time the lights are

2

Better Junction Control with Bus Priority ESGI91

red between green signals are considered fixed, while the controller is allowed
to chose the time when each arm receives a green light. As the redtime R is
fixed for a given junction, the greentime Tg is given by Tg = Tc−R; since Tc
is fixed, the total length of the greentime in this approach is not optimized.
However, it is a logical extension to add this to the analysis, indeed, the
ODE approach considers this explicitly.

(3.3) Consider a junction with n incoming lanes. It is assumed that the traffic
never backs up from the subsequent junctions, meaning that the number of
vehicles that are allowed to exit the junction in a given cycle time is only
limited by the junction capacity. Moreover, the destination of the vehicles
that enter the junction is ignored. On the i-th arm the number of vehicles
at the discrete time tj (NB this is an integer label denoting how many cycles
have passed), ni(tj), is given by the number ni(tj−1) of vehicles in the queue
at the end of the previous cycle, the number vi(tj) of vehicles entering the
queue over a full cycle, and the number Outi(tj) of vehicles that left the
queue in the given greentime. The update of the queue length on arm i is
thus given by the following equation.

ni(tj) = ni(tj−1) + vi(tj)−Outi(tj) (1)

The number of vehicles that leave the junction Outi is a function of the
length of the queue. If the queue is sufficiently long, not all the vehicles can
exit the queue when the lights turn green. The arm is saturated. Otherwise,
when the queue is sufficiently short, all the vehicles can leave the queue in
the greentime and the arm is unsaturated.

(3.4) The saturation flow Si is the maximum number of vehicles that can leave
the junction per unit greentime. It is a (constant) property of the junction
determined from the width of the approach lane, the angle vehicles turn
through on leaving the junction, etc. If the product of the saturation flow
and the fraction of greentime of the arm i over the total green time, denoted
αi, is less than the length of the queue not all vehicles exit the queue.
Otherwise, when the arm is unsaturated, all the vehicles leave the queue.

Outi(tj) :=

{
Si(tj) · αi(tj) Saturated

ni(tj−1) + vi(tj) Unsaturated
(2)

The average delay on the i-th arm at discrete time tj, denoted τi(tj), is given
by the ratio of the number of vehicles in the queue ni(tj) and the number
of vehicles that leave the queue Outi(tj).

τi(tj) :=
ni(tj)

Outi(tj)
(3)

To gain some understanding of the delay measure it is worth considering a
number of cases. If the queue is not saturated, the average delay time is

3

Better Junction Control with Bus Priority ESGI91

zero. This in effect says that an undersaturated flow implies that no extra
delay is expected. If the flow is saturated then the delay will show what
fraction of a cycle you must wait, over and above the time spent stopped in
the undersaturated case.

(3.5) Using this delay measure, a cost function can be defined. This is denoted
L and given by:

L(tj) := τT (tj)Π(tj)τ(tj) where Π := diag(ω1, ω2, ..., ωn)

=
n∑

i=1

ωiτ
2
i |t=tj (4)

The diagonal matrix Π defines a metric, that is, a weighted distance between
the current delays and the ideal case where τi = 0 for all arms i. It depends
whether a bus is in a given queue at time tj. The diagonal elements are the
relative weights, or priority, given to the different arms. If no buses are on
the i-th arm, ωi = 1. If a bus is on the i-th arm, the weight is parameterized
by p. The choice of p is a design parameter which can be varied. A larger p
will give higher priority to buses with respect to regular traffic, at the cost
of potentially generating longer delays on arms with no buses.

(3.6) L is a measure of the total delay time. As we have seen in the description
above, the only variables under control of the algorithm are durations of the
green time on each arm. Let us call α the vector of the normalised green
times, that is, the duration of each green time divided by the total green
time. At each time step, our algorithm attempts to chose α such that the
cost function (4) decreases as much as possible, under the assumption that
the incoming flow, measured during the current time step, remains constant
in the future. This is equivalent to minimizing the function L(tj+1), where
the vector τ(tj+1) is computed by projecting the current state forward by one
time step using (1). This is a fairly standard minimization problem, which
can be solved using off-the-shelf optimization algorithms. The algorithm is
shown schematically in Figure 1.

Queue
{ni(tj)}

Inflow
{vi(tj)}

Delay
{τi(tj)}

Min L(tj+1)
wrt {αi(tj+1)}

Bus?

Greentime
{αi(tj+1)}

Queue
{ni(tj+1)}

Inflow
{vi(tj+1)}

Figure 1: Schematic of Model operation: A single iteration of the alogorithm,
showing the evolution of the state of the system {ni(tj)} at time tj to the next state
of the system {ni(tj+1)} at time tj+1.

4

Better Junction Control with Bus Priority ESGI91

3.2 The Model

(3.7) A test model was implemented in python. It takes as input the flow into
each arm over each full cycle and the initial queue length. The inflow was
determined from Halcrow’s MOVA simulation of a comparable junction.
This provides a realistic level of flow, as well as measures to test how well
the model performs in comparison to current methods. The average delay
times for cars and buses can be directly compared. For simplicity, and to
fit with the data provided by Halcrow, it was assumed that the cycle length
was fixed at one minute. The junction had five incoming arms, it is shown
schematically in Figure 2.

(3.8) In the test implementation, each cycle of the junction considered consists of
three stages. Each cycle has a total redtime of R = 19s in accordance with
the Halcrow plan. During the first stage, green light is shown for arms 3,
and 5, in the second for arms 1, 3, and 4, and in the third for arms 1, and
2. During each cycle, the minimum greentime of each stage is 5s.

v1

v2

v3v4

v5

junction

Figure 2: Diagram of the junction used in the Model.

(3.9) The vehicle data is provided as a set of inflows per minute over a single hour.
It assumes that vehicles enter the queues at the edge of the simulation area.
In reality, data on vehicles joining a queue is gained by induction loops at
a maximum distance of around 100m from the junction. Halcrow have run
a MOVA simulation optimizing the junction control with the existing bus
priority methods. This allows the average delay on each arm, for buses and
for other vehicles, to be determined.

(3.10) For each time step (of one minute) the model calculates the optimum set
of fractions of green time αi, as described above. The chosen green times
are then used for one cycle and the new length of the queue is updated
according to the model (1). The overall average delay times (as a fraction

5

Better Junction Control with Bus Priority ESGI91

of total greentime) have been determined for each arm, and the results are
shown in the figures that follow. The model has been run with different
parameters p for the bus weighting.

(3.11) Since this approach is designed to be used in a saturated flow scenario,
the raw data for inflow provided by Halcrow was scaled up. This allowed
the results to be analyzed in the regime intended. The delay times that
the model creates are thus not directly comparable to those generated from
Halcrow’s MOVA data. However, by comparing the percentage decrease in
delay times for buses with a given weighting with the decrease in delay time
using the existing bus priority methods, a meaningful comparison can be
made.

(3.12) Figure 3 shows the average dely time τi on each arm of the junction as a
function of the bus weighting parameter p. The delay is measured in number
of cycles. The dashed lines show the average delay for buses on the given
arms. As p increases, buses gain greater priority and have smaller delay
times. The other vehicle types on the same arms also suffer smaller delay
times. However, vehicles on arms with no buses, such as arm 4, lose out
considerably. The oscillations and peaks, that buck the general decaying
trend, are artifacts of the optimization procedure. These arise because the
solution to the minimization problem is not unique; a choice has to be made
as to which set of solutions {αi} are used. Currently, the algorithm making
the choice has not been calibrated. This could be rectified given more time.

(3.13) Other features to notice in Figure 3 are that for arm 5 when p = 1 the buses
still appear to gain priority. Logically it is expected that their delay would
be equal to that for other vehicles, however we believe that this apparent
contradiction can easily be explained. There are few buses in the dataset

Figure 3: Model delay times Vs bus weight (or mass) the value p.

6

Better Junction Control with Bus Priority ESGI91

and they appear rarely. When they happen to appear on arm 5 there is
lighter than average traffic flow - meaning the buses traverse the junction
with less than average delay anyway. Such an anomoly highlights that
testing must be performed on a greater variety of datasets to better assess
the model.

(3.14) The table below shows the percentage increase in delay time (when buses are
given a weighting of p=15) for the model by arm and the increase in delay
time for the same arms for Halcrow’s existing bus priority approach. Since
buses can be tracked by GPS, it is assumed that one can determine when
they approach a junction. Hence the weighting for a given arm is switched
on four cycles before the bus actually joins the queue. It is switched off
when it is estimated that the bus has left the queue. A bus is estimated
to leave the queue by treating it as an average member of the queue. A
negative percentage indicates less delay.

Increase in delay time for buses
Lane (i) Model Halcrow
2 −12% −42%
3 −87% +51%
5 −37% −27%

(3.15) For arm 2, the proposed algorithm performs better than the existing bus
priority method. Halcrow’s method performs slightly better on arm 5, and
much better on arm 3. Arm 3 is oversaturated, arm 5 is saturated and
arm 2 is unsaturated. This indicates that the algorithm performs better
in situations that are more saturated and worse as the junction becomes
unsaturated. Importantly it shows that Halcrow’s existing method works
well in light traffic conditions. Although the large percentage increase in
bus delay times on arms 3 from the model reflect that the delay time is
very small in the first place, and any increase in delay, even if very small in
absolute value, creates a large percentage difference. In absolute terms the
increase in delay on arm 3 is actually small.

(3.16) The lumped-element discrete time model approach works well in heavy traf-
fic, but worse than existing methods in light traffic. This suggests that to
implement better junction control it should be combined with a strategy
that works well in unsaturated condition - such at the Markov Decision
Process approach.

3.3 Weaknesses of the Approach

(3.17) There are a number of subtle presumtions underlying this approach. The
most important assumption is that vehicles enter or leave the queue in-

7

Better Junction Control with Bus Priority ESGI91

tj−1 tj

ni(tj−1) ni(tj−1) + vi(tj)−Outi(tj)

red green

Figure 4: Vehicles enter and leave queue instantaneously.

stantaneously at the end of the given discrete time period. This is clearly
not what is physically happening: there is a discrete flow of vehicles into
the queue and a discrete flow out while the lights are green. Two natural
questions arise from this assumption. When is it valid? And what are this
assumptions’ limitations?

(3.18) The number of vehicles that leave the queue Outi are always approximated
well - this value depends on the fraction of the total green time allocated
(for the given arm), αi. The assumption is good if the queue is saturated.
The additional vehicles that join the queue in a given discrete time do not
all leave the queue in the same discrete time. The joining and exiting of the
queue can thus be visualized as occurring instantaneously at the end of the
cycle. With the same image in mind, the assumption is clearly good for the
arm that has greentime last in the cycle. This is pictured diagramatically
in Figure 4.

(3.19) The assumption that the inflow and outflow of the queue occurs instanta-
neously at the end of the cycle is poor if the queue is short and the greentime
for a specific arm is not at the end of a period. In this case some of the
vehicles that arrive over the cycle, vi, join the queue after the light has been
green meaning they cannot all exit the queue. In the model formalism how-
ever it is assumed that they would be able to leave the queue. The problem
is shown diagramatically in Figure 5.

(3.20) However, if the additional assumptions are made, that the inflow vi and the
fraction of greentime αi vary slowly between adjacent discrete time steps,
then the inflow in arm i since the previous greentime is approximately vi as
one cycle Tc has been passed through. This means that the instantaneous
inflow and outflow assumption can fruitfully be applied.

(3.21) The results in section 3.2 show that, as expected from these assumptions,

8

Better Junction Control with Bus Priority ESGI91

tj−1 tj

ni(tj−1) ni(tj−1) + vi(tj)−Outi(tj)

red green red

Figure 5: Poor assumption when the lights are red in the middle of the period

in saturated flows the lumped-element discrete time model works well. It
ensures traffic flows smoothly on all arms, while significantly decreasing the
time that buses on these arms wait. However, in unsaturated arms the
model does not provide a reliable prediction of the state of the junction
at the next cycle, which is necessary both for the correct function of the
algorithm, and for the generation of the data in the simulations. In light
traffic, we can assume that both the algorithm and the simulations are
unreliable. Further tests need to be performed to determine how many arms
need to be saturated before the lumped-element discrete time model works
better than the current method. In addition, a greater variety of input data
sets need to be run through the model to test whether the decreased bus
delay times remain significant.

9

Better Junction Control with Bus Priority ESGI91

4 Ordinary Differential Equation Approach

4.1 Introduction

(4.1) In this section we consider an approach in which the traffic is viewed as a
continuous stream. An analogy would be fluid flowing through a pipe. Some
strengths of this approach are that it can easily be adapted to incorporate
different flows into the junction and that it can describe the situation in
which the junction is not busy. On the other hand, this approach may not
be appropriate for modelling non-busy flows since such flows are not really
continuous (in particular this presents a problem with regards to infrequent
buses). The model also allows there to be a non-integer number of cars in
the queue, but this could easily be fixed by taking the floor of the solution
once the light turns red. Finally, we note that the model described assumes
that each branch of traffic only gets a green light once per cycle. This will
not be the case for many real-life junctions. Hopefully adapting the model
to deal with such situations would not be too difficult a task.

(4.2) First we develop a model that only deals with cars, and then we will describe
how the model can be adapted to incorporate a bus.

4.2 Cars-only model

(4.3) We suppose that there are N different branches to the junction, indexed
by i. We let ci(t) be the number of cars queueing on branch i and suppose
that this number is c0,i initially. If ki(t) is the rate at which cars join the
queue and ri(t) is the rate at which cars leave the queue, then “conservation
of cars” tells us that the number of cars in the queue is governed by the
equation

dci
dt

= ki(t)− ri(t), ci(0) = c0,i, for i = 1, . . . , N. (5)

(4.4) The in-flow ki(t) will be known from sensors at any given time. However,
our algorithm requires knowledge of ki(t) throughout the upcoming cycle,
which will not be known in advance. We therefore assume that the in-flow
remains constant throughout the cycle and that its value ki is equal to that
measured at the start of the cycle.

(4.5) While the light is red, the out-flow ri(t) is, of course, zero. When the
light turns green, there is an initial start-up period in which the out-flow
increases from zero to its saturation rate Si. For simplicity we have assumed
that this is a linear increase, but the model can easily be adapted to use
a more realistic function (one possibility that we have discussed is to use
a hyperbolic tangent function). Cars will then flow out at the saturation

10

Better Junction Control with Bus Priority ESGI91

flow rate until the queue is empty, after which time traffic will flow freely
through the green light so that the out-flow ri(t) is equal to the in-flow ki.
Mathematically, we have

ri(t) =

0, before the light turns green,
(t− t0,i)

τd
Si, during the initial start-up period,

Si, while the queue empties at its saturation flow rate,

ki, after the queue is empty and traffic is flowing freely,

0, after the light turns red again,

(6)
where t0,i is the time at which the light turns green, and τd is the duration
of the start-up period.

(4.6) We note that some of these periods may get skipped under certain condi-
tions. Firstly, if the initial queue length is sufficiently short, then the queue
may empty during the initial start-up period and then the saturation flow
period will be skipped. Secondly, if the light turns back to red before the
queue is emptied, then the free-flow period will be skipped. (Since τd is
typically small, at most one of these possibilities will occur for each queue).

Figure 6: Example solution of cars-only model without optimisation

(4.7) Once we have determined the appropriate form for the out-flow ri(t), we can
solve the equations (5) to determine the number of cars ci(t) in each queue

11

Better Junction Control with Bus Priority ESGI91

in terms of the green times given to each branch. We can then determine
the total cycle-averaged queue length

L =
N∑
i=1

1

T

∫ T

0

ci(t) dt, (7)

as a function of the green times, where T is the total cycle time, which is the
sum of all the green times plus the intergreen times. We then want to choose
the green times so as to minimise this function subject to the constraints
that (i) the green time for each branch must exceed some minimum value,
and (ii) the total cycle time must not exceed some maximum value.

(4.8) We can then repeat the process for the next cycle by using the values of the
queue length at the end of the current cycle, i.e. ci(T), as the new values
of the initial queue length c0,i.

4.3 Bus model

(4.9) We now extend the model to include a bus. The approach is similar to the
cars-only model, except now we have to consider the flow of the bus as well.
Analogous to (5), we now have

dci
dt

= ki(t)− ri(t), ci(0) = c0,i, (8)

dbi
dt

= pi(t)− qi(t), bi(0) = 0, for i = 1, . . . , N. (9)

Here, pi(t) is the rate at which buses enter the queue and qi(t) is the rate at
which buses exit the queue. The quantities ki(t) and pi(t) are thus related,
and the same can be said for ri(t) and qi(t). If Pi(t) denotes the total in-flux
of vehicles and Qi(t) denotes the total out-flux of vehicles, then we have the
equations

ki(t) + 2pi(t) = Pi(t), (10)

ri(t) + 2qi(t) = Qi(t), (11)

where the factor 2 comes from the fact that a bus takes twice as long as a
car to enter and exit the queue. The functions Pi(t) and Qi(t) will behave
like ki(t) and ri(t), respectively, in the cars-only model. The form of ki(t)
and pi(t) are

ki(t) =

Pi(t), if 0 ≤ t < tb,

0 if tb ≤ t < tc,

Pi(t), if t ≥ tc,

pi(t) =

0, if 0 ≤ t < tb,
Pi(t)
2

if tb ≤ t < tc,

0, if t ≥ tc,

(12)

12

Better Junction Control with Bus Priority ESGI91

where tb is the time at which the bus starts to enter the queue, and tc is the
time at which the bus has entered the queue. Similarly, the out-flux of cars
and buses are given by

ri(t) =

Qi(t) if 0 ≤ t < td,

0 if td ≤ t < te,

Qi(t) if t ≥ te,

qi(t) =

0 if 0 ≤ t < td,
Qi(t)
2

if td ≤ t < te,

0 if t ≥ te,

(13)

where td is the time at which the bus starts to exit the queue, and te is the
time at which the bus has exited the queue. These times td and te are to be
determined, and they depend on the green time. Equations (12) and (13)
simply mean that when the bus is entering or exiting the queue, the cars
aren’t, and vice-versa.

(4.10) Next, we combine the buses and cars together. We consider the quantity

d

dt
(ci +Wibi) =

(
1− Wi

2

)
[ki(t)− ri(t)] +

Wi

2
[Pi(t)−Qi(t)], (14)

where Wi is the weight that we give to a bus. If Wi = 2, then it means that
the cars and the buses are given the same priority, while if Wi > 2, then
the buses are given priority over cars.

(4.11) The results of a simulation with Wi = 10 is shown in Figure 10. The blue
curve represents the period where the bus is entering the queue, and since
there is a higher priority for the bus, the total weighted number of vehicles
increases drastically. The green curve represents the time the bus exits the
queue, and we can see that there is also a similar steep decrease in the
weighted number of vehicles as well. The light turns red at t = 20, and this
is where the queue starts to build up again.

(4.12) Upon successfully simulating the flow of traffic on a road with no junctions,
but one traffic light, the next step would be to consider the same bus model
for an actual junction, and subsequently add more buses into the model.
We would then want to choose the green times such that the total cycle-
averaged queue length

L =
N∑
i=1

1

T

∫ T

0

ci(t) dt, (15)

is minimised, subject to the constraints that (i) the green time for each
branch must exceed some minimum value, and (ii) the total cycle time
must not exceed some maximum value.

13

Better Junction Control with Bus Priority ESGI91

14

Better Junction Control with Bus Priority ESGI91

λ0

λ1

n0

n1

Figure 7: Diagram of the Y junction used in MDP formulation 1. Traffic flows from
left to right. See the text for the definitions of λi and ni.

5 Markov Decision Process Approach

(5.1) Markov Decision Processes (MDPs) are a formalism for making sequential
decisions under uncertainty. This section formulates the junction control
problem in the language of MDPs. Two formulations are presented, both for
the simple ‘Y’ junction in Figure 7, but the MDP approach can in principle
scale to include more complicated junctions, and indeed multiple junctions
to be managed simultaneously. The first formulation includes only one traf-
fic type (cars). The second formulation considers cars and buses separately,
so that they can be weighted differently; it also allows for minimum and
maximum green times to be enforced for each stage. Preliminary results
are presented for each formulation.

(5.2) To phrase the problem in the language of MDPs, we have to describe our
problem in the following terms of states (which are discrete), actions, tran-
sition probabilities (between states, depending on actions) and rewards (ob-
jective). Time is discrete. In each time step, we collect a reward for the
current state, then we take an action that determines a probability distribu-
tion for our next state. A solution is a policy that determines which action
to take in each state. An optimal policy is one that collects the maximal
amount of reward over time.

5.1 MDP Formulation 1

(5.3) Here we aim to find the simplest non-trivial formulation of the problem as
an MDP. The state of the system at a given time is described by the vector

s = (n0, n1, j)

where ni is the number of cars queueing on arm i, and j the current stage
— i = j when i has the green. The possible actions are to either stay in
the current stage or change to the next stage; these are denoted by a = 0
and a = 1, respectively.

(5.4) The transition probabilities define the dynamics of the system — that is,
how vehicles arrive at and depart from the queue on each arm. The ran-
domness in the system is due to the arriving vehicles. For each arm i, let

15

Better Junction Control with Bus Priority ESGI91

Ni be the number of new vehicles that arrive in the current time step. It is
assumed that Ni ∼ Poisson(λi) for known arrival rates λi.

(5.5) The dynamics of the vehicles leaving the queue are goverened by a single
parameter: let f be the maximum number of vehicles that can leave the
queue in a single time step. The length of the queue in the next state is
then given by

n′i = ni − [i = j]×min{ni, f}+Ni

where [i = j] denotes an indicator function that is 1 when i = j and 0
otherwise. That is, if arm i has the green, then up to f vehicles can leave
during this timestep.

(5.6) The next stage, j′, is determined by the action, according to

j′ =

j a = 0

1 a = 1, j = 0

0 a = 1, j = 1

(5.7) The reward for state s is defined to be

R(s) = −(n0 + n1)

which is the negative of the total number of vehicles in the system. The
rationale is that the total reward accumulated over time is the negative
of the total delay to vehicles in the system, so maximum long run reward
corresponds to minimum long run total delay.

5.2 Exact Solution Methods

(5.8) Once the problem is specified in this form, standard techniques can be used
to obtain solutions for small problems. Here, ‘small’ refers mainly to the
number of possible states. For MDP formulation 1, the number of possible
states is in principle unbounded, because (particularly if vehicles are arriving
faster than they can be served) the queues could grow to any length. In
order to solve the problem exactly, it is therefore necessary to truncate the
queues at some finite length n̄, so that the ni are in the range {0, 1, . . . , n̄}.
When ni = n̄, this means that there are n̄ or more cars in queue i. This,
together with the fact that j ∈ {0, 1}, implies that size of the state space is
2n̄2.

(5.9) Here a ‘solution’ is a ‘policy’ that specifies what action to take (a = 0 or
1) in each state. An optimal policy is one that maximises the amount of
reward we collect over time. To formalise this, we have to deal with one
more technicality: if we ran the system for an infinitely long time, some
policies might accrue infinite reward, which would make them uncompara-
ble. To make all policies comparable, we introduce a ‘discount factor’, γ

16

Better Junction Control with Bus Priority ESGI91

with 0 < γ < 1, and multiply future rewards by γ — intuitively, this makes
rewards collected now slightly more valuable than rewards collected in the
future, and technically it guarantees that all policies collect finite long run
discounted reward.

(5.10) Formally, we wish to find an optimal value function V ∗(s) that satisfies the
Bellman optimality equations

V ∗(s) = R(s) + max
a
γ
∑
s′

Pr(s′|s, a)V ∗(s′)

and a corresponding optimal policy π∗(s) that satisfies

π∗(s) = argmax
a

∑
s′

Pr(s′|s, a)V ∗(s′)

for all states, where Pr(s′|s, a) denotes the probability of transitioning to
state s′ from state s if that we take action a. That is, the optimal value
of a state is its immediate reward plus the expected discounted optimal
value that we receive by following an optimal policy in all subsequent
states. The optimal policy is determined by choosing in each state the
action that maximises the expected optimal value of its successors. An
optimal policy can be obtained by an algorithm called policy iteration.
A freely available implementation of this algorithm is available at https:

//github.com/jdleesmiller/finite_mdp. For details (and a much better
explanation), please refer to [1].

5.3 Example Results from MDP Formulation 1

(5.11) In practice, the result of policy iteration is a table that maps each state
to the optimal action. The optimal policy for the example network with
parameters

λ0 = 0.1, λ1 = 0.5, f = 1, n̄ = 1, γ = 0.95

is given in Table 1. This MDP has 8 states and 48 non-zero transition
probabilities.

(5.12) The optimal policy determined by the algorithm is intuitively reasonable.
For example, because there is more demand on arm 1 than arm 0 (because
λ0 < λ1), when the system is empty (n0 = n1 = 0), the system prefers
to give the green light to arm 1 (if j = 0, the option action is to change
(a = 1), and if j = 1, the optimal action is to stay (a = 0).

(5.13) One interesting feature is that when the queues are at their maximum per-
mitted length (n0 = n1 = n̄ = 1), the optimal policy is to switch between
stage 0 and stage 1 in every time step. We have not specified the time step
in physical terms as yet, but if it is short, say 5s, then switching the lights
every 5s would not be physical. This motivated the addition of minimum
and maximum stage times in MDP Formulation 2.

17

https://github.com/jdleesmiller/finite_mdp
https://github.com/jdleesmiller/finite_mdp

Better Junction Control with Bus Priority ESGI91

n0 n1 j action value
0 0 0 change -6.588
0 0 1 stay -6.370
0 1 0 change -8.400
0 1 1 stay -7.779
1 0 0 change -7.779
1 0 1 change -8.546
1 1 0 change -9.597
1 1 1 change -10.069

Table 1: Optimal policy for an example of MDP formulation 1.

5.4 MDP Formulation 2

(5.14) Here we make the following significant changes to MDP formulation 1,
namely:

1. Instead of representing the length of the queue on arm i with a single
number, ni, we break it down into the number of cars ci and the
number of buses bi in the queue. Similarly, the numbers of new buses
and new cars arriving in each time step are also specified separately
as Nib and Nic for buses and cars, respectively. It is assumed that

Nib ∼ Poisson(λib)

and
Nic ∼ Poisson(λic)

for known arrival rates λib for buses and λic for cars. Note that the
assumption that buses are Poisson should be regarded as suspicious,
because they should in principle be running on schedules (in most
cases); this is a limitation of this formulation.

2. To represent minimum and maximum stage times, we add an addi-
tional component τ to the state vector; τ counts the number of time
steps since the last stage change. The actions available in each state
are restricted to enforce the minimum and maximum stage times. In
particular, let the minimum and maximum stage times for stage j be
denoted τmin

j and τmax
j . The action space for each state is restricted

such that a = 0 (stay) if τ < τmin
j and a = 1 (change) if τ = τmax

j .
When τmin

j ≤ τ < τmax
j , both a = 0 and a = 1 actions are allowed, at

the discretion of the controller.

3. To permit more than two stages, we allow j to range over {0, 1, . . . , jmax},
where jmax is one less than the number of stages, and we replace the
single parameter f for junction throughput with a throughput matrix
F with entries fij that give the throughput in one time step from arm
i when in stage j. This allows us to represent ‘intergreen’ times by
adding a dummy stage with zero flow on both arms. For example, the

18

Better Junction Control with Bus Priority ESGI91

two zero rows in

F =

0 1
0 0
1 0
0 0

are intergreens between the stages for the Y junction. The minimum
and maximum stage times can be used to force the length of the in-
tergreen time to a particular value by choosing τmin

j = τmax
j .

4. The reward function is now the negative of a weighted sum of bus and
car queue lengths, namely

R(s) = −
∑
i

(wbbi + wcci)

where wb and wc are the weights for cars and buses.

(5.15) The main challenge in this formulation is the definition of the transition
probabilities for the the ‘mixed’ queue of both buses and cars, because we do
not know the order of the vehicles in the queue. That is, if a bus and two cars
are waiting on one arm, and we know that one vehicle can leave the queue
in the current time step, we do not know for sure whether it will be a bus or
a car. It is worth noting that this may not be entirely unrealistic: if there
are multiple lanes and error in the GPS positions reported by the vehicles,
the actual order of the queue may be somewhat uncertain. However, this
should be regarded as a limitation of this formulation, albeit not necessarily
a severe one.

(5.16) The transition process that governs the departure of vehicles from the queue
is one of sampling with replacement. For example, if we have two cars and
one bus, and we can remove two vehicles in one timestep, and the first one is
a bus, we know that the second one will be a car, because there are no more
buses. This behaviour is captured by the Hypergeometric distribution. Let
Fijb and Fijc denote the throughput of buses and cars, respectively, through
the junction in one time step. It is assumed that

Fijb ∼ Hypergeometric(bi, ci,min{bi + ci, fij})
Fijc ∼ Hypergeometric(ci, bi,min{bi + ci, fij}).

For example, Fijb is the number of buses that we draw from the queue, given
that there are bi buses and ci cars in the queue to start with and we draw
min{bi + ci, fij} vehicles in total.

5.5 Example Results from MDP Formulation 2

(5.17) The largest example solved so far has 800 states and 27k non-zero transition
probabilities. The main limitation at this point is actually that the program

19

Better Junction Control with Bus Priority ESGI91

that generates the MDP from the input parameters is very slow — it took
about an hour to generate the 800-state problem, but once it has been
generated, it took only a few seconds to solve. With improvements to its
efficiency, somewhat larger examples could probably be solved.

(5.18) The smallest non-trivial example that exercises all of the features of MDP
model 2, with parameters

λ0c = 0.1, λ1c = 0.5, λ0b = 0.01, λ1b = 0.05,

wb = 2, wc = 1, n̄ = 2, γ = 0.95,

τmin
ij = 1 ∀ j, τmax

i1 = τmax
i3 = 1, τmax

i0 = τmax
i2 = 2

(16)

and

F =

0 1
0 0
1 0
0 0

 (17)

has 216 states, so it is not practical to present the full optimal policy here.
A subset of the optimal policy is shown in Table 2.

5.6 Possible Extensions of the MDP Approach

(5.19) The general approach is to take the road network to be controlled and repre-
sent it as a directed graph with edges that represent the roads. At each node
in this graph, there will a number of cars and a number of buses (analogous
to bi and ci). Each of these nodes represents a physical region (a stretch of
say 50m of road), and so has a natural maximum capacity of buses and cars
(a sort of cellular automata approach). The transition probabilities govern
the movement of vehicles forward in the graph, according to these capacity
constraints and the same sorts of Hypergeometric transition probabilities
that are used in MDP Formulation 2. The action space is now the joint
action space over all junctions in the road network, because they can be
controlled independently — each one can either stay in its current stage
or move to its next stage, in each time step. Each junction has its own
throughput matrix (analogous to F) that governs the movement of vehicles
through the junction and either out of the system or into the approach for
the next junction.

(5.20) The challenge for this general approach is that the size of the state space will
grow very rapidly, and for any practical problem will likely be well beyond
what it is likely to be possible to solve exactly using policy iteration. In
general, the computational complexity of finding an optimal policy is poly-
nomial in the number of states; the problem is that the number of states is
exponential in essentially all of the parameters of interest. There is, however,

20

Better Junction Control with Bus Priority ESGI91

a large literature on approximate dynamic programming, which can provide
approximate solutions for extremely large MDPs. MDP-based controllers
using ADP have been successful in controlling lifts (elevators), for exam-
ple. ADP works mainly by representing the value function approximately.
Devising appropriately heuristics for representing the value function will
require knowledge of traffic engineering (and considerable experimentation)
in order to isolate characteristics of the state vector are really important in
determining the value function. This approach has the potential to deliver
a junction control method that is both principled and practical.

Bibliography

[1] Sutton and Barto, Reinforcement Learning: An Introduction, MIT Press, Cam-
bridge MA, 1998.

21

Better Junction Control with Bus Priority ESGI91

b0 c0 b1 b2 j τ action value b0 c0 b1 b2 j τ action value
0 0 0 0 0 0 switch -63.39829 0 2 0 0 0 0 switch -127.20526
0 0 0 0 0 1 switch -63.39829 0 2 0 0 0 1 switch -127.20526
0 0 0 0 1 0 switch -63.11068 0 2 0 0 1 0 switch -126.71293
0 0 0 0 2 0 hold -63.78838 0 2 0 0 2 0 hold -127.49957
0 0 0 0 2 1 switch -64.42649 0 2 0 0 2 1 switch -128.29429
0 0 0 0 3 0 switch -63.92799 0 2 0 0 3 0 switch -127.84724
0 0 0 1 0 0 switch -71.10782 0 2 0 1 0 0 switch -135.92656
0 0 0 1 0 1 switch -71.10782 0 2 0 1 0 1 switch -135.92656
0 0 0 1 1 0 switch -68.96821 0 2 0 1 1 0 switch -133.54806
0 0 0 1 2 0 hold -65.79818 0 2 0 1 2 0 hold -129.50927
0 0 0 1 2 1 switch -66.43629 0 2 0 1 2 1 switch -130.30400
0 0 0 1 3 0 switch -72.65085 0 2 0 1 3 0 switch -137.38677
0 0 1 0 0 0 switch -67.95676 0 2 1 0 0 0 switch -133.14622
0 0 1 0 0 1 switch -67.95676 0 2 1 0 0 1 switch -133.14622
0 0 1 0 1 0 switch -66.82507 0 2 1 0 1 0 switch -131.65734
0 0 1 0 2 0 hold -64.79325 0 2 1 0 2 0 hold -128.50440
0 0 1 0 2 1 switch -65.43136 0 2 1 0 2 1 switch -129.29912
0 0 1 0 3 0 switch -68.54112 0 2 1 0 3 0 switch -133.50662
0 0 0 2 0 0 switch -75.51333 0 2 0 2 0 0 switch -138.94328
0 0 0 2 0 1 switch -75.51333 0 2 0 2 0 1 switch -138.94328
0 0 0 2 1 0 switch -73.86579 0 2 0 2 1 0 switch -137.83494
0 0 0 2 2 0 hold -72.11909 0 2 0 2 2 0 hold -136.66828
0 0 0 2 2 1 switch -75.87923 0 2 0 2 2 1 switch -140.37422
0 0 0 2 3 0 switch -77.06780 0 2 0 2 3 0 switch -139.99611
0 0 1 1 0 0 switch -71.61982 0 2 1 1 0 0 switch -134.65212
0 0 1 1 0 1 switch -71.61982 0 2 1 1 0 1 switch -134.65212
0 0 1 1 1 0 switch -70.82984 0 2 1 1 1 0 switch -134.37057
0 0 1 1 2 0 hold -69.98658 0 2 1 1 2 0 hold -134.07420
0 0 1 1 2 1 switch -71.56150 0 2 1 1 2 1 switch -135.34387
0 0 1 1 3 0 switch -72.36021 0 2 1 1 3 0 switch -134.91951
0 0 2 0 0 0 hold -68.44518 0 2 2 0 0 0 hold -131.60706
0 0 2 0 0 1 switch -68.53912 0 2 2 0 0 1 switch -132.21788
0 0 2 0 1 0 switch -68.62580 0 2 2 0 1 0 switch -132.86084
0 0 2 0 2 0 hold -68.70358 0 2 2 0 2 0 hold -133.53765
0 0 2 0 2 1 switch -69.87090 0 2 2 0 2 1 switch -134.51880
0 0 2 0 3 0 switch -68.34536 0 2 2 0 3 0 switch -131.02671
0 1 0 0 0 0 switch -98.42783 1 1 0 0 0 0 switch -103.20199
0 1 0 0 0 1 switch -98.42783 1 1 0 0 0 1 switch -103.20199
0 1 0 0 1 0 switch -98.02734 1 1 0 0 1 0 switch -102.78779
0 1 0 0 2 0 hold -98.76719 1 1 0 0 2 0 hold -103.53110
0 1 0 0 2 1 switch -99.49302 1 1 0 0 2 1 switch -104.26507
0 1 0 0 3 0 switch -99.02110 1 1 0 0 3 0 switch -103.79894
0 1 0 1 0 0 switch -106.70613 1 1 0 1 0 0 switch -111.54313
0 1 0 1 0 1 switch -106.70613 1 1 0 1 0 1 switch -111.54313
0 1 0 1 1 0 switch -104.42971 1 1 0 1 1 0 switch -109.25555
0 1 0 1 2 0 hold -100.77880 1 1 0 1 2 0 hold -105.54080
0 1 0 1 2 1 switch -101.50462 1 1 0 1 2 1 switch -106.27477
0 1 0 1 3 0 switch -108.20849 1 1 0 1 3 0 switch -113.03585
0 1 1 0 0 0 switch -103.75379 1 1 1 0 0 0 switch -108.61515
0 1 1 0 0 1 switch -103.75379 1 1 1 0 0 1 switch -108.61515
0 1 1 0 1 0 switch -102.42229 1 1 1 0 1 0 switch -107.26628
0 1 1 0 2 0 hold -99.77297 1 1 1 0 2 0 hold -104.53592
0 1 1 0 2 1 switch -100.49880 1 1 1 0 2 1 switch -105.26989
0 1 1 0 3 0 switch -104.21701 1 1 1 0 3 0 switch -109.05993
0 1 0 2 0 0 switch -110.36088 1 1 0 2 0 0 switch -115.08061
0 1 0 2 0 1 switch -110.36088 1 1 0 2 0 1 switch -115.08061
0 1 0 2 1 0 switch -109.00395 1 1 0 2 1 0 switch -113.76898
0 1 0 2 2 0 hold -107.56915 1 1 0 2 2 0 hold -112.38832
0 1 0 2 2 1 switch -111.31013 1 1 0 2 2 1 switch -116.11935
0 1 0 2 3 0 switch -111.64467 1 1 0 2 3 0 switch -116.32658
0 1 1 1 0 0 switch -106.24037 1 1 1 1 0 0 switch -110.94530
0 1 1 1 0 1 switch -106.24037 1 1 1 1 0 1 switch -110.94530
0 1 1 1 1 0 switch -105.72744 1 1 1 1 1 0 switch -110.46865
0 1 1 1 2 0 hold -105.18132 1 1 1 1 2 0 hold -109.96692
0 1 1 1 2 1 switch -106.59264 1 1 1 1 2 1 switch -111.35612
0 1 1 1 3 0 switch -106.72258 1 1 1 1 3 0 switch -111.39804
0 1 2 0 0 0 hold -103.13207 1 1 2 0 0 0 hold -107.84119
0 1 2 0 0 1 switch -103.51042 1 1 2 0 0 1 switch -108.25380
0 1 2 0 1 0 switch -103.90172 1 1 2 0 1 0 switch -108.68813
0 1 2 0 2 0 hold -104.30542 1 1 2 0 2 0 hold -109.14531
0 1 2 0 2 1 switch -105.37352 1 1 2 0 2 1 switch -110.19732
0 1 2 0 3 0 switch -102.76692 1 1 2 0 3 0 switch -107.44913
1 0 0 0 0 0 switch -74.26411 2 0 0 0 0 0 switch -79.19873
1 0 0 0 0 1 switch -74.26411 2 0 0 0 0 1 switch -79.19873

Table 2: A subset of the optimal policy for the MDP Formulation 2 example.

22

	Introduction
	Problem statement
	Lumped-element Discrete Time Model
	Parameterizing the Problem
	The Model
	Weaknesses of the Approach

	Ordinary Differential Equation Approach
	Introduction
	Cars-only model
	Bus model

	Markov Decision Process Approach
	MDP Formulation 1
	Exact Solution Methods
	Example Results from MDP Formulation 1
	MDP Formulation 2
	Example Results from MDP Formulation 2
	Possible Extensions of the MDP Approach

	Bibliography

