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1 Executive Summary

A mathematical model is sought for the flow of nutrients in the Hydrosac c© growing module
being developed by Phytoponics. The basic operation involves long fluid-filled bags with
periodic growing zones from which root systems emerge into the bulk fluid. The system is
periodically perturbed via two main processes: partial drainage and refilling of each bag
with nutrient infused water, with inlet and outlet at opposite ends of the bag; and a more
violent oxygenation of the water through bubbles that rise from the pores of an aeration
tube that runs underneath the central long axis of the bag.

The aim of the modelling is to determine the key parameters and fluid regimes underlying
the nutrient mixing process, to ensure that required nutrient levels are maintained through-
out the root zones, and to enable optimal scheduling of the nutrient and bubble flow.

Simple experiments were performed via the injection of dye into an operating Hydrosac c©
that contained semi-mature plants. This enabled a basic understanding of the time and
lengthscales of nutrient flow, and also the extent to which mixing occurs in different zones
within the bag. Four different flow regimes are identified. At the scale of a single root,
a Stokes-flow approximation may be used. At the scale of the individual plant, a so-called
Brinkman flow regimemay be employed which is describes a transition between slow porous-
medium flow and fast channel flow. These equations may be homogenised into a 1D model
that can be used to estimate the macro-scale flow of nutrients along the length of the bag.

A shear flow model is used to predict the extent to which this flow permeates into regions
dominated by plant roots. This leads to the requirement to model the bubble-driven flow
within a bag cross-section containing a plant. Simplified two-phase flow equations are de-
rived and solved within the software COMSOL. The results suggest that the bubble flow
is sufficient to drive recirculating flow, which is also found to be consistent with previous
literature.

The overall conclusion is that both the periodic flow of nutrients and the aeration are re-
quired in order to enable even nutrient spread in the Hydrosac c© . Wave effects can be
ignored, as can the effect of stagnated nutrient diffusion. The longitudinal nutrient flow
enables the whole sack to be reached on the time scale of several cycles of the main inlet
flow, while the recirculation from the bubble flow enables enables nutrients to spread within
the plant roots. Nevertheless, regions of stagnation can occur via this process near any
sharp corners of the bag.

It is recommend that the various analyses are combined into a a reduced-order mathemat-
ical model that can be used to optimise the dynamic operation of the Hydrosac c© , which
can also be adaptable to other geometries and growing conditions.
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2 Problem statement

Phytoponics is an ‘AgTech’ start-up based in Wales. Their vision is to innovate the food chain
by facilitating the mass adoption of Hydroponic technology, so that a market sustainable
agriculture can tackle this century’s food, land and water challenges. Hydroponics is the
best way to grow fruit and veg, using 10 times less land and water than a traditional field
and it aligns with the UN sustainable development goals. Led by the United Nations Young
Champion of the Earth for Europe, Adam Dixon, Phytoponics has invented a new type of low
cost and versatile growing system that could deliver a huge impact globally.

Watch video: https://www.youtube.com/watch?v=Y7ReU6dtJNM&t

Hydroponics involves growing plants in a water-based nutrient solution to induce higher
growth rates. However, in a water environment, a significant constraint is the dissolved
oxygen levels, as plant roots respire using this dissolved oxygen as their primary source.

Having adequate dissolved oxygen levels is essential for healthy roots due to maintaining
pathogen defence systems and nutrient uptake. It is also important that nutrients are well
mixed within the system and that natural fluid flow does not cause dead zones or poor
concentration gradients within the growing system.

Phytoponics as a start-up has already benefited directly from taking part in two KTN agri-
food mini-study-groups with industry in 2017 and 2018. The innovations developed there
involved optimising the geometry of the sack to ensure its rigidity and understanding how
to aerate the system to achieve desired levels of dissolved oxygen.

The bigger challenge presented here is to optimise the design of the fluid mixing within
the Hydrosac c© growing modules, such that oxygenation is maximised in the pool of water,
and that nutrients are well mixed without any dead zones or unintended concentration
gradients.

The timing of the ESGI 138 is ideal because during the Study Group, Phytoponics can include
analysis and experiments in an ongoing large-scale trial in Wales. There may also be scope
to run experimental tests, live, on the actual apparatus, or even to arrange a day trip to
visit the trial site during the study group.

Key mathematical questions to be addressed during the study group include:

1. How does the geometry of the Hydrosac c© growing module contribute to the spread
of nutrients and oxygen?

2. How do plant roots contribute to mixing/and or stagnation?
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Figure 1: The Hydrosac c© with young tomato plants

3. Can we make a more precise model of nutrient distribution and oxygenation, backed
up by data?

4. Could we run experiments with introduction of die to explain how mixing takes place?

5. Could we create an engineering model from applied mathematics for this scenario?

6. Could one design optimal baffles or make other changes to the geometry to aid mixing,
and to generally enhance plant growth and cleaning?

3 The Hydrosac c© system

Phytoponics have designed an innovative hydroponic technology device and they aim to
use this technology to tackle the challenge of supplying sufficient food with limited land and
water resources. Hydroponics is the method of growing plants without soil, instead growing
them in a solution of water and nutrients.

This report is based on the configuration of Hydrosac c© that was being undertaken in
Aberystwyth under greenhouse conditions, running concurrently with the Study Group. At
the time of the Study Group the trial was in mid stage with the plants not having quite
reached maturity. The trial involved 8 separate Hydrosac c© connected to a single pump
and aeration system. Nevertheless for the purposes of this study, we will consider the
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Figure 2: Layout sketch of the Hydrosac c© . Left, side view; right, top view

Figure 3: Typical pump and drain schedules during one hour.

situation in a single Hydrosac c© rather than the whole system. The basic geometry and
dimensions of the Hydrosac c© are given in Fig. 2. It can be noted that the double-airbag ge-
ometry came about through innovations inspired by the first KTN mini-study-group report
[1].

During the Aberystwyth trial, nutrients were provided directly to the root system in each
Hydrosac c© by a flushing system in which water with freshly dissolved nutrients enters the
sack via an inlet in the upper portion of the sack end wall. At the bottom of the far end
wall of the sack there is a drain, which can be automatically opened and closed. from which
fluid can egress. The drained fluid is pumped through a cleaning system that removes
pathogens and dead plant material, before being recycled to have fresh nutrients added
and enter through the inlet again. The mass flow rate of the inlet pump is Q ≈ 15L/min,
whereas that of the drain is Q/2. A repeated T1-periodic cycle is maintained in which both
the pump and the inlet are on for a fixed time Ton. The mass flow rate of the inlet is During
this time the free surface of the water in the sack rises to its maximum level wmax. Then, for
the same period of time Ton, the pump continues to operate. During this time the water-level
sinks to its minimum level wmin. Then for a further period of time T1 − 2Ton > 0 both the inlet
and drain are closed and the water level remains at wmin; see fig. 3.
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Figure 4: The bubble flow from the aeration tube

During the study group, an additional system of nutrient inflow was being trialed via a se-
quence of drippers, one for each plant meshpot, which dripped nutrients from above at an
estimated rate of 0.066L/min, for about 2 minutes per 15 minutes. Initial computations below
will suggest that this method of nutrient input has negligible effect compared with the main
input flow. It transpired that, after the study group, the drippers were removed from the
trial system.

On a separate cycle, of period T2, air bubbles are briefly pumped into the bottom of the
Hydrosac c© for a time Ta � T2 through an aeration tube similar to that shown in fig. 4. This
meshed tube allows bubble production across the whole surface of the tube, rather than
through small holes punctured in its upper surface, as was envisaged in the previous KTN
mini-study-group report [2]. This accords with the findings of that report that finer bubbles
with a larger total surface area which greatly improve aeration capability.

The trial underway at the time of the study group had T1 = T2 = 15 min, Ton = 2 min and
Ta = 1 min, so that the entire system cycled every 15 minutes with 1 minute of bubble flow
and 6 minutes of flow due to the inlet or drain.

The key question to be addressed is whether with the given geometry and operation sched-
ule, nutrients would be spread evenly around the tank at the required level (about 200 parts
per million). Initial measurements from Phytoponics suggested that the nutrient levels could
vary within each sack, with sometimes a slightly higher concentration at the drain end and
sometimes a higher concentration at the inlet end. This static measurements are however
inconclusive, and thus an understanding of the mechanisms that underlie nutrient mixing
was sought from the study group.
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4 Experimental observations

During the study group, Phytoponics organised several dye experiments so that the flow
could be observed and conclusions drawn about its properties. The dye was used to simu-
late the injection of nutrients into the system.

Two kinds of experiment were performed as follows:

1. Dye is injected at the end of the Hydrosac c© . Bubbles are then turned on using the
aeration tube. The flow of bubbles is stopped and the main inlet flow is then turned
on. Following this the bubbles are then turned on again.

2. Dye is injected at the root base of a plant. The main inlet flow is then turned on.
Following this, the bubbles are also turned on.

The full experiment videos are available at:

https://docs.google.com/presentation/d/1QuAuLZC8Cqv0tY4qe8N_ENtuV6c3rLjYky_2QSQqdpM/edit?usp=sharing

The following snapshots capture the principal results of the experiments.

4.1 Experiment 1

(a) Bubble flow turned
on. No movement of
dye observed.

(b) Bubble flow turned
off. Main inlet flow
turned on. Good move-
ment of dye observed.

(c) Propagation of dye
observed further down
the Hydrosac c© .

(d) Bubble flow again
turned on and the
solution becomes well
mixed.

Figure 5: Pictures illustrating the first experimental procedure.
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A summary of the first experimental procedure can be seen in fig. 5. The dye is inserted at
the end of the Hydrosac c© , and the bubbles are turned on. We observe that no mixing is
induced, and the dye remains unmoved. Thus the bubble flow alone is not sufficient to give
good mixing.

After this, the main inlet flow is turned on. This results in significant propagation of dye
down the Hydrosac c© Dye is observed 4 pots away (at least a metre) within a matter of
seconds, and it is observed to spread to the whole Hydrosac c© within minutes. However,
dye remains confined mostly to the root-free region of the flow. In particular there remains
very little die along the central axis of the bag, around the plants themselves.

The bubbles are then turned on again. Now that the dye has been well propagated along
the axial length of the sack, it was found that the bubbles are now effective in distributing
the dye evenly within a cross-section of the sack. In particular, after the bubble flow ceases,
there is the appearance of well-mixed solution within the root zone as well as the root-free
region of the Hydrosac c© .

Thus, it is evident that both the main inlet flow and bubbles are necessary to provide a
well-mixed solution. It also appeared to be the case that a single one cycle of each may not
be sufficient when the nutrients are introduced at the end of the Hydrosac c© .

4.2 Experiment 2

(a) Main inlet flow turned on. No movement of dye
observed.

(b) Bubble flow turned on. Good spread of dye
observed.

Figure 6: Pictures illustrating the second experimental procedure.
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A summary of the second experimental procedure can be seen in fig. 6. The dye is inserted
at the root base of a particular plant and the main inlet flow is turned on. We observe no
spread of dye from a region around the roots, and the dye remains relatively unmoved. In
this case, the inlet flow alone is not sufficient to spread the dye and provide mixing.

After this, the bubbles are then turned on. This causes significant spread of the dye around
the roots and into the surrounding region1, with the flow then propagating the dye along the
axial length of the Hydrosac c© . Thus bubbles flow prior to the main inlet flow was necessary
to agitate and spread the dye so that it could then be carried by the main flow.

Thus, it is evident that both the main inlet flow and bubbles are necessary to provide a
flushing of high concentrations of waste products from around the plant roots into the
rest of the Hydrosac c© . Again we note that a well mixed solution is only obtained after
application of the main inlet flow, after the bubble flow. This it seems that the controlling
the timing of bubble flow and inlet flow may be important in order to maintain a well-mixed
solution of nutrients and waste materials.

5 Literature Review and Flow Regimes.

Following the experiments, we conducted a literature review to gain further knowledge on
hydroponics, channel flow and bubble mixing, so that we could create a mathematical model
to reproduce the observed results. Most of the background literature on hydroponic sys-
tems were already known by the Phytoponics team and relevant references were already
included in the previous mini-study-group reports [1, 2].

5.1 Bulk flow regime

Many analogous situations could be found to the bulk flow in the bag, for which stan-
dard theories could be developed. The key question was to estimate the Reynolds number
around the roots. For an inlet rate of

15Lmin−1 = 2.5× 10−4 m3 s−1

and high-water, free-water cross-section of

l × l = 0.2m× 0.2m,

1 It is worth noting that additional dye was added in this step of the experiment and that excess dye was
accidentally squirted onto the surface. However, the spread of dye was still attributable to the introduction
of the bubbles, as it was seen to quickly spread the injected dye.
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the flow speed in free water is of order

v = 10−2 ms−1.

This will need significant adjustment for low-water flow when water travels through the root
mass.

This gives an estimate of the Reynolds number:

Re =
ρlv

µ
≈ 0.2m× 10−2 ms−1

10−3 × 10−3 m2 s−1
= 2× 103

We can also estimate the associated pressure gradient, as the water passes the plants:

∇p ∼ ρv2

l
=

103 kgm−310−4 m2 s−2

0.2m
= 0.5Pam−1

With a length scale in the root region of a = 3 × 10−3 m, this pressure gradient would drive
a flow speed of order, for Darcy (slow) flow, of order

a2Pg/µ ∼ 10−5 m2 × 0.5 kgm−2 s−2/(10−3 kgm−1 s−1) = 5× 10−3 ms−1.

On the the other hand, trying a different Ergun (fast) flow balance, a typical velocity in the
root region, vr , satisfies

v2r = aPg/ρ = 3× 10−3 m× 0.5kgm−2 s−2/(103 kgm−3) = 1.5× 10−6 m2 s−2,

giving
vr ∼ 10−3 ms−1,

and a local Reynolds number of

ρvra/µ = 103 × 10−3 × 3× 10−3/10−3 = 3.

These estimates suggest that the flow is borderline between “fast” – Ergun – and “slow” –
Darcy. Also the reduced speed is comparable with the earlier speed, just above, for clear
water. This would indicate that the use of a Brinkman equation for the flow throughout the
sack could be appropriate.

5.2 Mixing due to bubble plumes

A more subtle question for which there is significantly less literature is the how much mixing
might be induced by a plume of bubbles.

Bubble plumes are used in mixing reservoirs and lakes. Some examples of bubble mixing
models for bubble plumes in large water bodies include Wüest, Norman and Imboden in 1992
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[3] they develop a numerical model for a bubble injection plume in a lake and Takashi and
Imburger’s 1993 model [4] for a linearly stratified environment. However these mixing meth-
ods often use the change in temperature to aid the mixing as the bubbles travel differently
over this temperature profile. Since the depth in the Phytoponics sack is not big enough to
create a significant temperature difference these models were found not to relevant.

The most relevant work we found was in Risso’s recent review paper [5] on bubble-induced
mixing. He considers an experiment in which gas is released into a stationary liquid without
pumping. The fluid is initial stationary, but its geometry ensures a relatively high Reynolds
number once the bubble flow begins atO(103).Theexperimentalobservationsfoundthatinareasofhighbubbleconcentrationthereisanupwardsflowandinareasoflowbubbleconcentrationthere′sadownwardsflow.Rissoalsocomparesaswarmofbubblestoasinglebubbletravellingandobservesthattheaveragevelocityofaswarmislessthanasingleisolatedbubble.Asthegastovolumeratioincreasestheaveragevelocityofthebubblesdecreasesbuttheaveragevelocityoftheliquidincreases.ThePhytoponicsproblemalsohasasimilarReynoldsduringbubbleflowduetotherootsoftheplants.ThusRisso′spapersuggeststhatthestreamofbubblesfromtheaerationtubewillinducesignificantmixing.

There are many references to the literature in Risso’s paper, containing further details
of bubble flow and induced mixing. Other relevant references we found include Ulbrecht
and Baykara’s paper on liquid phase mixing in a bubble column in [6]. Their paper shows
that the viscosity of the fluid significantly influences the quality of mixing from the bubbles.
Also Burns and Rice investigated circulation in bubble columns in 1997 [7], showing that the
circulating velocity profile is plug shaped not parabolic as predicted previously.

Finally expert input from Stuart Dalziel at the University of Cambridge [8] was solicited.
Based on his experimental expertise, he stated that a stream of bubbles can induce con-
vection, provided their rise velocity ga2/ν is small enough compared with the convective
velocities √

φgL, for some typical length scale L and volume concentration φ

6 Longitudinal model

If we neglect for now the variation inside a cross section, we can build a one-dimensional
model that can be used to evaluate the height changes in a channel for a given inflow and
outflow. We start by considering a very simple situation where we assume the flow is slow
(Darcy flow) and look at the result longitudinal flow. Then we shall derive equations for
the longitudinal flow systematically from a detailed description of the flow everywhere but
exploiting the vast range of different lengthscales to simplify the model.

6.1 Longitudinal flow model

We first assume that the flow everywhere is slow and can therefore be taken to be gov-
erned by the equations of Darcy flow. The governing equation comes from the conservation
of water mass at a given position x along the channel, which can be derived by assuming
the flow is unidirectional along the length of the sack and then averaging Darcy’s equation
in the cross section. This yields a conservation equation for the water cross-sectional area
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Figure 7: The computational domain

a(x, t) at a given position. For this initial model, we will assume a simple geometry for the
sack with a rectangular cross-section of constant width W and height h(x, t), although this
can be easily extended to more complex geometries.

The relevant Darcy flow equation is

∂(ρWh)

∂t
=

∂

∂x

[
κρgWh

µ

∂h

∂x

]
+ s(x, t), (1)

where κ is the permeability of the medium (taking into account the root density), ρ is the
water density, g is the gravitational constant, and µ is the viscosity of water. The function
srepresents mass sources and sinks of water to take into account the various sources of
input of water and the root system water uptake. See fig. 8 where the small sources along
the length of the sack represent the drippers at each plant. In addition we include the mass
input from the inlet sac and the mass removed to the next sack as large sinks and sources
at the ends. With this functional form of the source/sink term the boundary conditions for
this system are given by no flux, namely

∂a

∂x
= 0 at x = 0, (2)

∂a

∂x
= 0 at x = L. (3)

Finally the initial condition is

a = a0(x) at t = 0, (4)

where a0 is the initial water height in the sac.

This problem was solved numerically in Mathematica. The solution demonstrated that for
given fluxes and typical permeabilities that the variation of height of the free surface at
any time instance will be extremely small. There is no evidence of wave effects or sloshing
of fluid between the inlet and drain ends of the sack. The water height simply rises and falls
at the difference between the total rate of mass input and output.
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Figure 8: Source terms for the one dimensional model. Blue and orange correspond to
the in- and outflow, respectively, green is the dripper effect and brown is the root water
uptake.

6.2 Multi-scale model

We shall seek systematically to derive a model of the flow in the sack. We presume that
the water can be modelled as a Newtonian viscous fluid and hence the governing equations
are the Navier-Stokes equations. We shall need to account of the free surface of the water
and the solid boundaries of the Hydrosac c© as well as giving some initial data. The geom-
etry of the problem is extremely complex and hence we wish to exploit the many diverse
lengthscales in order to derive a simpler set of equations.

In particular, there are three different length scales that we can exploit namely (i) the indi-
vidual root scale, (ii) the single plant scale (which is also similar to the sack width scale) and
(iii) the sack length scale. See Figure 9). The approach taken is to look at the smallest length
scale, where we can identify some generic microscale cell problem representing a single
root. The we use this to upscale to a mesoscale cell problem representing the root ball of a
single plant. Finally upscale the mesoscale to produce a macroscopic model on the length
scale of the entire sac.

On the microscale, that is the scale of a single plant root, we consider the fluid to be a slow
moving, incompressible viscous fluid so that we employ the Stokes equations:

−∇p+ µ∇2u = 0, (5)
∇ · u = 0. (6)

Here u is the velocity of the fluid, µ is the kinematic viscosity and p is the pressure. Treating
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the fluid in this way is motivated by the low downstream velocities observed in the fluid and
the small length scale which give rise to a small Reynolds number.

On the mesoscale, that is the scale of a single plant, we must account for drag associated
with the fluid moving past a large mass of roots. We do this by employing a Brinkman flow
regime, which can be thought of as Stokes flow with an additional drag term associated with
the roots (see e.g. [9], This model is:

−∇p+ µ∇2u− µ

κ1
u = 0 (7)

∇ · u = 0. (8)

Here u is the fluid velocity, µ the kinematic viscosity, p the pressure, and κ1 the permeability
of the roots. We can can calculate this permeability by solving a ‘cell’ problem of the flow
around a single root in a periodic array of roots with the flow governed by (6).

On the macroscale, that is the scale of the channel, we can homogenise the previous
Brinkman flow model for the flow to derive

u+
κ2

µ
∇p = 0 (9)

∇ · u = 0 (10)

which is a Darcy Flow model. Here, u is the fluid velocity, µ the kinematic viscosity, p the
pressure, and κ2 permeability of the roots on the macroscale. Note that through the ho-
mogenisation procedure, one can develop a relationship between κ2 and the mesoscale
geometry and κ1 by again solving a cell problem of the flow through a collection of roots
representing the root ball of a single plant in a periodic line of such plants.

We are also interested in studying how the concentration of nutrients evolves over time in
the channel. A realistic situation is that the concentration on the micro and meso scales
are nearly spatially uniform and hence at the macroscale we have an advection-diffusion
equation for the concentration of nutrients:

∂c

∂t
+ u · ∇c = D∇2c− ηc. (11)

Here c is the concentration of nutrient, u is the fluid velocity at the macroscale, D is the
diffusivity of nutrient in water, and η is the rate of absorption of nutrients from the fluid by
the plant roots. We enforce fixed a concentration boundary condition on the input of the
Hydrosac c© , and an outflow condition on the right hand side, given in non-dimensional form
by

c = 1, x = 0, (12)
∇c · n = 0 x = 1. (13)
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Figure 10: Numerical results from the homogenised model
(vertical axis is time in seconds and horizontal is distance down the sac)

To investigate effects down the whole channel, we first solve (9) and (10) for the channel
fluid flow. We set up the three-dimensional cell problem at the mico- and meso-scales.
However, due to computational problems in the timescale of the study we were not able to
generate solutions of these ‘cell’ problems. Hence we used an estimated parameter value
for k2. We then use this fluid velocity profile as in input to solve (11). In Figure 10, we plot the
concentration profile in the channel as time evolves. We observe a moving front where the
nutrients move through the Hydrosac c© , being added at the left hand side and flowing out
through the right hand side.

We note that it takes 350 seconds which is about 6 minutes for the nutrients to fully advect
from the inlet to the drain end of the sack. Note that this is longer than a single time period
in which both the inlet and drain are on. This accords with the dye experiment results in
which die was not found to spread the whole length of the sack during a single inflow event.

Another conclusion from these results, although not explicitly shown here, is that diffusion
alone, will only allow nutrients to spread along the length of the sack over the timescale of
hours.

7 Mesoscale models — capturing stagnation and mixing

To investigate the presence of areas of stagnant fluid within the Hydrosac c© , we next exam-
ine the mesoscale problem. The main assumption we are going to make, in order to make
progress, is that the root distribution varies across a cross-section but is uniform along
the sac. This will allow us to examine the cross-sectional flow neglecting the fact that the
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plants inhomogeneities in the root distribution down the channel between individual plants
as well as neglecting height difference along the channel. Hence we will examine flow in a
cross-sectional area (with y across the sacandzvertical) assuming the flow is unidrectional
u(y, z) along the sac. The mesoscale model in the (y, z) plane is therefore

µ∇2u =
∂p

∂x
+

u

κ(y, z)
, (14)

where, µ is the kinematic viscosity, u(y, z) is the unidirectional fluid velocity, and p is the
pressure. We close the model by assuming we know the position of the surface and the
pressure gradient in the x direction, and taking the boundary conditions to be:

u = 0, on the walls of the Hydrosac c© , (15)
∂u

∂n
= 0 on the free surface, (16)

which represents both no penetration of the fluid into the walls of the Hydrosac c© and also
no slip on the walls of the sac. The second condition represents that there is no flow
through the free surface and no shear stress.

In Figure 11, we plot the permeability function across the cross-sectional area; the function
we took is a qualitative example that indicates the roots being concentrated down the cen-
tre and along the bottom of the Hydrosac c© although this choice of function can easily be
refined later. The functional form we employed is

1

κ(y, z)
=

0 for z > f(y),

kmin + (kmax − kmin)
h−z
h for z ≤ f(y),

(17)

where f is given by
f(y) =

h(y − y2)

y1 − y2
,

with y1 = 0.1 and y2 = 0.2, which indicates the location of the roots and kmin, kmax and they are
given by the inverse of the permeability of the roots, at the top and bottom , respectively.
We also take the viscosity to be: µ = 10−6m2 s−1 which is the viscosity of water at 18 ◦C.

We define a geometry within Mathematica that is representative of the actual geometry of a
Hydrosac c© and solve (14) and (15) numerically. We run this for a low and a high permeability
taken to be: κmax = 1000 and κmax = 0, respectively. In each case, we take kmin = 0. Our
results are plotted in (12). They indicate that there is a large potential for stagnation within
the Hydrosac c© . In particular, the sharp corners of the Hydrosac c© and along the bottom
are areas where stagnation occurs. This model currently does not account for mixing due
to bubbles. It is likely that the introduction of bubbles causes mixing in the centre of the
bottom of the sac, however we would anticipate that bubbles may not avoid the problems
with the sharp corners. A possible remedy for the difficulty would be to introduce additional
walls to the Hydrosac c© that round-off the corners.
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Figure 11: Example of the permeability field 1/κ.

Figure 12: Out-of-plane velocity profiles of 2D model for high permeability (left) and low
permeability (right).
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7.1 Shear layer model

Before considering the mixing effects of bubble flow, let us first seek to explain one possible
source of stagnation in the inlet flow. Since the Reynolds number for the meso-scale flow
(without bubbles) is of the order Re = O(102), we expect a laminar regime. By assuming
a simplified geometry, where the roots are represented by a porous cylinder, and we ig-
nore the outer walls of the Hydrosac c© (see Figure 13), we can make use of classic laminar
solutions to describe our flow.

At the mesoscale, we represent the root system of a single plant as a porous cylinder. The
plant roots provide a resistance to the flow that is sufficient to slow it down within the area
beneath a single plant. In this way, as the flow passes through and around the root cylinder,
we expect the streamwise velocity profile to have an approximately a “top-hat” profile. That
is, slower flow in the cylinder region (with speed U2) and faster flow (with speed U1) in the
outer regions that do not come into contact with the roots. See Figure 13. It is well known
see e.g. [10], that such a discontinuous velocity profile is unstable to perturbations (due to
the Kelvin-Helmholtz instability) and results in a laminar shear layer that grows between the
fast and slow regions of flow. Here we make the key assumption that the speeds of the
streams, U1 and U2, do not vary with longitudinal position x. This allows us to make use of
the classic laminar shear layer solution for flow between unconfined parallel streams.

The classic laminar shear layer problem is described in detail by Schlichting [10], but here
we give a brief outline.We assume that the flow is two-dimensional and symmetric about the
centreline of the Hydrosac c© . Therefore, we restrict attention to one half of the domain.
We assume that a short distance downstream of the cylinder the velocity is given by the
top hat profile

u =

U1, y > 0,

U2, y ≤ 0,
(18)

where we have chosen our coordinate axes (x, y) such that the origin is located at the
discontinuity in the velocity profile. For x > 0 a thin shear layer grows between the constant
velocity streams. Since we have assumed constant U1, U2, we can take y varying between
−∞ and∞ without loss of generality. We expect this to be a valid assumption until the point
where the shear layer originating from one side of the cylinder interacts with the shear
layer from the other side (which we discuss in more detail later). Therefore, if the cylinder
has diameter D, we restrict our attention to regions of the flow where the shear layer is
located within y > −D/2.

The shear layer is expected to occupy a thin region, in which the flow is well approximated
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by the steady two-dimensional boundary layer equations

∂u

∂x
+

∂v

∂y
= 0, (19)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, (20)

0 = −1

ρ

∂p

∂y
. (21)

Due to (21) and the fact that there is no pressure gradient at y → ∞, the pressure is constant
everywhere. Hence, by making the following transformation to similarity variables

η = y

√
U1

νx
, (22)

u = U1f
′(η), (23)

v =
1

2

√
νU1

x
(ηf ′(η)− f(η)), (24)

the momentum equation (20) becomes

ff ′′ + 2f ′′′ = 0, (25)

which is often called the Blasius equation.

The appropriate boundary conditions for the streamwise velocity are

u → U1, y → ∞, (26)
u → U2, y → −∞. (27)

From [11] there is also the boundary condition

v(x,∞) = −U2

U1
v(x,−∞). (28)

The condition (28) indicates that there is greater entrainment from the slower stream than
the faster stream. Hence the dividing streamline, along which v = 0, is inclined downwards
from the x-axis. This is in accordance with experimental observations [12].

In terms of the similarity variables, these boundary conditions become

f ′(∞) = 1, (29)
f ′(−∞) = λ, (30)

lim
η→∞

(ηf ′(η)− f(η)) = −λ lim
η→−∞

(ηf ′(η)− f(η)), (31)

where λ = U2/U1 is the velocity ratio between slow and fast streams.

There is no known analytical solution to the system of equations (25), (29)-(31), but a numerical
solution can be computed by approximating the domain as finite but large (e.g. −100 < y <
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Figure 13: Shear layer model

100). The inner and outer boundaries of the shear layer are given by

youter = ηouter

√
νx

U1
, (32)

yinner = ηinner

√
νx

U1
, (33)

where ηouter and ηinner are approximated as

f ′(ηouter) = λ+ 0.95(1− λ), (34)
f ′(ηinner) = λ+ 0.05(1− λ). (35)

Since the inner stream is relatively lacking in nutrients compared with the outer stream, it is
important to understand where the inner boundary of the shear layer reaches the centre-
line of the flow in the Hydrosac c© . The flow upstream of this point consists of low-nutrient
water, whereas the flow downstream is a mixture of low-nutrient and high-nutrient water.
The place where the shear layer reaches the centreline is therefore a good approximation
of the minimum recommended spacing between plants.

Therefore, if the diameter of the cylinder is D, then the distance for the inner region to
disappear is given implicitly by the expression

yinner(xmix) = −D

2
. (36)

Since the solution to (25), (29)-(31) depends on the velocity ratio λ, so too does the distance
xmix.

In Figure 13 we plot the non-dimensional distance xmix/D as a function of the parameter λ.
We see that xmix/D increases with λ. This is because larger values of λ produce a weaker
shear layer which grows more slowly.
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A simple experimental measurement of the velocity within the Hydrosac c© could allow us to
estimate the velocity ratio λ, and hence the appropriate spacing of the plants. In any case,
these results suggest that the optimum spacing should be no less than around 4 cylinder
diameters.

7.2 Bubble flow model

We have seen from the experiments in Sec. 4 that the longitudinal flow is turned off the
majority of the time, and that the bubbles have a considerable effect on the mixing of the
dye. We investigate the case in which there is no longitudinal flow and study the effect of
bubbles in a cross section using a multiphase model. We assume that there are a large
number of small bubbles so that we can approximate the bubbles by a continuum. Further-
more, we assume that the bubbles are in an equilibrium so that the buoyancy force acting
on the bubbles balances with the drag force exerted on the bubbles by the fluid. Our model
is summarised as follows:

Conservation of air mass: ∂

∂t
(αρa) +∇ · (αρaua +D∇(αρa)) = 0, (37)

Conservation of water mass: ∂

∂t
((1− α)ρf ) +∇ · ((1− α)ρfuf ) = 0, (38)

Conservation of water momentum: D

Dt
(1− α)ρfuf ) = −∇p+ µ∇2uf − 1

κ
uf − Fd, (39)

Bubble force balance: Fd −
4π

3
a3(ρf − ρa)g = 0, (40)

Air volume fraction: α =
4π

3
a3n. (41)

Here α is the volume fraction of air, ρa is the density of air, ρf is the density of water, ua

is the velocity of air phase, D is the diffusivity of air bubbles in water, uf is the velocity
of the water, p is the pressure in the water, µ is the viscosity of water, κ is the root drag
coefficient, Fd is the drag force acting on the bubble, a is the radius of the bubbles, g is the
gravitational acceleration and n is the number of bubbles per unit volume of fluid.

We need boundary conditions for eqs. (37) to (39) to have a well posed system. There
are three cases that we need to consider, the free surface of the fluid, the wall of the
Hydrosac c© and the bubble source. On each of the boundaries we use no flux conditions
for the conservation of water and air mass.

uf = 0 and n ·Nαρa
= 0,

where n is the normal vector of the surface and Nαρa
is the flux of air mass through the

boundary. Furthermore we need to have a source of bubbles in the system, this can be
done by using a volume source of bubbles in the place where the pipe that is the bubble
source would be.
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Figure 14: Velocity field induced by bubbles in a simplified geometry calculated by COMSOL for
the model presented from eq. (37) to eq. (40).

This model is inbuilt within COMSOL using research from e.g. [13], thus can be solved for an
arbitrary geometry. We use a simplified geometry to get an order of magnitude estimate
for the recirculation speed.

By computing the solution of eqs. (37) to (41) in COMSOL, we find that the bubbles generate
recirculation of water in the cross section that we would expect intuitively. The results are
shown in fig. 14.

Using this model could give us more information about the placement of the bubble sources
and the relationship between the bubble size and the generated flow, but to get reliable
results we would need more information about the material parameters that occur in the
model, for example: D the diffusivity of bubbles in water and κ the drag coefficient on the
roots are two parameters that we do not know accurately, hence the numerical results are
only qualitative.

Nevertheless, we can estimate the recirculation speed. Using the properties of water for
the fluid, air for the dispersed gas bubbles, assuming 0.1 kgm−3 gas flow from the pipe and
assuming 1mm bubble size, the recirculation speed is of the order 0.2ms−1. This suggests
that within the Ta = 1 min that the bubble flow is on there will be muliple, O(20), circuits of
fluid motion within a cross-section containing a plant. This is likely to be more than sufficient
to enable effective nutrient mixing.
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8 Conclusion

8.1 Key findings

1. We have analysed a range of reduced-order fluid dynamic models of the spread of
nutrients within the Phytoponics Hydrosac c© system that was in place for the Aberyst-
wyth trials in Summer 2018.

2. The modelled Hydrosac c© allows for the infiltration and mixing of nutrients by a com-
bination of two processes that are repeated periodically; inlet flow and mixing due to
bubble flow.

3. Nutrients enter the flow as the bag is being filled from the inlet. This causes a con-
vection of nutrients throughout the bag from the inlet end towards the drain. Both
experimental and modelling evidence suggest Several cycles of the inlet flow are re-
quired for the nutrients to reach the far end of the bag.

4. The inlet flow alone does not allow mixing of nutrients into the plant root systems,
with the main flux of nutrients being confined to regions of high permeability (low root
density). In particular there are near stagnation zones in the regions around each
plant root system, with re-mixing of nutrients into the centreline of the channel only
predicted to occur after 4 plant diameters, which is a greater separation than used in
the current Hydrosac c© .

5. Both experimental evidence and that from the literature suggests that the inflow of
fine air bubbles is sufficient to drive recirculation within each cross-section of the
sack. Computational modelling of simplified two-phase flow agrees with this finding
and suggests that the recirculation is sufficient to cause significant mixing of nutrients
from the stagnant zones into the plant root system.

6. Nevertheless some stagnant regions are likely to remain in the bottom corners of the
Hydrosac c© .

7. Nutrient diffusion, the flow from drippers placed above each pot and any wave or
sloshing effects can generally be ignored as they do not contribute significantly to the
nutrient mixing.

8. We have not specifically modelled the flux of pathogens or waste products, other than
to implicitly assume that this mirrors the flux of nutrients through the bag.

9. Nor have we specifically modelled the aeration of water, other than the effect of the
bubbles on inducing fluid mixing. Nor has this study modelled the uptake of oxygen by
the plant roots.
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10. The overall conclusion is that a combination of inflow and bubble flow is necessary in
order to provide good nutrient mixing.

11. Moreover, the approach used is sufficient to gain quantitative accuracy and therefore
can be used to optimise the operation of the existing Hydrosac c© or future generations
that Phytoponics may develop.

8.2 Recommendations

Recommendation 1. We recommend that a full hybrid model be developed along the lines
developed here. In particular, the homogenisation process in Sec. 6.1 should be com-
pleted and fed with more realistic numbers arising from properties of the roots. Also
the computational model in Sec. 7 should be fully parametrised. Given the brief time in
which the bubble flow is on compared to the whole cycle Ta/T2 = 1/15, the final state
of mixing after the bubble flow can be fed back into the macroscopic flow model for
the rest of the cycle. Thus, the two models are run separately.

Recommendation 2. The combined model should be used to optimise the dynamic parame-
ters of the operation of the Hydrosac c© . In particular, by understanding the depen-
dence of the distribution of nutrient concentration throughout the sack on the control
parameters T1, T2, Ton, Ta, wmax, wmin etc., minimisation of energy input can be sought.

Recommendation 3. The model so-far suggests that regions of stagnation, and hence poor
mixing, may still exist in the Hydrosac c© near sharp corners where the air bags join
each other and join the bottom of the sack. We recommend that future designs of the
sack try to avoid any sharp corners.

Recommendation 4. We recommend that the model be extended to include both levels of
dissolved oxygen (building on the report [2]) and waste. Efficient operation of the
Hydrosac c© can be

Recommendation 5. More effort should be put into establishing accurate parameters, for
example for effective permeabilities, nutrient and oxygen uptake by roots, and on the
properties of waste products.

Recommendation 6. For future trials, further quantitative experiments should be planned
in which dynamic measurements are taken at multiple points within the Hydrosac c©
on nutrient and dissolved oxygen levels. These measurements should be used to
parametrise, validate and verify the model.

Recommendation 7. Finally, we recommend a plant growth and fruiting model can be es-
tablished as a function of different levels of nutrient and oxygen, plant spacing etc. to
produce information on yield as a function of energy input.
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