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1 Introduction

The operation of the Scanning Vibrating Needle Curemeter (SVNC) and the areas where
the Study Group ESGI2001 were asked to take things forward are summarized in the
document [1] issued at the Study Group. We recall that the basic method of operation of
the SVNC is that a carbon fibre needle is vibrated vertically in a sample as it cures, i.e. as
it reacts and sets from a liquid to a solid. The sample is contained in a saucer-shaped
depression in a steel base, roughly as illustrated in Figure 1. The vibration is driven

Carbon fibre needle

Plastic sample

Steel base
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r=bz=0
O

h 1
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h

Figure 1: Basic sample geometry

electrically, by a constant thrust vibrator, at an adjustable frequency. The back emf
(electromotive force) in the vibrator coil gives a measure of vibration amplitude, and
the vibration frequency is computer-controlled to maintain the maximum amplitude.
Thus during the cure, both the resonant frequency and the resonant amplitude are
measured. In a cure that RAPRA provided details of, the resonant frequency rose from
about 75 Hz to 170 Hz during the cure. RAPRA Technology can already gain much
qualitative information from this curemeter. A brief note has been written previously
on the quantitative aspects, [2], and the aim of the Study Group was to make further
progress in this direction.

2 Modelling assumptions

There are various potential sources of nonlinearity in this problem, and the Study Group
did not make any attempt to model them, but we do just list them here for reference:

• Sliding friction in the driving mechanism of the vibrator.

• Conversion of physical amplitude to output signal. The electronic processing that
produces the signal intended to be proportional to back emf is not known in detail,
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but it is intended to be linear.

• Non-Newtonian behaviour in the polymer.

• Imperfect bonding of the sample to the needle or the base.

• Partial buckling of the needle during the compressive phase of the cycle.

One piece of evidence of nonlinearity is that Bryan Willoughby (henceforth BW) has seen
traces of the back emf as a function of time, and they were noticeably non-sinusoidal,
whereas the driving force is sinusoidal. The reason for this is unknown.

Based on information provided by BW, we assume that

• the vibration does not affect the curing process, so the sample remains
homogeneous and isotropic;

• the sample bonds perfectly to the needle and the base.

The base in which the sample sits is of steel, with Young’s modulus about 2 ×
1011 N/m2, and the Young’s modulus of the carbon fibre needle is similar. However, the
Young’s modulus of the plastic sample when fully cured will be much lower, typically of
order 106 N/m2. When the sample is liquid we shall see that the stiffness is lower. This
suggests the basic approximation of treating the base and needle as rigid, so that the
sample itself is the only deforming element in the system.

A further approximation is to treat the sample as incompressible. This is a natural
assumption when the sample is still liquid. For the solid this assumption rests on two
facts:

• the Lamé moduli λ and µ satisfy λ � µ;

• there is a free surface so the material can accommodate the needle vibration without
change of volume.

The first point here is certainly a good approximation for rubbers, and we believe it
applies to plastics also, but do not have access to data from which to check it. It implies
that Poisson’s ratio ν = λ/(2(λ+µ)) is close to 1

2
. Also the usual relation E = 2G(1+ν)

between Young’s modulus E and the shear modulus G (G = µ), becomes simply E = 3G.
The second point is that since the bulk modulus is much larger than the shear modulus,
and the geometry is such that the constraints can be satisfied by shear without volume
change, that is what the material will choose to do.

3 Linear model

We shall describe a linear mathematical model for the vibration of the needle in the
sample in the curemeter. We begin by describing the coordinates and variables we use,
and then assemble together standard models for the different parts of the system.
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3.1 Coordinates and variables

We choose a cylindrical coordinate system (r, θ, z) based on the vertical axis of symmetry,
with origin at the centre of the flat surface of the sample. There will be no θ dependence
of any variables, and no displacement in the θ direction. The saucer is taken to be a
segment of a sphere, of depth h and radius b in the plane z = 0, so in fact the saucer
region is defined by z ≤ 0 for the flat surface, and r2 ≤ (z+h)(b2/h−z) for the spherical
cap. The equilibrium position of the needle is taken to be the cylinder r ≤ a, z ≥ −h1.
We also define h2 to be the depth of sample below the needle, so h = h1 + h2.

During the motion, the needle has a vertical displacement which we denote by s(t).
For our small strain assumption to be valid we require that |s| � h2, since the maximum
strain will occur where the moving needle is closest to the fixed base, i.e. in the region
immediately beneath the needle.

If we let u(x, t) denote the displacement field within the sample, then the assumptions
that the base and needle are rigid give us

u = (0, 0, 0) on the base, u = (0, 0, s) on the needle. (1)

On the free surface (z = 0, a < r < b) there is no prescribed displacement, but there is
no applied stress, so with σ as the stress tensor we have

σzz = 0, σrz = 0 on the free surface. (2)

3.2 Modelling the viscoelasticity of the sample

We here summarize the standard linear theory of viscoelasticity, and the associated
terminology, as found in for instance Pipkin’s book [3].

As we have already seen, it is reasonable to assume that the sample only deforms in
shear, and to begin with we think of a cuboid of material being deformed in simple shear
as in Figure 2. For a linear purely elastic solid there is a relationship σ = Gγ between the

σ

γ

Figure 2: Shear stress σ and shear angle γ

instantaneous values of the shear stress σ and the shear angle γ, which defines the shear
modulus G. For a Newtonian viscous fluid, there is a linear relation between σ and the
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rate of shear, σ = ηγ̇, which defines the dynamic viscosity η. For a general viscoelastic
material, the shear angle γ depends on the past history of σ, and if this dependence is
linear then we can write

γ(t) =
∫ ∞

0
c(τ)σ(t − τ) dτ. (3)

If σ varies sinusoidally, then (after any transient behaviour has decayed) γ will also vary
sinusoidally. We make the convention that we shall then write σ(t) = �(σce

iωt) so σc is
the complex amplitude, and ω denotes the radian frequency, so ω = 2πf if f is measured
in Hertz. We then have

γc = C(ω)σc, C(ω) =
∫ ∞

0
c(τ)e−iωτ dτ. (4)

This C(ω) is called the shear compliance, and its reciprocal is the dynamic shear modulus
G(ω), with real and imaginary parts G′, G′′, so

σc/γc = 1/C(ω) = G(ω) = G′(ω) + iG′′(ω).1 (5)

G′(ω) is known as the storage modulus, G′′(ω) ≥ 0 is the loss modulus, and tan δ =
arg(G) = G′′/G′ is the loss tangent. The static value G(0) = Ge is real and called the
equilibrium modulus. The high frequency limit limω→∞ G(ω) = Gg ≥ Ge is real and
called the glassy modulus. The storage and loss moduli are related by the Kramers-
Kronig relations, expressing the fact that the material responds causally:

G′′(ω1) =
1

π
P

∫ ∞

−∞
G′(ω) − Gg

ω − ω1

dω, G′(ω1) = Gg − 1

π
P

∫ ∞

−∞
G′′(ω)

ω − ω1

dω, (6)

where P
∫

denotes the Cauchy principal value of the integral.
For a purely elastic solid, G is real and independent of frequency. For a Newtonian

viscous fluid, σ = ηγ̇, and so G(ω) = iωη, where η is the dynamic viscosity. A general
model for a viscoelastic material that includes both these limits as special cases is the
‘standard linear solid’ or Maxwell-Voigt model, in which σ and γ are related by

σ + T σ̇ = Geγ + GgT γ̇, (7)

with a relaxation time T > 0 in addition to the parameters Ge, Gg already introduced.
This then gives

σc

γc

=
Ge + GgiωT

1 + iωT
= G(ω) = G′(ω) + iG′′(ω), (8)

from which the real and imaginary parts G′, G′′ can easily be separated out.
These relationships are for simple shear, and to generalize them to the appropriate

tensor form for an incompressible material we shall have a displacement field u(x, t) with
strain tensor

eij = 1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (9)

1The terminology is standard. Note that G′ and G′′ are not the first and second derivatives of G(ω)
with respect to ω.
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(in Cartesian coordinates). Incompressibility is represented by

Tr(e) =
∑

i

∂ui

∂xi

= 0, (10)

and the stress tensor σij is given by

σij + T σ̇ij = −pδij + 2(Geeij + GgT ėij), (11)

so p is analogous to hydrostatic pressure. (The factor of 2 arises because for simple shear
in the i, j plane, eij = γ/2.) Alternatively, if σ, p, and u are varying sinusoidally and we
express them in terms of complex amplitudes σc, pc etc, then

(σc)ij = −pcδij + 2G(ω)(ec)ij. (12)

These models are just as discussed in p93–95 of [3].

4 Modelling the vibrator

We adopt a simplified model of the vibrator, in which the relevant effects are:

• A linear relationship between the force F that the vibrator applies to the needle
assembly, and the current I flowing through the coil,

F = KI. (13)

• A simple LR circuit for the current in the coil

V = IR + Lİ + Vb (14)

where V is the applied alternating electromotive force, R and L are the resistance
and inductance of the circuit, and Vb is the back emf in the coil.

• Simple proportionality between the back emf and the needle velocity

Vb = Kṡ. (15)

This is just the Faraday effect, and in a simple linear model like this, reciprocity
makes this constant K the same as in (13).

• We assume the damping and elastic forces on the needle due to its mounting are
λṡ and k0s for constants λ, k0.

The equation of motion of the needle then is

F = ms̈ + λṡ + k0s + Fs (16)

where the first three terms are the inertia, and the damping and elastic forces, and Fs

is the force applied by the needle to the sample. The vibrating mass is m = mn + mv

where mn is the mass of the needle and the pin vice that holds it, and mv is the mass of
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the vibrating part of the mechanism itself — the coil and some fraction of the mounting
etc. For sinusoidal driving, we write F = �(Fce

iωt) as usual, and the complex amplitude
of the back emf is then

(Vb)c(ω) =
KFc

miω + λ + k0/(iω) + Zs(ω)
, (17)

where Zs(ω) is the mechanical impedance of the sample

Zs(ω) = (Fs)c/(ṡ)c. (18)

For a constant thrust vibrator, Fc is independent of frequency, so the measured amplitude
of the back emf depends on the sample through this impedance Zs(ω) in the denominator
of (17). The resonant frequency ωr and peak amplitide |Vb|res then are given by

|Vb|res = |(Vb)c(ωr)| = max
ω

|(Vb)c(ω)|, (19)

and the measured resonant frequency in Hz is fr = ωr/(2π).

5 Sample impedance

If we were to write down the full dynamic equations for the motion of the sample, we
would have (in Cartesians)

∑
j

∂σij

∂xj

= ρ
∂2ui

∂t2
, (i = 1, 2, 3). (20)

The smallest terms on the left are of order |G||s|/b2, whereas on the right we have terms
of order ρω2|s|. The ratio of these is

ρω2|s|
|G||s|/b2

=
ρω2b2

|G| . (21)

For typical sample properties and dimensions, we have

ρ ≈ 103 kg/m3, G ≈ 2 × 105 N/m2, b ≈ 6 mm = 6 × 10−3 m,

ω = 2πf, f ≈ 170 Hz. (22)

This makes the parameter above about 0.2. This suggests the next main approximation
we make, which is to neglect the inertial terms in (20) and so replace it by the quasistatic
equation ∑

j

∂σij

∂xj

= 0, (i = 1, 2, 3). (23)

An equivalent way of stating this assumption is to say that we are ignoring all effects of
elastic wave propagation in the sample, on the grounds that its maximum dimension b
is small compared to the elastic wavelength at the frequency of operation. Yet another
way of stating it is to say that the mass of the sample is small compared with the mass
of the needle.
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5.1 Scaling

We shall now nondimensionalize the problem and introduce dimensionless coordinates
x̂ = x/a, with displacements û(x̂) = uc(x)/sc, pressure p̂ = pc/(G(ω)sc/a), and stresses
σ̂ij = (σc)ij/(G(ω)sc/a). The dimensions of the saucer then are given by B = b/a,
H = h/a, the needle contact length is H1 = h1/a, and the clearance below it is
H2 = h2/a. The dimensionless problem then is

∑
i

∂ûi

∂x̂i

= 0, σ̂ij = −p̂δij +
∂ûi

∂x̂j

+
∂ûj

∂x̂i

,
∑
j

∂σ̂ij

∂x̂j

= 0, (24)

with boundary conditions

û = (0, 0, 0) on the base,

û = (0, 0, 1) on the needle,

σ̂3i = 0 on the free surface. (25)

The dimensionless force that the needle applies to the sample then is

N =
∫
needle

σ̂3ini dA (26)

where n is the unit normal vector on the needle surface, (directed sample → needle). This
constant N , dependent on the shape of the sample, is the crucial calibration constant of
the equipment, and the mechanical impedance is given in terms of it by

Zs(ω) =
NG(ω)a

iω
(27)

The best method for calculating N numerically would be by a finite element method,
either formulating the problem along the lines outlined in [2], or using a stress function
as in §188 of Love [4]. It is planned that an Oxford MSc student, Philipp Funke, will
work on this.

Alternatively, calibration of the geometry with an incompressible material of known
shear modulus would also provide the value — though if one were designing a device
with a new geometry then a numerical procedure avoids the need to build a prototype.

5.2 Bounds for the calibration constant2

At the Study Group, the numerical computation of N was not attempted, but it is
possible to produce bounds on N by solving related problems that have sufficiently
simple geometry to allow exact solution. One example already mentioned in [2] is the
comparison with the Hertz indenter problem (H1=0 and B,H → ∞) which guarantees
N > 8. The Study Group obtained the bound

N >
2πH1

log B − (B2 − 1)/(B2 + 1)
+

3π

H2

, (28)

2Note: Philipp Funke has pointed out (July 2001) that the analysis of this section 5.2 is incorrect,
and does not prove that the given expressions are bounds on the calibration constant: the reason is
that the cylindrical annulus of material introduced has non-zero shear stresses on its flat surfaces. The
reader may therefore prefer to skip this section (or provide a correct analysis).
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and for the dimensions of the geometry supplied by RAPRA this gives N > 18.6.
(a = 0.75 mm, b = 6 mm, h1 = 2 mm, h2 =2 mm; so B = 8, H1 = H2 = 8/3.) As
will be seen from the derivation below, this is a fairly crude lower bound, not intended
to be a good estimate. However, the fact that it is well over 8 shows that the geometry of
the sample is giving it a considerably greater stiffness than the Hertz indenter problem.

The bound (28) is obtained by considering the situation shown in Figure 3, where the
sample occupies a solid cylindrical annulus around the needle, and a cylinder below the
needle, and the rest of the “saucer” is filled with incompressible fluid. This configuration

needle

samplefluid

r=a r=b

h1

h2

Figure 3: Configuration yielding lower bound (28)

has consistently replaced materials by materials of lower shear modulus — part of the
steel (treated as rigid) by the sample material, and part of the sample material by an
incompressible fluid (zero shear modulus) — so it has certainly decreased the stiffness of
the system. Hence if we can calculate the stiffness of this then we have a lower bound
on N .

It is easiest to compute the stiffness in stages. First, if we simply had an annulus of
material, −h1 ≤ z ≤ 0, a ≤ r ≤ b, of thickness h1 and inner and outer radii a and b,
then when it is deformed by an axial displacement s of the inner boundary r = a, and is
in equilibrium with an axial force Fs, the shear stress is σrz = −Fs/(2πrh1), so the axial
displacement w obeys dw/dr = 2erz = −Fs/(2πrh1G). Thus w = Fs log(b/r)/(2πh1G),
where we have chosen the constant of integration to make w = 0 at r = b. Hence the
displacement of the needle is s = w(a) = Fs log(b/a)/(2πh1G). So the stiffness of this
configuration is 2πh1G/ log(b/a), or 2πH1/ log B in dimensionless terms.

Now, if such an annulus is constrained below by a fixed volume of incompressible
fluid, then a hydrostatic pressure p will arise in the fluid. Thus the equilibrium shear
stress will now be σrz = −(Fs +πr2p)/(2πrh1), so dw/dr = −(Fs +πr2p)/(2πrh1G), and
w(r) = (Fs log(b/r) + πp(b2 − r2)/2)/(2πh1G), where we have again chosen the constant
of integration to make w = 0 at r = b. The value of p is now fixed by the constraint
that the volume of fluid below the annulus is constant, so

∫ b
a w(r)2πr dr + πa2w(a) = 0.

This gives p = −2Fs/(π(b2 + a2)) and so the needle displacement can be found as

s = w(a) = Fs(log(b/a) − (b2 − a2)/(b2 + a2))/(2πh1G). (29)

So the stiffness of this configuration is 2πh1G/(log(b/a) − (b2 − a2)/(b2 + a2)), which is
of course greater than that without the fluid. In dimensionless terms, this stiffness is
2πH1/(log B − (B2 − 1)/(B2 + 1)) and it provides the first term in (28).

If we now add in the cylinder of incompressible material below the needle, then its
stiffness, just considered as a rod of length h2, area πa2, and Young’s modulus E = 3G
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would be 3Gπa2/h2. In dimensionless terms, this is 3π/H2, the second term in (28).
Two notes on this are in order:

1. The value 3Gπa2/h2 assumes that the ends of the rod are free to move radially in
response to Poisson’s ratio effects. If the ends are in fact constrained not to move
radially, that will further increase the stiffness, so (28) will hold a fortiori;

2. The hydrostatic pressure p calculated previously can of course be superimposed
on the pressure field calculated for the stretched incompressible rod without any
effect, so their contributions to the stiffness can simply be added.

6 Analysis of model

Going back to physical variables, the complex amplitudes of Fs and s are related by

(Fs)c = NG(ω)asc, (30)

so for a viscous fluid, Fs = Nηaṡ, while for an elastic solid, Fs = NGas. It is the same
numerical constant N that occurs in both these cases. In general,

Zs =
(Fs)c

(ṡ)c

=
NGa

iω
=

NG′′a
ω

+
NG′a

iω
. (31)

Substituting this into the result (17) earlier we see

(Vb)c =
KFc

miω + (λ + NG′′a/ω) + (k0 + NG′a)/(iω)
. (32)

This shows quantitatively the effects we expect: the real part G′ of G contributes to
the elastic stiffness, raising it from the value k0 inherent in the vibrator to k0 + NG′a;
and the imaginary part G′′ of g contributes to the damping constant, raising it from the
value λ inherent in the vibrator to λ + NG′′a/ω. We shall now comment on this result
in various cases for which RAPRA have provided details.

6.1 Viscous fluids

RAPRA have conducted experiments in which a variety of viscous fluids are used as
the sample. If the fluid is Newtonian with dynamic viscosity η, then G′(ω) = 0 and
G′′(ω) = ωη and so

(Vb)c =
KFc

miω + (λ + Nηa) + k0/(iω)
. (33)

Thus we can deduce that

• the resonant frequency is at ω = ω∗ =
√

k0/m, whatever the viscosity;

• at a given requency ω the amplitude of response |(Vb)c| should decrease as the
viscosity η increases;
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• the peak (resonant) amplitude

|Vb|res =
KFc

λ + Nηa
(34)

should decrease with viscosity;

• a plot of |Vb|−1
res against viscosity η should be a straight line.

In the experimental data provided by RAPRA in [1], the first of these conclusions holds
quite accurately: the data summarized on the page ‘SVNC resonance peaks for different
damping media’ show a resonance frequency of 43–45 Hz for air, a 30 Pa s silicone, Golden
syrup, and cane sugar at 122◦ C. The same page shows that the second conclusion was
valid at frequencies from 30–65 Hz (a broad band around the resonance), but failed
outside that range. Above 65 Hz the response in air fell below that in the silicone, while
below 30 Hz the response in cane sugar rose above that in Golden Syrup, then above
the other 2 as well. Neither the Study Group nor BW could offer any explanation of
this.3 The third conclusion was very evidently satisfied in the RAPRA data, both on the
page referred to and on the page ‘Amplitude and Viscosity’. The fourth conclusion did
not hold however — when the data points on this last plot were read off and reciprocal
voltages plotted, the five points formed a concave curve not a straight line. Again, the
reason for this is unknown.

6.2 Elastic solids

If the sample is purely elastic then we have G′′ = 0 and G′ = G, so

(Vb)c =
KFc

miω + λ + (k0 + NGa)/(iω)
(35)

so the resonant frequency ωr is given by

ω2
r = (k0 + NGa)/m, (36)

and the resonant amplitude is
|Vb|res = KFc/λ. (37)

This suggests the idea of plotting ω2
r against G for a variety of elastic materials and seeing

if a straight line results. Rather than this, RAPRA have plotted ω2
r during a cure against

the value of G′(ω1) = �(G(ω1)) measured in a conventional oscillating rheometer for the
same cure. (This was a polyurethane cast elastomer, curing at 40◦ C.) If we attempt
to generalize (36) to the case of a viscoelastic material we would predict a resonant
frequency ωr determined approximately by

ω2
r = (k0 + NG′(ωr)a)/m. (38)

3Andrew Lacey suggests it may be an artifact of just what voltage is measured, and that this could
happen if the amplitude of the applied voltage is used. This depends on the details of what happens in
the vibrator electronics to produce the given output signal, much of which we do not know.
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This is obtained simply by making the imaginary part of the denominator of (32) vanish.
In fact this will only give the exact maximum of |(Vb)c| if G′′(ω)/ω is constant (as occurs
for a viscous fluid or an elastic solid). We shall mention later how the damping will
affect this, but for the moment we continue with this approximation. To get a straight
line on the basis of this we should obviously plot ω2

r against G′(ωr), but in fact the
oscillating rheometer was operated at a fixed frequency of 1 Hz, so ω1 = 2π, and ω2

r was
plotted against G′(ω1). This graph (included in [1]) showed a straight main section where
G′ was rising from about 3 × 104 Pa to 19 × 104 Pa, with deviations at the beginning
and end of the cure. In the initial stages, where G′ < 3 × 104 Pa, the sample is still
quite liquid, and we would not expect the elastic relation to hold. In the final stages,
where G′ > 19 × 104 Pa, RAPRA is not certain that the values of G′ measured by the
oscillating rheometer are reliable. Over the straight section, RAPRA fit the straight line
as f 2

r = 12875 + 0.0655G′ when fr is the resonant frequency in Hz. Comparing this with
the elastic result, we have

Na

m
= 0.0655(2π)2, (39)

and with a = 0.75 mm, and m = mn + mv with the needle mass mn = 11.56 g (including
the pin vice and the vibrator mass mv = 7.15 g, this gives N ≈ 64.5. As expected,
this is considerably in excess of the lower bound 18.6 derived earlier. However, there is
of course the question whether G′ varies significantly between ω1 (1 Hz) and ωr (75 to
170 Hz). We discuss this below.

A further comment here is that RAPRA [1] quote a value k0 = 106.2 N/m, and for the

needle vibrating in air this would give resonance at ωr =
√

k0/(mn + mv) = 75.34 rad/s,

so fr = ωr/(2π) =12 Hz. This is too low, and we do not understand what has happened
here — whether perhaps factors of 2π have gone astray in extracting the value of k0 from
the measurements ?

6.3 Viscoelastic materials

When the material is a standard linear solid (7), then the resonant frequency will be
given approximately by (38), but more exactly by the maximization in (19). Various
questions then arise:

1. The values of the equilibrium modulus Ge, the glassy modulus Gg, and the
relaxation time T are all varying during the cure. We cannot hope to extract
instantaneous values of all of them by measuring just resonant frequency and
amplitude. A crucial question is whether the relaxation frequency 1/T of the
material lies in or passes through the resonant range (say 75–170 Hz) during
the cure. When ωrT � 1, the SVNC is measuring the glassy modulus, and
when ωrT � 1 it is measuring the equilibrium modulus, but without some a
priori knowledge of the relaxation time in the material we cannot know which
stages of the cure lie at or between these extremes.

2. A further point is that in a chemically reacting material, we cannot really measure
its long-time behaviour. We can believe it has a high frequency glassy modulus
Gg, and that G(ω) is defined for frequencies ω that are sufficiently large compared
with the reaction rate, but not below that.
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7 RAPRA’s questions

We just outline the answers that this approach suggests to the questions posed by
RAPRA.

1. Should ω2
r be plotted against G′(ωr), or at least against G′(ωt) for some frequency

ωt more typical of ωr ?
(This refers to getting the graph with a straight section mentioned in 6.2.) Ideally,
yes: but if it were known a priori that the variation of G′ from DC to 200 Hz is
small, then it would not matter much.

2. Would an easier sample geometry be better ?
A different sample geometry might make the calculation of the calibration constant
more tractable analytically, but this is not a big problem. For any sample geometry
the calibration constant N can be found either by doing just one finite element
calculation, or by building a prototype and testing with an incompressible material
of known shear modulus. In numerical terms, once a suitable finite element code
is written, or suitable freeware code located, to do incompressible axisymmetric
elastostatics, that is enough.

3. Can we measure G′ at other frequencies ?
No: the SVNC just sees G′(ωr) and checks that it produces a local maximum of
the amplitude. Deducing behaviour at other frequencies would depend on having
some a priori knowledge of the material relaxation time.

4. Can we derive other material properties ?
Not directly: only if they are empirically correlated with G.

7.1 Suggestions

Some suggestions were made for how further information might be obtained from the
SVNC:

1. Can the vibrator electronics measure phase information ? If the relative phase
between Vb and the applied force F were known, that obviously would provide
additional information that is lost when just the modulus is taken. How valuable
this would be depends on how much viscous loss occurs in the material, which in
turn depends on the question raised earlier about relaxation times.

2. After the material has set, can the SVNC scan over frequency to produce a plot
of Vb against frequency for the cured material ? This would presumably enable
the SVNC to give useful information about the cured material without much extra
work, and for the material sample in exactly the same geometry that is used during
the curing measurments.

3. Would white noise forcing be better than sinusoidal ? The idea here would be to
use band-limited white noise, to excite the sample over a whole band of frequencies
simultaneously, and measure the spectrum of its response. Effectively, one would
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be trying to measure the whole function Vb(ω) at each stage of the cure, rather
than just the position of its peak.
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