eprintid: 252 rev_number: 15 eprint_status: archive userid: 7 dir: disk0/00/00/02/52 datestamp: 2009-10-21 15:55:04 lastmod: 2015-05-29 19:51:56 status_changed: 2009-10-21 15:55:04 type: report metadata_visibility: show item_issues_count: 0 creators_name: Ambrose, David creators_name: Braun, Richard creators_name: DeBisschop, Cynthia creators_name: Gremaud, Pierre creators_name: Howell, Peter creators_name: Kramer, Peter creators_name: Please, Colin creators_name: Salazar Gonzalez, Jose Domingo creators_name: Schwendeman, Donald corp_creators: John Abbott title: Boundary Layers and Material Deformation in Fiber Drawing ispublished: pub subjects: materials studygroups: mpi17 companyname: Corning Incorporated full_text_status: public abstract: We study two fluid dynamical issues which are important in the manufacture of thin glass fibers for communication networks and materials. Such thin fibers are obtained by rapidly pulling molten glass through an array of successively smaller holes. Through asymptotic analysis and physical modeling, we obtain a quantitative description of the flow and structure of the glass fiber as it is being pulled. We examine in particular the issue of whether initially planar cross sections remain planar, and find that they do so approximately, but not exactly, even in the absence of such factors as gravity, surface tension, and inertia. We also develop a quantitative theory for the structure of the air flow near the fiber, which is an important ingredient in determining how fast the fiber cools. In particular, we develop a description for the structure of the boundary layer near a fiber which has accelerating surface velocity and shrinking radius which is comparable or thin compared with the thickness of the boundary layer. One novel feature is that the acceleration of the fiber surface velocity leads to a compression of the boundary layer as it evolves downstream. date: 2002 related_url_url: http://eaton.math.rpi.edu/Faculty/Schwendeman/Workshop/MPI.html citation: Ambrose, David and Braun, Richard and DeBisschop, Cynthia and Gremaud, Pierre and Howell, Peter and Kramer, Peter and Please, Colin and Salazar Gonzalez, Jose Domingo and Schwendeman, Donald (2002) Boundary Layers and Material Deformation in Fiber Drawing. [Study Group Report] document_url: http://miis.maths.ox.ac.uk/miis/252/1/corning01.pdf