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Summary

The following report details two main themes:

1. Modelling of a bare foot. Two bare-foot models, for real and artificial feet, are
discussed in §2. From a purely thermal point of view it transpires that the thermal
properties of an artificial foot must be in reasonable agreement with those of a real foot
if the experimental results for the two are to be similar under a variety of conditions.
Inclusion of moisture leads to the further conclusion that to maintain the matching
thermal properties, the porous rubber layer on the surface of the artificial foot should
remain saturated.

2. Modelling of wicking and temperature within hose. A model for a sock, or
other hose, is looked at in §3. This work must be regarded as preliminary as the sizes
of a number of quantities and the boundary conditions (modelling heat and moisture
transfer to the foot’s environment) require further attention. Forced convection within
the hose, resulting from foot movement, also has to be represented. It does appear that
wicking tends to lead to a uniform level of saturation (dampness) across the hose. Some
progress has been made in seeing how this saturation will evolve but the hose model
needs to be coupled to another for outer footwear.

The problem of seeing how quantities scale, to be able to run faster experiments, has
not been tackled.

1 Introduction

SATRA wish to use an “artificial foot”, which has the size and shape of a real foot
and is made of a heated aluminium core surrounded by a polyurethane and a porous-
rubber layer, to replace those of live volunteers in various “comfort” tests. These involve
subjecting the “feet”, wearing the hose (socks, stockings, ...) and shoes or boots being
tested, to controlled environments for periods of up to several hours. It may be possible
to get more repeatable experiments and to save time if an artificial foot can be used
in testing how a foot’s (surface) temperature varies and how moisture levels in the
footwear can build up over time. For this method of footwear evaluation to work,
the temperatures of the artificial foot’s surface and of the corresponding genuine foot
(assuming that the temperature of the outer skin is what is important) and the two
“sweating” rates must agree reasonably well. A first step in checking this is to look at
what happens to heat and moisture transfer for feet, real and artificial, exposed directly
to the atmosphere. The next stage entails looking at mass and heat transport across the
hose. Identification of key effects in a reasonable model might allow experiments to be
carried out in different conditions from those really under investigation, and the desired
temperatures and moisture levels determined from those measured. This might permit
faster tests, say with greater temperature changes or moisture flows, to be used.

The investigations of the week concerned:
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• the modelling of how temperature and moisture vary in a SATRA artificial foot
and in a real foot given various ambient conditions, to see how well an artificial
foot might represent a real foot;

• the heat and mass transfer through and within a sock to try to establish key effects;
similar modelling could apply to the porous-rubber layer of an artificial foot or to
outer footwear.

In both parts, the layer of interest was regarded as a one-dimensional object although
this might be somewhat unrealistic for the layers of an artificial foot, which has thickness
of O(2 cm) and other dimensions of O(10 cm).

2 The Bare Foot

2.1 Thermal problem only

A real foot was taken to comprise a core part, in which a good supply of blood keeps
the temperature maintained at the “body temperature” TB, and a fairly thin “skin”,
which might also include a certain amount of sinew etc. The thickness of this layer is
O(50µm). Of course the body would act to regulate TB which might be reduced in cold
conditions. Also, around the toes, for instance, the assumption of thinness is likely to be
poor but the true qualitative behaviour is expected to be similar to what follows. With
the skin regarded as thin, a one-dimensional model is appropriate. Also because of the
small length scale and the time scale of interest, (hours), specific heat can be neglected
to leave a simple linear equation for the surface temperature, TS. This was regarded as
the perceived temperature, that is, the temperature ‘felt’ by the foot. The temperature
in the ambient air surrounding the foot is denoted by TA. Initially, the effects of sweating
are neglected and a purely thermal problem is considered.

S
T = T

T = T

Vascularised tissue

Skin

Thermal boundary layer (or hose)

T=T

B
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Figure 1: A simple one-dimensional picture for the outer part of a foot (allowing for
possible footwear).

In Fig. 1 the region above the skin, i.e. s < x < s+S, represents some sort of thermal
barrier between the skin of the foot and the air. This might be accounted for by a thermal
boundary layer in air blowing past the foot but might also allow for, and be dominated
by, the thermal resistance across hose and/or shoe. In any case, we assume an effective
surface heat-transfer coefficient hA or, equivalently, a thermal resistance RA = 1/hA.
Across the “skin”, there is another thermal resistance RB = s/κ, assuming a constant
thermal conductivity κ if s is the skin thickness. (More generally, RB =

∫
(1/κ) dx if
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the thermal conductivity depends upon distance x from the surface.) Equating the heat
flows to and from the surface gives

Q = (TB − TS)/RB = (TS − TA)/RA

so

TS =
RATB + RBTA

RA + RB

.

The artificial foot, with internal temperature T̂B and internal thermal resistance R̂B, will
have a corresponding surface temperature

T̂S =
RAT̂B + R̂BTA

RA + R̂B

.

This means that to get a reasonable agreement between the (average) surface
temperatures, for a variety of conditions, for instance allowing TA to change, the two
internal (body) temperatures and resistances should be the same:

T̂B = TB and R̂B = RB .

Getting the latter to hold over the surface of a foot would mean that reasonable estimates
of the thermal properties around the foot would have to be obtained. The former might
be more difficult, since variation of TB with lateral position could not be copied as the
aluminium core will have a spatially uniform temperature. Note that it is possible to
mirror the body’s response to a changing environment by altering the temperature of
the aluminium core dynamically.

Of course this simple thermal analysis can be expected to give a very poor idea of
the real situation as a quick order-of-magnitude calculation indicates that the total heat
loss for a foot (O(5 W)) is a similar size to the power needed to evaporate sweat (the
rate of loss of moisture is O(6 gm hr−1) so, taking a latent heat of 2.3 × 106 J kg−1, the
associated power is O(4 W)).

2.2 A heat and moisture model

In this section, the concept of cooling by sweating is introduced. Two cases might be
envisaged: (A) “Hot and sticky”, with a layer of sweat on the surface of the skin, see
Fig. 2; (B) “Cool and dry” with any sweat produced from the pores being evaporated
as it reaches the surface, see Fig. 3.

With ρw = water density and perspiration rate S(t), conservation of mass for the
case (A) leads to the following equation for the thickness h(t) of the sweat layer:

ρw
dh

dt
= −f(TS)(pS(TA) − pv(t)) + S(t) , (1)

taking the evaporation rate to be a function of local temperature, that of the sweat layer,
times the difference between the equilibrium partial pressure of water vapour, pS, at that
temperature and the (local) ambient partial pressure pv. Note that it is assumed that
the thickness h is sufficiently small for the sweat to have the surface temperature TS and
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Figure 2: A layer of sweat of thickness h lying over the skin of depth s, (A).

that it is this local temperaure which controls evaporation rate. As the heat problem is
taken to be quasi-steady, so that the heat flux through the layer is constant, balancing
heat flow in with that out (assuming Newtonian cooling) and that taken up through
evaporation then leads to

ks
∂T

∂x
= ks(TB − TS)/s = hA(TS − TA) + Lf(TS)(pS(TA) − pv(t)) ,

where ks is the thermal conductivity, ha is the surface conductance of the air-liquid
interface and L is the latent heat of vaporisation. These hold as long as the layer of
sweat exists, h > 0, and also at an instant of h = 0 if the right-hand side of (1) is
positive.

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

AT = T

s

B

S

T = T

T = T
~ 1 mm

containing
sweat

Skin

Tissue

Pore

Figure 3: Sweat evaporating as it reaches the surface, (B).

If the sweat layer has vanished, h = 0 at some time, it remains absent as long
as the sweating rate is no greater than the maximum potential evaporation rate,
S(t) ≤ f(TS)(pS(TA) − pv(t)). In this case the actual drying rate is simply S(t) and
then

ks
∂T

∂x
= ks(TB − TS)/s = H(TS − TA) + LS(t)

so TS =
(ks/s)TB + HTA − LS

(ks/s) + H
. (2)

The “skin” on the artificial foot is a layer, about 0.5 cm thick, of porous rubber. In
place of sweat glands, water is fed into the base of the rubber through small tubes in
the polyurethane which have a spacing of 4 cm or so (Fig. 4 (a)).

It is possible, in a dry environment, that the porous layer drys out and evaporation
takes place well below the surface (Fig. 4 (a)). The depth of this evaporative surface
could vary over the 4 cm scale. A suggestion was made that a semi-permeable membrane
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wet
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Figure 4: The porous rubber layer. (a) Evaporation might take place within the layer
along some surface (the broken line), not necesarily flat. (b) An ideal case with some
punctured sheet somehow preventing sub-surface evaporation and better mimicking a
real skin.

put over the rubber could keep keep the porous rubber well saturated except near
perforations; this would give a better representation of a real skin with pores. The
view of SATRA was that this would probably not work. (A study along the lines of
§3 might shed more light on this.) Of course, the likely spatially varying evaporation
rate associated with a case like that shown in Fig. 4 (a), and the differing net heat
transfer rates, resulting from differing wet and dry proportions, would lead to a heat
flow which varies over the foot’s surface. Perhaps of more significance is the possibility
of the presence of a dry layer altering the average surface temperature because of a lower
thermal conductivity (see (2)).

3 Moisture and Heat Flow in Hose

3.1 The basic model

We consider a model for a sock, or other hose, based on it being a thin porous medium.
Similar models, but with vastly different parameter regimes, might hold for the porous
rubber layer or for a shoe.

The following sizes were used in simplifying the model:

(A1) Surface area of a foot ≈ area of hose = O(10−2 m2);

(A2) Thickness of hose l ≈ O(10−3 m);

(A3) Internal length scale for the hose = O(10−4 m);

(A4) Variation of temperature, T , = O(10 K);

(A5) Associated (saturated) water-vapour partial pressure pv = O(pS) =
O(103 N m−2);

(A6) Associated (saturated) water-vapour partial density ρv = O(ρS) =
O(10−2 kg m−3);

(A7) Air density = ρa = O(1 kg m−3); it follows that the water mass fraction
in the vapour phase is β = O(10−2);

(A8) Liquid water density = ρw = O(103 kg m−3);
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(A9) Specific heats of water (liquid & vapour, cl & cv) = O(3×103 J K−1 kg−1);

(A10) Latent heat of vaporisation = L ≈ 2 × 106 J kg−1;

(A11) Surface tension ≈ 7 × 10−2 N m−1;

(A12) Typical thermal conductivity, κ, (between those of air and of liquid
water) = O(10−1 W m−1 K−1);

(A13) Typical observed rate of loss of heat from a foot = O(5 W), i.e. the
overall heat flux is Q = O(5 × 102 W m−2);

(A14) Typical observed rate of loss of sweat from a foot = O(6 gm hr−1), i.e.
the mass flux, as vapour, qv, or as liquid, ql, is O(10−4 kg m−2 s−1);

(A15) Mass diffusivities in gases and vapours, say D, are O(10−5 m2 s−1);
associated with these are coefficients Kij which give mass fluxes in terms
of gradients of partial pressures, instead of gradients of densities (see (3),
see (4) et seq.) and which are therefore O(10−10 kg m N−1 s−1);

(A16) “Total” water density, ρv, (averaged over a sock) associated with a time
of hours is comparable with (A8) so the liquid and gas volume fractions
are expected to be O(1);

(A17) With an air viscosity of O(10−5 N s m−2), (A3) and (A7) indicate a
Darcy “constant”, kg, for vapour flow of O(10−3 kg m N−1 s−1) (the
precise figure will vary according to liquid volume fraction);

(A18) The corresponding figure, kl, (again depending upon saturation) for
liquid water is O(10−2 kg m N−1 s−1).

Flows of air and water vapour. The mass flows (across areas including the porous
matrix) are expected to be of the form

qa = −(1 − β)kg∇pg − (Kaa∇pa + Kav∇pv) (3)

qv = −βkg∇pg − (Kva∇pa + Kvv∇pv) (4)

where the first terms on the right-hand sides are given by mass fractions times the total
Darcy flow and the other terms are diffusive. Here β is the mass fraction of water vapour
in the gas phase, pg is the total pressure of the gas phase and is the sum of pa, the partial
pressure of the air (excluding water), and pv, the partial pressure of the water vapour,
kg is the Darcy “constant” referred to in (A17), and the Kijs are related to diffusivities.

The total gas mass flux, qa + qv, should equal −kg∇pg. This holds if Kaa = −Kva ≡
Ka and Kvv = −Kav ≡ Kv. Writing pa = pg − pv,

qa = −((1 − β)kg + Ka)∇pg + (Ka + Kv)∇pv

qv = −(βkg − Ka)∇pg − (Ka + Kv)∇pv .

The last term can be identified with a diffusive term, −D∇ρv, if D = diffusivity

= (Ka + Kv)
∂pv

∂ρv

. With
∂pv

∂ρv

∼ O

(
pv

ρv

)
= O(105 N m kg−1), K = Ka + Kv ∼
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O(10−10 kg m N−1 s−1), the fluxes are then, approximately (because of the sizes of β,
kg and the Kiis),

qa = −kg∇pg + K∇pv , qv = −βkg∇pg − K∇pv ,

where both K and kg will depend upon the local saturation (liquid content).

Flow of liquid water. This mass flux takes the form

ql = −kl∇pl with pl = pg + γ ,

where the term γ is due to surface tension and controls the “wicking” of the material; from
(A11) and (A3) it is expected to be O(7 × 10−2 N m−1/10−4 m) = O(103 N m−2). This
term can depend upon saturation (as in the Buckley-Leverett equations) and temperature
(giving a form of Marangoni convection).

Heat flow. The heat flux has conductive and convective parts:

Q = −κ∇T + (clql + cvqv + caqa)T .

Here the cis are specific heats.

Conservation and balance laws. It is convenient to take densities as averaged over
total volumes so ρl = liquid density = αρw where α is the volume fraction occupied by
liquid water and ρw is usual water density, ρa = “air density” = (ϕ−α)ρI where ϕ is the
porosity (i.e. 1− the solid volume fraction) and ρI is the density of air within the gas
phase, ρv is the “vapour density” = (ϕ − α)ρs where ρs is the density of vapour within
the gas phase, and β = ρv/(ρa + ρv) = ρs/(ρI + ρs). Writing the net rate of evaporation
(mass/[time × volume (including pore and matrix)]) as E, laws for air, water vapour,
liquid water and heat are

∂ρa

∂t
+ ∇·qa = 0 ,

∂ρv

∂t
+ ∇·qv = E ,

∂ρl

∂t
+ ∇·ql = −E

and
∂

∂t
((ρhch + ρlcl)T ) + ∇·Q = −LE .

Here ρh is the density of the (dry) hose, assumed constant.
The evaporation rate will vanish if pv is the saturated vapour pressure for the local

temperature: pv = pS(T ) (assuming that ρl > 0 and that pS is not influenced by the
nature of the hose). In general, (pv − pS)E < 0. If evaporation and condensation can be
considered to be very fast the precise form of E becomes unimportant and instead we
take pv = pS(T ) and ρs = ρS(T ). (The use of this approximation can mean that extra
care has to be taken with boundary conditions; see below.)
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3.2 Simplifying the model

The evaporation rate can be eliminated to leave

∂ρa

∂t
+ ∇·qa = 0 ,

∂

∂t
(ρl + ρv) + ∇·(ql + qv) = 0

and
∂

∂t
((ρhch + ρlcl)T + Lρv) + ∇·(Q + Lqv) = 0 ,

with

qa = −kg∇pg + K∇pS , qv = −βkg∇pg − K∇pS , ql = −kl∇(pg + γ)

and Q = −κ∇T + (clql + cvqv + caqa)T

as seven equations for the three densities, ρa, ρv, ρl, temperature T , and four fluxes qa,
qv, ql and Q.

In addition, there are a number of constitutive laws: pS = pS(T ) from the water-
vapour-saturation assumption; ρS = ρS(T ) from an equation of state; pg = pS + pa; and
pa = pa(ρI , T ) from an equation of state; also

ρa = (ϕ − α)ρI ; ρv = (ϕ − α)ρS ; ρl = αρw ;
β = ρS/(ρS + ρI) ; kg = kg(α) ; kl = kl(α) ;

K = K(α) ; κ = κ(α) ; γ = γ(α, T ) .

The quantities ch, the specific heat of hose, cw, that of liquid water, cv, that of water
vapour, ca, that of air, ρh, the density of hose, ρw, that of water, and L, the latent heat
of vaporisation of water, are all regarded as constant.

This system of equations can be simplified considerably using sizes of various
quantities in the list (A1) – (A18). Since ρl � ρv, the conservation-of-water equation
reduces to

∂ρl

∂t
+ ∇·(ql + qv) = 0 .

The gas pressure can be eliminated from the first two fluxes to get, to leading order in
β,

qa = (qv + K∇pS)/β .

Then

ρw
∂α

∂t
+ ∇·(ql + qv) = 0 and

∂ρa

∂t
+ ∇·

(
qv + K∇pS

β

)
= 0 .

Given that the mass fluxes are O(10−4 kg m−2 s−1), that the length scale is O(10−3

m), and that ρw ≈ 103 kg m−3, the time scale associated with the first of these, the water
equation, is O(104 s) (i.e. a few hours). The term K∇pS is also O(10−4 kg m−2 s−1), β is
O(10−2) and ρa is O(1 kg m−3) so a time scale for the second equation, the air equation,
is indicated to be only O(10−1 s). This suggests that there is a rapid transient over
which gas motion occurs. We are more interested in the longer time scale, on which the
air equation reduces to the quasi-steady problem

∇·(qv + K∇pS) = 0 . (5)
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Because we have an effectively one-dimensional problem, qv + K∇pS = Ai, with i the
unit vector in the x direction (across the hose), and then (5) leads to ∂A/∂x = 0.
Additionally, the air flux, A, vanishes on the skin surface, x = 0, so (5) reduces to

qv = −K∇pS .

Looking at the terms in the vapour-flux equation, written as

∇pg = −(qv + K∇pS)/βkg ,

we see that the gradient of the gas pressure is O(10 N m−3) and that this pressure only
varies, over the length scale of O(10−3 m), by O(10−2 N m−2). This indicates that the pg

term is unimportant for the liquid flow and we are left with

ql = −kg∇γ .

The water problem is now just

ρw
∂α

∂t
= ∇·(kg(α)∇γ(α, T ) + K(α)∇pS(T )) . (6)

This gives us another quasi-steady problem since the dominant (and easily so) term of
(6) is the first on the right-hand side:

∇·(kg(α)∇γ(α, T )) = 0 .

This can be thought of as representing exremely good wicking. In fact, for the flux to
be O(10−4 kg m−2 s−1) (= O(K∇pS)), we need ∇γ(α, T ) = 0, to leading order.

When we turn back to the heat equation,

∂

∂t
((ρhch + ρlcl)T + Lρv) = ∇·(κ∇T − Lqv − (clql + cvqv + caqa)T ) ,

we see that the dominant two terms are the first two on the right-hand side so we simply
get

∇·(κ(α)∇T ) = −L∇·(K(α)∇pS(T )) .

The one-dimensional model is now

∂

∂x
γ(α, T ) = 0 , (7)

∂

∂x

(
κ(α)

∂T

∂x
+ LK(α)

∂

∂x
pS(T )

)
, (8)

with appropriate boundary conditions. Here x is the distance from, say, the skin, so that
x = l corresponds to the outer surface of the hose, perhaps exposed to the air. Note
that (8) says that the total heat flux (conductive + transport by vapour carrying latent
heat), Q = −κ(α)∂T/∂x−LK(α)∂pS(T )/∂x, does not vary with x. The mass equation,
(7), says that γ(α, T ) = Γ(t) for some Γ and that if Marangoni effects can be neglected,
i.e. γ = γ(α), then α = α(t). For simplicity we assume this from now on, so the good
wicking leads to a uniform saturation α across the hose.

It remains to determine how the saturation and heat flux evolve.
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3.3 The boundary data

Fitting in with the bare-foot work, §2, we suppose that Robin-type conditions hold at
both surfaces of the hose:

RB × heat flux|x=0 = TB − T |x=0 , RA × heat flux|x=l = T |x=l − TA .

Assuming no build-up of sweat at the skin’s surface we also have

(ql + qv)|x=0 = q0 (specified).

For a well-ventilated (no-shoe) case, a possible second mass condition could be

pv|x=l = pA = partial pressure of water vapour in the neighbouring air.

Two possible difficulties arise:

(B1) The last condition could conflict with the temperature condition (say if
RA = 0) as the model requires pv = pS(T ); this suggests the possible
presence of a boundary layer whose thickness is related to the speed of
evaporation and condensation;

(B2) A possible wrong interpretation of heat flux.

Taking (B2) first, the heat flux accounts for latent heat but not specific heat so
Q = −κ∂T/∂x + Lqv (above). The first temperature condition is then

Q|x=0 = heat flux from the skin = (TB − T |x=0) .

The second condition requires more care. If TS is the temperature right at the surface
of the sock, as opposed to the temperature just in from any boundary layer indicated by
(B1), which we now denote by T−,

Q− = (TS − TA)/RA + L(qv− + ql−) = total heat flow from the hose.

Here Q− is the heat flow Q just in from the boundary layer and qv− + ql− is the
corresponding total mass flux of water. It is again assumed that there is no build-
up of moisture on the surface. This condition balances net conductive heat flow towards
the surface with the power needed to evaporate the remaining liquid water.

The implications of (B1) for the water condition at x = l for our reduced model are
hardest to deal with. The approximate vapour and heat equations,

∂ρv

∂t
=

∂

∂t

(
K

∂pv

∂x

)
+ E ,

∂

∂t
((chρh + clρl)T ) =

∂

∂x

(
κ
∂T

∂x

)
− LE ,

can be reduced to

∂

∂t

(
K

∂pv

∂x

)
+ E = 0 ,

∂

∂x

(
κ
∂T

∂x

)
− LE = 0

in any boundary layer.
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Then, on scales appropriate to such a boundary layer,

κ
∂T

∂x
+ LK

∂pv

∂x
= const. = 0

to match with the outer solution (above), applying in the interior of the hose. Because
of the very good wicking, α is independent of position in the boundary layer so K and
κ can both be regarded as constant and

pv = pA +
κ

LK
(TS − T ) .

It follows that

κ
∂2T

∂x2
= LE

(
pA +

κ

LK
(TS − T ), T

)
,

with T = TS on x = l and T → T− as x exits the boundary layer. For the matching
condition and the differential equation to be consistent, T− must be the solution of

E
(
pA +

κ

LK
(TS − T−), T−

)
= 0 .

(There will be one, and only one, solution to this equation if E(pv, T ) is an increasing
function of T and a decreasing function of pv with some saturation pressure pS(T ),
E(pS, T ) = 0, corresponding to any T .)

This boundary-layer model has evaporation within the pores. If there is to be no
extra evaporation at the very surface of the hose (this assumption might be one of
several dubious ones), the only water flow at x = l is the vapour flow qv = qS = total
water flux into, say, the air:

qS = qv−+ql− = −K
∂pv

∂x

∣∣∣∣
x=l

=
κ

L

∂T

∂x

∣∣∣∣
x=l

= ±κ

L

√
2L

κ

∫ TS

T−
E

(
pA +

κ

LK
(TS − T ), T

)
dT ,

which indicates a mass flux much larger, because of the appearance of E, than actually
occurs.

The boundary layer cannot exist and Tx=l = TS must satisfy pS(TS) = pA (i.e.
E(pA, TS) = 0), say TS = TE(pA).

3.4 The final problem

The temperature problem is now

κ(α)
∂T

∂x
+ LK(α)

∂

∂x
pS(T ) = −Q(t) in 0 < x < l ,

with, from the boundary conditions,

Q = (TB − T |x=0)/RB = (T |x=l − TA)/RA + LqS

and
T |x=l = TS = TE(pA) .
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From these four equations, T |x=0 is given by

κ(α)(TE − T |x=0) + LK(α)(pA − pS(T |x=0)) = −lQ = −l(TB − T |x=0) .

Thus Q, T |x=0, T |x=l and qs can all, at least in principle, be found in terms of the
remaining dependent variable α.

Then

qs = (Q − (TE − TA)/RA)/L =
1

L

(
TB − T |x=0

RB

− TE − TA

RA

)
≡ qS(α) .

Of course T |x=0 will depend upon the saturation α through the variation of K(α)
(decreasing) and κ(α) (increasing).

Three different cases are possible:

(C1) qS(0) ≥ q0; this means that the hose must remain dry, α ≡ 0, i.e.;
ρl ≡ 0, with pv ≤ pS(T ), all evaporation actually occurs on the surface
of the skin, and a simpler problem models the heat flow and temperature
variation;

(C2) qS(0) < q0 but qS(α) reaches q0 for some α = A ≤ ϕ; in this case the
saturation increases at the rate dα/dt = (q0−qS(α))/lρw and, assuming
smooth dependence of qS, the hose never fully saturates (of course if
A = ϕ the hose gets arbitrarily wet);

(C3) qS(α) < q0 for 0 ≤ α ≤ ϕ; in this case α would reach ϕ, and the hose
becomes totally sodden.

Should Marangoni effects be important, γ = γ(α, T ), the saturation α would depend
upon position x as well as time t. This would make the analysis of the problem harder
but could leave the general behaviour unaltered.

4 Further Remarks

The above work has neglected effects of forced convection resulting from occasional
compression (and subsequent re-expansion) of the hose during walking or because of other
foot movement. With the above sizes, and taking the hose to be compressed significantly
but with the compression only driving gas motion, an order-of-magnitude calculation
suggests that this effect is comparable with the earlier diffusion-driven transport if the
associated time scale is lρv/qs = 10−3 m × 10−2 kg m−3/10−4 kg m−2 s−1 = 10−1 s, which
would be an extremely rapid foot movement. Such forced convection, on the time scale
associated with diffusion-driven air motion, would invalidate much of §3.

No work has so far been done on trying to use this type of modelling (with or without
foot motion) to see how temperature and water supply can be increased to speed up
experiments.

E-13




