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Section 1: Experimental Setup

Figure 1.1. Picture of lens.

The lens is a transparent component of the eye which focuses light rays entering
the eye to appropriate places at the back of the eye. It is tethered by muscles to the
surrounding tissue and it is the movement of these muscles that alters the shape of the
lens and allows focusing at different distances. The lens is sandwiched between two aqueous
compartments: the aqueous humor in front of the lens and the vitreous humor behind (see
Figure 1.1). The lens is an avascular tissue and relies on diffusion of nutrients and waste
products for survival. It consists of highly specialized transparent cells surrounded by
an outer membrane capsule. The outer membrane is a porous scaffold to which the cells
underneath the membrane attach. The capsule allows force transmission and is selectively
permeable. It is a complete seal around the lens and has thickness of 26 µm in a human
and 10 µm in a mouse. There are various pore sizes (99% are 4–5 nm and 1% are about
10 nm) and these are small enough to prevent cells and some molecules from entering the
layer. The scaffold is made from Collagen 4 and has sugar molecules bound on which
extend into the pores and “wave in the wind”.



Duncan et al. 1.2

We are interested in studying diffusion through the lens capsule because diffusion
is important for lens development and growth, nutrient and waste release, drug delivery,
ocular inflammation and for cataract formation and treatment. To determine the diffusivity
of various molecules through the lens capsule, experiments have been carried out using a
technique known as fluorescence recovery after photobleaching (FRAP). In this process,
the whole lens is first immersed in a bath of fluorescing molecules and left to soak for more
than an hour, which allows the molecules to diffuse into the lens capsule and to ensure
that the whole system is in chemical and diffusional equilibrium. Some of the molecules
within the scaffold remain free to diffuse around in the medium and some become bound
to the scaffold. The proportion in each of these “compartments”, and the affinity of the
molecules for the scaffold, depends on their chemistry (e.g., size, charge, etc.).

A high-intensity blue laser is used to bleach out a 5 µm radius tunnel through the
capsule, creating a region of interest (ROI). The laser is focused at a plane within the
capsule and, while the bleaching is most effective at this plane, bleaching occurs throughout
the tunnel. After 250 ms, the laser is turned down to a very low intensity and used to
take photographs of the focal circle. After the bleaching, a proportion of the cells within
the 5 µm circle have stopped fluorescing, and the photographs show how the intensity
of fluorescence increases with time as molecules from outside the circle diffuse in. The
average intensity in the circle is calculated by counting up intensity of each of the pixels
in the circle and dividing by the area. However, the amount of fluorescence decreases with
time, so the fluorescence is also calculated over an identical “unbleached” region 50 µm
away from the ROI, and the data in the ROI can be normalized by dividing by these data
at each time.

Currently, the post-experiment data processing involves the following recipe. First,
the normalized data is plotted and fitted with either

I = I0 + I1 exp
(
− t

τ1/2

)
or I = I0 + I1 exp

− t

τ
(1)
1/2

+ I2 exp

− t

τ
(2)
1/2

 , (1.1)

where they treat all the parameters in (1.1) as independent. Unsurprisingly, the “double
exponential fit” with 5 independent fitting parameters fits the data better than the “single
exponential” with 3 parameters (see Figure 1.2). After τ1/2 has been determined, the
diffusivity is calculated using

D =
ω̃2γD
4τ1/2

(taken from a paper by Axelrod, et al.), where ω̃ is the radius of the region of interest and
γD = 0.88 is a “correction coefficient” used to take account of the radial geometry. There
are two types of behavior exhibited by the kind of molecules used in the experiments, as
illustrated below.

In Figure 1.3, the intensity curve tends to a steady state over the time scale of the
experiment. This graph is associated with molecules that are tightly bound to the scaffold
(and cannot leave).

In Figure 1.4, after the initial exponential transient, the intensity slowly increases
back to its original value. This graph is associated with experiments where the bound
molecules are exchanging with unbound ones.
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Figure 1.2. Experimental data with curve fit. Above: single exponential.
Below: double exponential.

The experimentalists are concerned with the procedures they use to interpret the
data. Firstly, they are worried about the fact that they neglect all the influence of the
third dimension, assuming that diffusion occurs only in a plane with no z-axis influence.
Secondly, they are worried about whether the bleaching creates an aurora at the edge of
the ROI which would alter their results. Thirdly, they are worried about when to truncate
their time series and to fit the data: they find that truncating their data 10 s later can
alter the fit parameters by 10%.

There are also concerns about how the data is normalized. During the actual experi-
mental run, two regions are imaged: the bleached region and a control region. In an ideal
situation, these two regions would have the same properties before the experiment, and
only after bleaching would the readings diverge. Unfortunately, due to the random nature
of the porous matrix, as well as varying optical properties of the device, the bleaching is
not the same in both areas. (See Figure 1.5, which shows raw intensity data taken at the
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Figure 1.3. Schematic of intensity plot without kinetics.
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Figure 1.4. Schematic of intensity plot with kinetics.

same time).
We expect the porous matrix and the optical properties of the device to remain con-

stant over the experiment, and to vary only spatially. If true, then we could normalize the
measured data by the control region at time t = 0 as follows:

I(t) =
Icontrol(0)
Ibleached(0)

Ibleached(t).

Obviously, I(0) = Icontrol(0). Since we don’t expect the matrix to change over time, in
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Figure 1.5. Raw intensity data. Top: control region. Bottom: bleached region.

theory this normalization should result in data which can be compared across experiments.
Also, note that we expect the scaled control and bleached data to converge as t → ∞.
Unfortunately, this doesn’t happen, as shown in Figure 1.6.

In the rest of this report we tackle the following questions:

1. Why does the double exponential fit better than the single exponential?
2. Why does the time at which you terminate the data alter the predictions?
3. Is there a more robust way to fit the data than is currently being used?
4. Does the effect of transfer between the mobile molecules and the bound ones explain

the difference between the two types of graphs?
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Figure 1.6. Scaled intensity curves. The graph with the initial dip is the bleached region;
the other is the control region.



Section 2: Mathematical Model
At the beginning of the experiment, the membrane is saturated with fluorescing par-

ticles, and allowed to come to equilibrium. Then bleaching occurs in the ROI, which we
consider to be a disk of radius ω̃. We consider the bleaching to be radially symmetric.
After bleaching, the measurement phase begins. We take t = 0 to be the time at which
bleaching occurs. Therefore, we consider the end of the preparation phase to be t = 0−.

interior of ROI

exterior to ROI

transport equilibrium
(uniform in space)

chemical
equilibrium

mobile
fluorescent

immobile
fluorescent

ka

kd

Fm
F i

Figure 2.1. Schematic of experimental setup, t = 0−.

The fluorescing particles come in two varieties: immobilized molecules which have
attached to the membrane (with concentration F i), which do not diffuse, and mobile
molecules (with concentration Fm). (See Figure 2.1.) The particles are in transport equi-
librium, so there is no average motion and hence the particles are uniformly distributed
throughout the membrane:

F i + Fm = N, r̃ > 0, t = 0−, (2.1)

where N is the (constant) number of particles and we have chosen the spatial variable to
be r̃, since the ROI is circular. (Though we argue on physical grounds in this section, the
results can be established mathematically.)
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The particles are also in “chemical equilibrium”, so the binding reaction (which we
assume to follow simple mass-action kinetics) is in steady state. We assume that there are
enough binding sites so that depletion is never an issue. Since the immobile species cannot
diffuse, its evolution equation is given by

∂F i

∂t
= kaF

m − kdF
i, (2.2)

where ka is the rate constant for the association kinetics, and kd is the rate constant for the
dissociation kinetics. (Note that ka as defined includes the concentration of the undepleted
bulk, and so is somewhat nonstandard.) Since the preparation phase has been allowed to
proceed to steady state before bleaching commences, we have the following:

kaF
m = kdF

i, r > 0, t = 0−, (2.3a)

Fm = KF i, K =
kd

ka
, (2.3b)

where K is the affinity constant.
Combining (2.1) and (2.3b), we obtain at t = 0−,

F i(1 +K) = N

F i(r̃, 0−) =
N

1 +K
, r̃ > 0, (2.4a)

Fm(r̃, 0−) =
NK

1 +K
, r̃ > 0. (2.4b)

At the beginning of the measurement phase, a laser beam bleaches some fraction of
the fluorescent particles inside the ROI, permanently removing their fluorescent properties
(see Figure 2.2). For the purposes of this section, we assume that

1. The bleaching process is uniform in space, bleaching a constant fraction κ of the
fluorescent molecules. (In practice, 0.03 ≤ κ ≤ 0.2.)

2. The bleaching process is taken to be faster than any other process in the problem, so
it may be considered as instantaneous. The concentration of bleached particles will
be denoted by B.

(Both of these assumptions will be relaxed in section 4.)
Then from (2.4) we see that initially we have the following in the region of interest:

F i(r̃, 0+) =
N(1− κ)

1 +K
≡ F i

0, 0 < r̃ < ω̃, (2.5a)

Fm(r̃, 0+) =
NK(1− κ)

1 +K
≡ Fm

0 , 0 < r̃ < ω̃. (2.5b)

Note that we are changing only the labeling; the transport and chemical properties
are unaffected. Therefore, (2.4) holds for all t > 0 as long as we consider the fluorescing
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Figure 2.2. Schematic of experimental setup, t = 0+.

and bleached immobile or mobile molecules together, and hence we write:

F i(r̃, t) +Bi(r̃, t) =
N

1 +K
, (2.6a)

Fm(r̃, t) +Bm(r̃, t) =
NK

1 +K
. (2.6b)

The light intensity is proportional to the number of fluorescent molecules, so we can
use intensity and concentration interchangeably. The measured intensity I(t) is simply the
average over the ROI of all the fluorescing species F :

I(t) =
1
πω̃2

∫ ω̃

0

r̃

∫ 2π

0

F (r̃, θ, t) dθ dr̃ =
2
ω̃2

∫ ω̃

0

r̃[F i(r̃, t) + Fm(r̃, t)] dr̃, (2.7)

where we have exploited the radial symmetry of the problem. Substituting (2.4) and (2.5)
into (2.7), we have

I(0−) = N, (2.8a)
I(0+) = (1− κ)N. (2.8b)



Section 3: 1 Compartment, No Kinetics
We begin by examining the case where the reactions take place on a time scale much

slower than diffusion: mathematically, this means that

ka �
D

r2∞
, kd �

D

r2∞
,

where r∞ is a characteristic radius defined below. Without kinetics included, the equation
governing the evolution of Fm is

∂Fm

∂t
=
D

r̃

∂

∂r̃

(
r̃
∂Fm

∂r̃

)
, (3.1)

where D is the diffusion coefficient. We do not bother tracking the concentration of the
bleached molecules, since they can be determined using (2.6b).

In order to solve the problem, we need boundary conditions on the various species.
Clearly, they all must be bounded at r̃ = 0. We then specify that at some distance
r̃ = r∞, the lens will transport any needed particles to and from the boundary very quickly.
Therefore, we may specify Dirichlet data there that is specified by the preparation phase
in (2.4), since we are outside the bleaching zone:

F i(r∞, t) =
N

1 +K
≡ F i

∞, (3.2a)

Fm(r∞, t) =
NK

1 +K
≡ Fm

∞, (3.2b)

where the subscript∞ is used to reinforce that we are considering the exterior of the region
0 < r̃ < r∞ to be an infinite reservoir.

The form of (3.2) motivates the following scaling for r̃:

r̃ = r∞r. (3.3)

Substituting (3.3) into (3.1) and (3.2), we obtain

∂Fm

∂t
=

D

r2∞r

∂

∂r

(
r
∂Fm

∂r

)
, 0 < r < 1, (3.4)

F i(1, t) =
N

1 +K
≡ F i

∞. (3.5a)

Fm(1, t) =
NK

1 +K
≡ Fm

∞, (3.5b)
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Figure 3.1. Left: one-compartment model. Right: two-compartment model.

Note that (3.4) is somewhat nonstandard in that r is dimensionless, but t is not. (Here we
are being somewhat sloppy by using the same dependent variable notation.)

In this section we consider a one-compartment model (see left of Figure 3.1); that is,
we take r∞ = ω̃, so the ROI becomes 0 ≤ r ≤ 1 and (2.7) becomes

I(t) = 2
∫ 1

0

r[F i(r, t) + Fm(r, t)] dr. (3.6)

In this case, F i remains at its initial value given in (2.5a), so

I(t) = F i
0 + 2

∫ 1

0

rFm(r, t) dr. (3.7)

To transform to homogeneous end conditions, we let

um(r, t) = Fm(r, t)− Fm
∞ (3.8)

and then substitute this expression into (3.4), (2.5b), and (3.5b) to obtain

∂um

∂t
=

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
, 0 ≤ r ≤ 1, (3.9a)

um(1, t) = 0, um(r, 0) = Fm
0 − Fm

∞ = −κFm
∞. (3.9b)

Separating variables by setting um(r, t) = R(r)T (t), we have the following:

RT ′ =
DT (rR′)′

rr2∞
T ′

T
=
D(rR′)′

rRr2∞
= −λ.
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Hence the equation for R is given by

rR′′ +R′ +
λr2∞
D

rR = 0, R(1) = 0, R(0) <∞, (3.10)

which has the solution
Rn(r) = J0(j0,nr), (3.11a)

where j0,n is the nth zero of J0 and

λn =
Dj20,n
r2∞

. (3.11b)

Then solving the T equation, we obtain

T ′ + λnT = 0
Tn(t) = Tn(0) exp (−λnt) . (3.12)

Then by the principle of superposition, we have that

um(r, t) = −Fm
∞

∞∑
n=1

Tn(0)J0(j0,nr) exp (−λnt) , (3.13)

where by the orthogonality properties of the Bessel function we have the following:

Tn(0) =
[
κ

∫ 1

0

rJ0(j0,nr) dr
] [∫ 1

0

rJ2
0 (j0,nr) dr

]−1

. (3.14)

For later calculations, it will be useful to define∫ 1

0

rf(r)J0(j0,nr) dr ≡ an(f), (3.15)

for any function f . Hence the first bracketed expression in (3.14) may be replaced by
κan(1) and we have

Tn(0) = κan(1)
[

1
2
J2

1 (j0,n)
]−1

=
2[κan(1)]
J2

1 (j0,n)
,

an(1) =
∫ 1

0

rJ0(j0,nr) dr =
1
j20,n

∫ j0,n

0

ρJ0(ρ) dρ =

[
ρJ1(ρ)
j20,n

]j0,n

0

=
J1(j0,n)
j0,n

. (3.16)

The relationship for the norm of J0 is given by Theorem 4.23 in Bell (1968), while the
integral in an(1) is given by Theorem 4.8(i) in Bell (1968).
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Substituting (3.14) into (3.13) and using (3.8), we obtain

um(r, t) = −Fm
∞

∞∑
n=1

2[κan(1)]
J2

1 (j0,n)
J0(j0,nr) exp(−λnt), (3.17a)

Fm(r, t) = Fm
∞ − Fm

∞

∞∑
n=1

2[κan(1)]
J2

1 (j0,n)
J0(j0,nr) exp(−λnt). (3.17b)

(We do not perform further simplification at this time because the general form of (3.17)
will be used in later sections.) Note from (3.17b) that Fm(r,∞) = Fm

∞, as expected, and
thus the concentration returns to its bulk value. Therefore, we have that

I(∞) = F i
0 + Fm

∞ =
N(1− κ)

1 +K
+

NK

1 +K
=
N(1− κ+K)

1 +K
, (3.18)

where we have used (2.5a) and (3.5b).
Using the definitions in (2.5) and (3.5) in (3.7), we have the following:

I(t) =
(1− κ)N

1 +K
+

KN

1 +K
− NK

1 +K

∞∑
n=1

2[κan(1)]
J2

1 (j0,n)
exp(−λnt)

[
2
∫ 1

0

rJ0(j0,nr) dr
]

(3.19a)

=
(1− κ+K)N

1 +K
− 2NK

1 +K

∞∑
n=1

[κan(1)][2an(1)]
J2

1 (j0,n)
exp(−λnt), (3.19b)

where we have used (3.7). Here we have left (3.19b) unsimplified to facilitate further
extensions in the next section. However, substituting in (3.16) for this case, we obtain

I(t) =
(1− κ+K)N

1 +K
− 4κNK

1 +K

∞∑
n=1

exp(−λnt)
j20,n

. (3.20)

There are four parameters to be determined in this problem. Two of these parameters,
N and κ, can be determined from the data at t = 0±. In particular, N can be determined
from the intensity plot at the end of the saturation phase (t = 0−) as shown in (2.8a),
and κ can be determined at the beginning of the measurement phase (t = 0+) as shown in
(2.8b). Note that this simplification is not immediately visible from (3.20), though it can
be readily established once one recalls that

∞∑
n=1

1
j20,n

=
1
4
.

The remaining two parameters, D and K, must be determined by fitting the shape of
the curve. A good starting guess for K can be determined by looking at the long-term
asymptote of the data, as can be seen from (3.18). (What constitutes “long-term” is not
a trivial matter, and will be discussed more in the conclusion.) The effect of D in the
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solution is manifested through λn, as shown in (3.11b). Thus D can be determined only
from the behavior of the curve in the evolution phase. Note that the most complicated
part of the problem, the j0,n, may be calculated once and stored in a table.

During the workshop, a Matlab implementation of (3.20) was written. N and κ were
estimated directly from the data, and the values substituted into (3.20). The resulting sum
was fit (with 25 terms) against the data to determine D and K. The optimization for D
was always started with D = 1µm2/s, as this is a common order-of-magnitude estimate.
Four starting values of K were used, and the code runs four optimizations using each value.
Two graphs are shown below.
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Figure 3.2. Data without obvious kinetic effects.

Figure 3.2 shows data from an anionic dextran molecule of size 40 kDa. (Here the
“R2” at the top of the graph refers to the statistical goodness-of-fit test.) We see that
the data roughly matches the schematic in Figure 1.3, namely, there is a noticeable steady
state in the data, which we expect should make it a good candidate for the model presented
in this section. This is borne out by the good fit for the curve; the key parameters obtained
are

D = 1.748
µm2

s
, K = 26.52. (3.21)

Figure 3.3 shows data from a cationic dextran molecule of size 10 kDa. We see that
the data roughly matches the schematic in Figure 1.4. Namely, there seems to be slow
linear growth in the data for long time. Hence we expect kinetics to play a role, and for
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Figure 3.3. Data not explained with kinetic-free model.

the model presented in this section to not work well. This is borne out by the bad fit for
the curve; the key parameters obtained are

D = 0.490428
µm2

s
, K = 2.22997. (3.22)



Section 4: Extensions

tτ

I

N

(1− κ)N

Figure 4.1. Schematic of bleaching over time.

Fast Diffusion

In some cases, bleaching takes place on a time scale roughly equal to that for diffusion.
Hence the bleaching process cannot be taken to be instantaneous. For simplicity, we model
the bleaching as a linear process over some time interval τ (see Figure 4.1. This was later
determined to be an erroneous assumption; see section 7.)

Therefore, we see that in the absence of diffusion, we would have

d(F i + Fm)
dt

=
N(1− κ)−N

τ
= −Nκ

τ
, 0 < t < τ. (4.1)

We now make a further simplifying assumption. We assume that the bleaching affects each
category (mobile and immobile) of fluorescent molecules in proportion to their equilibrium
concentration fraction. Then since the immobile molecules cannot move, we have that

dF i

dt
= − Nκ

τ(1 +K)
, 0 < t < τ, (4.2)

from which we obtain the following:

F i =
N

(1 +K)
− Nκt

τ(1 +K)
=

N

1 +K

(
1− κt

τ

)
= F i

∞

(
1− κt

τ

)
, 0 < t < τ,

F i =
N(1− κ)

1 +K
= F i

0, t > τ, (4.3)



Duncan et al. 4.2

where we have used (3.2a). Then combining (4.1) and (4.2), we see that in the absence of
diffusion, the contribution to the evolution of Fm from the bleaching must be

dFm

dt
= − NKκ

τ(1 +K)
= −κF

m
∞
τ

, 0 < t < τ.

We note that the initial and boundary conditions for this problem must be the same
because bleaching has not begun when t = 0. Therefore, in this situation, (3.9) becomes

∂um

∂t
=

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
− κFm

∞
τ

, 0 ≤ r ≤ 1, 0 ≤ t ≤ τ, (4.4a)

um(1, t) = 0, um(r, 0) = 0. (4.4b)

Motivated by (3.17a), we solve (4.4a) via the following eigenfunction expansion (Four-
ier-Bessel series):

um(r, t) =
∞∑
n=1

2
J2

1 (j0,n)
Tm
n (t)J0(j0,nr), Tm

n (t) =
∫ 1

0

rum(r, t)J0(j0,nr) dr. (4.5)

We note that this is not the standard form; normally the normalization factor 2/J2
1 (j0,n)

would multiply the integral term. Substituting (4.5) into (4.4), we obtain

dTm
n

dt
= −λnTm

n −
κFm
∞an(1)
τ

, Tm
n (0) = 0,

where λn is given by (3.11b). Now we see that the choice of terms in (4.5) allowed the
forcing term to be written in terms of the previously defined an(1). Solving the above for
t < τ , we obtain

Tm
n (t) = −κF

m
∞an(1)
τλn

[1− exp(−λnt)] , 0 < t < τ. (4.6a)

The bleaching process ends at t = τ . Therefore, for t > τ , the system is governed
by the equations in section 3. In particular, from (3.12) we have that Tn(t) is a simple
decaying exponential that must match to (4.6a) at t = τ , so we have the following:

Tm
n (t) = −κF

m
∞an(1)
τλn

[1− exp(−λnτ)] exp(−λn(t− τ)), t > τ. (4.6b)

Note that
lim
τ→0

Tm
n = −κFm

∞an(1) exp(−λnt),

which agrees with (3.17a) (i.e., the limiting case of instantaneous bleaching reduces to the
case in section 3).
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Since we are changing only the time-dependent part, we see that (3.19b) and (3.20)
become

I(t) =



(1− κ+K)N
1 +K

− 2NK
1 +K

∞∑
n=1

[κan(1)][2an(1)]
J2

1 (j0,n)
1− exp(−λnt)

τλn
, 0 < t < τ,

(1− κ+K)N
1 +K

− 2NK
1 +K

∞∑
n=1

[κan(1)][2an(1)]
J2

1 (j0,n)
1− exp(−λnτ)

τλn
exp(−λn(t− τ)),

t > τ,

(4.7a)

I(t) =



(1− κ+K)N
1 +K

− 4κNK
1 +K

∞∑
n=1

1− exp(−λnt)
τλnj20,n

, 0 < t < τ,

(1− κ+K)N
1 +K

− 4κNK
1 +K

∞∑
n=1

1− exp(−λnτ)
τλnj20,n

exp(−λn(t− τ)), t > τ.

(4.7b)

Non-Uniform Bleaching

In some cases, the bleaching may not be perfectly uniform. In that case, rather than
κ being a constant, it will be a function of r. Thus the first bracketed term in (3.14) must
be replaced by ∫ 1

0

rκ(r)J0(j0,nr) dr = an(κ), (4.8)

where we have used the notation in (3.15). This substitution carries through to the first
bracketed term in (3.19b), so in this case we have

I(t) =
(1− κ+K)N

1 +K
− 2NK

1 +K

∞∑
n=1

[an(κ)][2an(1)]
J2

1 (j0,n)
exp(−λnt) (4.9a)

=
(1− κ+K)N

1 +K
− 4NK

1 +K

∞∑
n=1

an(κ)
j0,nJ1(j0,n)

exp(−λnt). (4.9b)

Non-Uniform Sensing

In some cases, the sensing may not be perfectly uniform, but instead the signal
strength S varies with r. In that case, we replace (3.6) with

I(t) =
1
S∗

∫ 1

0

rS(r)[F i(r, t) + Fm(r, t)] dr, S∗ =
∫ 1

0

rS(r) dr. (4.10)
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Here S∗ is a normalization constant chosen to ensure that if F i(r, t)+Fm(r, t) is a constant,
I(t) will be that same constant. Thus the second bracketed term in (3.19a) must be
replaced by

1
S∗

∫ 1

0

rS(r)J0(j0,nr) dr ≡
an(S)
S∗

. (4.11)

Thus (3.19b) becomes

I(t) =
(1− κ+K)N

1 +K
− 2NK

1 +K

∞∑
n=1

[κan(1)][an(S)/S∗]
J2

1 (j0,n)
exp(−λnt), (4.12a)

=
(1− κ+K)N

1 +K
− 2κNK
S∗(1 +K)

∞∑
n=1

an(S)
j0,nJ1(j0,n)

exp(−λnt). (4.12b)

Two-Compartment Model

Since there is no change in the medium at the bleaching zone interface, there is no
reason to suspect that the concentration should remain at a fixed value there. Therefore,
we may introduce a two-compartment model by defining

ω =
ω̃

r∞
, (4.13)

and not requiring that ω = 1 (see right of Figure 3.1).
This then results in a combination of the previous two cases. If we take uniform

bleaching within the zone, we have

κ(r) = κ(1−H(r − ω)),

an(κ) = κ

∫ ω

0

rJ0(j0,nr) dr =
κ

j20,n

∫ j0,nω

0

ρJ0(ρ) dρ =
κJ1(j0,nω)ω

j0,n
, (4.14)

where H is the Heaviside function. Similarly, if we average uniformly within the zone, we
obtain

S(r) = 1−H(r − ω),

which corresponds to no signal outside the ROI. Continuing to simplify, we obtain

an(S) =
ωJ1(j0,nω)

j0,n
, (4.15a)

S∗ =
∫ ω

0

r dr =
ω2

2
. (4.15b)

Thus (3.19b) becomes

I(t) =
(1− κ+K)N

1 +K
− 2NK

1 +K

∞∑
n=1

[an(κ)][an(S)/S∗]
J2

1 (j0,n)
exp(−λnt) (4.16a)

=
(1− κ+K)N

1 +K
− 4κNK

1 +K

∞∑
n=1

J2
1 (j0,nω)

j20,nJ
2
1 (j0,n)

exp(−λnt). (4.16b)
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Note that if ω = 1 (which corresponds to the one-compartment model), (4.16b) reduces to
(3.20).

The two-compartment model introduces a new parameter, ω, which must be deter-
mined. There are several ways to do this:

1. r∞ can be chosen to be the radius of the lens (considered to be a cylinder pressed
against the slide), since that is the maximal extent of the domain.

2. ω can be chosen arbitrarily, and the other parameters estimated for an experimental
run. Then for the same experimental run, one may vary ω and do another fit. In this
way, one can check the sensitivity of the dynamic parameters to the choice of ω.

3. ω can be fit directly. Once ω is found, then r∞ may be determined since ω̃ is known,
and then D may de determined from the λn. However, note that this is much more
computationally intensive, since each of the Bessel function coefficients must be recal-
culated with each iteration.

Obviously this formulation is inexact. One could think of taking r∞ →∞ and solving
the diffusion problem on the full two-dimensional space. But the solution of such a problem
is of the form (Carslaw and Jaeger, 1959, 14.8(1))

Fm =
∫ ∞

0

f(ρ)
4πDt

exp
(
−r

2 + ρ2

4Dt

)
I0

( rρ

2Dt

)
dρ, (4.17)

which is an infinite integral. This is similar to the approach taken by Sprague, et al (2004).
The final product of this report will be a Matlab code that will estimate the physical

parameters given experimental data. In such a product, the infinite integral in (4.17) would
have to be approximated by some quadrature on [0, r∞] anyway. So that is why we retain
the finite-interval formulation, and the solution form (4.16b).



Section 5: One Compartment With Kinetics
Next we treat the case with kinetics. In this case, the amount of Fm can be changed

by binding or dissociation, so (3.4) is replaced by

∂Fm

∂t
=

D

r2∞r

∂

∂r

(
r
∂Fm

∂r

)
− kaF

m + kdF
i, (5.1a)

which is coupled to (2.2), which we repeat here for clarity:

∂F i

∂t
= kaF

m − kdF
i. (5.1b)

To obtain homogeneous end conditions for both dependent variables, as before we set

ui(r, t) = F i(r, t)− F i
∞, um(r, t) = Fm(r, t)− Fm

∞. (5.2)

Substituting (5.2) into (5.1a), we obtain

∂um

∂t
=

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
− ka(um + Fm

∞) + kd(ui + F i
∞)

=
D

r2∞r

∂

∂r

(
r
∂um

∂r

)
− kau

m + kdu
i, (5.3a)

where we have used the fact that (2.3a) holds for the bulk values. Similarly, (5.1b) becomes

∂ui

∂t
= −kdu

i + kau
m, (5.3b)

and the boundary conditions for ui become

ui(1, t) = 0, ui(r, 0) = F i
0 − F i

∞ = −κF i
∞. (5.4)

Motivated by (4.5), we let

ui(r, t) = −
∞∑
n=1

2κan(1)T i
n(t)

J2
1 (j0,n)

J0(j0,nr), T i
n(t) = − 1

κan(1)

∫ 1

0

rui(r, t)J0(j0,nr) dr.

(5.5)
Again, the choice of coefficients simplifies the algebra later on. In particular, we see that

T i
n(0) = − 1

κan(1)

∫ 1

0

r(−κF i
∞)J0(j0,nr) dr = F i

∞. (5.6)
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Simplifying the above and extending it to the other species, we obtain

ui(r, t) = −
∞∑
n=1

2κT i
n(t)

J1(j0,n)
J0(j0,nr)
j0,n

, (5.7a)

um(r, t) = −
∞∑
n=1

2κTm
n (t)

J1(j0,n)
J0(j0,nr)
j0,n

, Tm
n (0) = Fm

∞. (5.7b)

Substituting (5.7) into (5.3), we obtain

dTm
n

dt
= −λnTm

n − kaT
m
n + kdT

i
n,

dT i
n

dt
= −kdT

i
n + kaT

m
n ,

where we have used (3.11b). Rewriting the above in matrix form, we have

d

dt

(
Tm
n

T i
n

)
= A

(
Tm
n

T i
n

)
, A =

(
−λn − ka kd

ka −kd

)
(5.8a)(

Tm
n

T i
n

)
= c+e

α+tv+ + c−e
α−tv−, (5.8b)

Here (α,v) are the eigenvalue-eigenvector pairs of A, given by

(α+ λn + ka) (α+ kd)− kakd = 0
α2 + (λn + ka + kd) + kdλn = 0

α± =
−(λn + ka + kd)±

√
(λn + ka + kd)2 − 4kdλn
2

,

(5.9a)

v± =
(
kd + α±
ka

)
. (5.9b)

The initial conditions for the problem are given by(
Tm
n

T i
n

)
(0) = c+v+ + c−v− =

(
Fm
∞
F i
∞

)
.

Solving this equation for the c±, we obtain(
Tm
n

T i
n

)
(0) = c+v+ + c−v− =

(
Fm
∞
F i
∞

)
c+(kd + α+) + c−(kd + α−) = Fm

∞

c+ka + c−ka = F i
∞

c+kd + c−kd = Fm
∞
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c+α+ + c−α− = 0

c−

(
1− α−

α+

)
=
Fm
∞
kd

c− =
Fm
∞α+

kd(α+ − α−)
, (5.10a)

c+ = − Fm
∞α−

kd(α+ − α−)
. (5.10b)

Note that as the rate constants go to zero, we have

A→
(
−λn 0

0 0

)
, α→ {−λn, 0}, v→ {e1, e2},

and we reduce to the no-kinetics case where T i is a constant and Tm
n decays exponentially.

Substituting our expressions into (3.6) to obtain the intensity, we obtain the following:

I(t) = F i
∞ + Fm

∞ + 2
∫ 1

0

r[ui(r, t) + um(r, t)] dr

=
N

1 +K
+

NK

1 +K
− 4κ

∞∑
n=1

T i
n(t) + Tm

n (t)
j0,nJ1(j0,n)

∫ 1

0

rJ0(j0,nr) dr

= N − 4κ
∞∑
n=1

c+e
α+t(kd + ka + α+) + c−e

α−t(kd + ka + α−)
j20,n

(5.11a)

= N − 4κFm
∞

kd

∞∑
n=1

−α−eα+t(kd + ka + α+) + α+e
α−t(kd + ka + α−)

j20,n(α+ − α−)

= N − 4κNK
kd(1 +K)

∞∑
n=1

−α−eα+t(kd + ka + α+) + α+e
α−t(kd + ka + α−)

j20,n(α+ − α−)
.

(5.11b)

There are five parameters to be determined in this problem, and each can be deter-
mined using a best-fit curve to the intensity plot, which is sketched in Figure 1.4. N can
be determined from the intensity plot at the end of the saturation phase (t = 0−) as shown
in (2.8a). κ can be determined at the beginning of the measurement phase (t = 0+) as
shown in (2.8b). (Note that this simplification is not immediately visible from (5.11b).)

To obtain a good starting guess for K, one can perform a logarithmic transformation
of the data. As the system transitions from the diffusive to the kinetic regime, there should
be a noticeable change in the trend line at the point labeled t∗ (see Figure 1.4). The value
of I there can be used to establish K. Since r∞ = ω̃ is known, D and ka may be determined
from the λn, which will fit the behavior of the curve in the evolution phase. Note that the
most complicated part of the problem, the j0,n, may be calculated once and stored in a
table. Also note that kd can be determined once K and ka are known.

During the workshop, a Matlab implementation of (5.11b) was written. N and κ were
estimated directly from the data, and the resulting values substituted into (5.11b). Then
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this was fit (with 25 terms) against the data to determine D, K, and ka. D was again
always started with D = 1µm2/s. Four starting values of K and ka were used, and the
code runs 16 optimizations using all permutations of the sets.

First, we wish to try the kinetic model on data which has been determined to be
diffusion-limited. We wish to check three key features of the new model:

1. The fit should not be worse (this is guaranteed by the fact that we have introduced
another free parameter).

2. The previously determined values of D and K should not vary much from the values
determined by the kinetics-free model.

3. The value of kd determined should be low (pointing to small kinetics effects).
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Figure 5.2. Data without obvious kinetic effects.

Figure 5.2 shows the same data as in figure 3.2, fit with both the kinetic and kinetics-
free models. Note that the curve fits are nearly identical. The key parameters obtained
are

D = 1.866
µm2

s
, K = 18.27, ka = 7.47× 10−4 s−1 =⇒ kd = 1.36× 10−2 s−1.

(5.12)
Note the low value of kd, indicating that kinetics are unimportant. Note also the close
agreement between D in (3.21) and (5.12). However, there is a difference in K that must
be explained. Also, note that the R2 value for the plot increases only slightly, indicating
that including the kinetics doesn’t affect the plots very much.
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Figure 5.3. Data with kinetic effects.

Figure 5.3 shows the same data as in figure 3.3, fit with the kinetic model. Note that
the curve fit with the kinetic model is much improved, since it captures the long-term
linear uptick. The key parameters obtained are

D = 1.735
µm2

s
, K = 1.403, ka = 8.547× 10−3 s−1, =⇒ kd = 1.199× 10−2 s−1.

(5.13)
It is not entirely clear why the parameters behave in this manner, since one would expect
kd to be higher in this case. Also, the values of D and K are significantly different between
(3.22) and (5.13) (but more trustworthy in the latter due to the improved fit, which can be
seen from the increased R2 values). Finally, note that the computed values of N and κ do
not change, since they arise in preprocessing steps using the initial normalized intensity.



Section 6: Vertical Diffusion

Figure 6.1. Schematics of experimental setup.

In actuality, the membrane is three-dimensional (see Figure 6.1). The lens rests on
a microscope slide (z̃ = −h), and hence there is no flux of molecules through this surface
(see Figure 6.2). For large lenses, the weight of the lens is enough to squeeze the liquid
from between the lens and the slide. For smaller lenses, additional weight should be added.
The interior of the lens (z̃ = h) is also impermeable to the molecules, so there is no flux
there as well. These conditions motivate the scaling

z̃ = hz. (6.1)

The laser bleaches a cylindrically symmetric region 0 < r < ω(z), which is also
symmetric about the plane z̃ = 0 (see Figure 6.2). Therefore we may solve the diffusion
equation in the region 0 < z < 1. Because of the curved nature of the bleaching zone, a
one-compartment model is no longer useful. It would involve changing coordinates, which
yielded complicated equations. Therefore, we proceed directly to the two-compartment
model.

We begin by neglecting kinetics and solve the following diffusion equation:

∂Fm

∂t
= D

[
1
r̃

∂

∂r̃

(
r̃
∂Fm

∂r̃

)
+
∂2Fm

∂z̃2

]
∂Fm

∂t
= D

[
1
r2∞r

∂

∂r

(
r
∂Fm

∂r

)
+

1
h2

∂2Fm

∂z2

]
, 0 < r < 1, 0 < z < 1. (6.2)
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glass slide
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r

z = 1

z = −1

Figure 6.2. Plot of 3-D model.

Note that if ω(z) is a constant, Fm does not vary in the z-direction and we are reduced to
the previous case.

To transform to homogeneous boundary conditions, we let

um(r, z, t) = Fm(r, z, t)− Fm
∞ (6.3)

as before to obtain

um(1, z, t) = 0,
∂um

∂z
(r, 0, t) = 0,

∂um

∂z
(r, 1, t) = 0, (6.4a)

um(r, z, 0) = −κFm
∞[1−H(r − ω(z))]. (6.4b)

where we have used our discussion about no flux through the boundaries, as well as the
symmetry condition.

Separating variables by setting um(r, t) = R(r)Z(z)T (t), we see that the r-dependence
is exactly the same. So we have

T ′

T
= −λn +

DZ ′′

h2Z
= −λn − lm

Z ′′ +
lmh

2

D
Z = 0, Z ′(0) = Z ′(1) = 0,
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Zm(z) = cosmπz, lm =
m2π2D

h2
, m = 0, 1, 2, . . . (6.5a)

λ∗m,n = λn + lm = D

(
j20,n
r2∞

+
m2π2

h2

)
. (6.5b)

Tm,n(t) = exp
(
−λ∗m,nt

)
. (6.6)

Then by the principle of superposition, we have the following:

um(r, t) = −Fm
∞

∞∑
m=0

∞∑
n=1

Tm,n(0)J0(j0,nr) exp
(
−λ∗m,nt

)
cos(mπz), (6.7)

where by the orthogonality properties of the Bessel and cosine functions we have that

Tm,n(0) =
2κ

J2
1 (j0,n)

[∫ 1

0

cos(mπz)
∫ 1

0

rJ0(j0,nr){[1−H(r − ω(z))]} dr dz
]
×[∫ 1

0

cos2(mπz) dz
]−1

=
4κ

J2
1 (j0,n)(1 + δm0)

∫ 1

0

cos(mπz)
∫ ω(z)

0

rJ0(j0,nr) dr dz

=
4κ

J2
1 (j0,n)j20,n(1 + δm0)

∫ 1

0

cos(mπz)
∫ j0,nω(z)

0

ρJ0(ρ) dρ dz

Tm,n(0) =
4κωm,n

J2
1 (j0,n)j0,n

, (6.8a)

ωm,n =
1

1 + δm0

∫ 1

0

cos(mπz)ω(z)J1(j0,nω(z)) dz, (6.8b)

where δ is the Kronecker delta function, chosen to ensure the proper factor of 1/2 in front
of the first Fourier coefficient.

We take the intensity measurement at z = 0, so we are interested in

Fm(r, 0, t) = Fm
∞ − Fm

∞

∞∑
m=0

∞∑
n=1

4κωm,n
J2

1 (j0,n)j0,n
J0(j0,nr) exp

(
−λ∗m,nt

)
. (6.9)

Since we are averaging only over the first compartment, the averaging proceeds as in (4.16)
with ω = ω(0). Thus we obtain (for the case of uniform sensing and bleaching)

I(t) =
(1− κ)N

1 +K
+

KN

1 +K
− NK

1 +K

∞∑
m=0

∞∑
n=1

4κωm,n
J2

1 (j0,n)j0,n
exp

(
−λ∗m,nt

) [2J1(j0,nω(0))
ω(0)j0,n

]

=
(1− κ+K)N

1 +K
− 8κNK

(1 +K)ω(0)

∞∑
m=0

∞∑
n=1

ωm,nJ1(j0,nω(0))
J2

1 (j0,n)j20,n
exp

(
−λ∗m,nt

)
. (6.10)
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Note that in the limit that ω(z) approaches a constant ω, the z-dependence drops out and
so we are left with just one mode:

λ∗0,n = λn,

ω0,n =
1
2

∫ 1

0

ωJ1(j0,nω) dz =
ωJ1(j0,nω)

2
,

I(t) =
(1− κ+K)N

1 +K
− 8κNK

(1 +K)ω

∞∑
n=1

ω0,nJ1(j0,nω)
J2

1 (j0,n)j20,n
exp

(
−λ∗0,nt

)
=

(1− κ+K)N
1 +K

− 4κNK
1 +K

∞∑
n=1

J2
1 (j0,nω)

J2
1 (j0,n)j20,n

exp (−λnt) ,

which agrees with (4.16b).

Possibilities for Omega

Since (6.10) depends explicitly on the shape of the bleaching zone, we now discuss
possible forms for ω(z). On physical grounds, we expect the surface to be a hyperboloid
of one sheet, the equation of which would be given by

ω2(z)− b2ω2(0)z2 = ω2(0)

ω(z) = ω(0)
√

1 + b2z2, (6.11)

where b is a fitting constant. For a simpler model, one could simply take a parabola:

ω(z) = ω(0)(1 + b2z2), (6.12)

where we have kept in mind that ω(z) must be even in z. Note that (6.11) can be reduced
to (6.12) (with suitable rescaling) for small b.

Measurements have shown that the value of b differs between mouse lenses and human
lenses. It is not clear as to whether this is due to experimental error, or differences in
makeup of the matrix. If the experimentalists are confident that both lenses should be
modeled by the same curve, then another parameter would have to be introduced through
a more complicated curve, for example:

ω(z) = ω(0)(1 + b21z
2 + b22z

4).



Section 7: Including Measurement Bleaching
Note from Figure 1.5 that both the control and bleached regions have an underlying

decay to them. This is because even though the laser is operated at low power during the
measurement phase, that low power still continually bleaches molecules. If one assumes
that this forces a simple exponential decay onto the control data:

Icontrol(t) = Icontrol(0) exp(−kbt), (7.1)

where the subscript “b” stands for “bleaching”, then one could divide by Icontrol(t) to
get a “normalized” I(t) that would be free of the exp(−kbt) dependence, and hence the
measurement bleaching. These are the plots that were fit in previous sections.

Unfortunately, the same diffusion of unbleached molecules will also occur in the control
region, so the mathematical situation is more complicated than that postulated in (7.1).
In this section (completed after the close of the workshop, when this mechanism was more
fully understood), we present more refined models of the system.

The measurement process will affect the immobile and mobile fractions in a man-
ner proportional to their number. Therefore, in the kinetics-free case using the one-
compartment model of section 3, we have

∂Fm

∂t
=

D

r2∞r

∂

∂r

(
r
∂Fm

∂r

)
− kbF

m, 0 < r < 1, (7.2a)

∂F i

∂t
= −kbF

i, 0 < r < 1. (7.2b)

Solving (7.2b) subject to (2.5a), we immediately obtain

F i(t) = F i
0 exp(−kbt). (7.3)

There are several ways to solve (7.2a). One achieves fast convergence of the sum,
while the other can be computed quickly (and is hence preferred).

Fast Convergence Method

In order to achieve the fastest convergence of the sum, we subtract off the steady state
of (7.2a) subject to (3.5b). In order to simplify later algebra, we let

Fm
steady(r) = Fm

∞G(r),

in which case we obtain

D(rG′)′

r2∞r
− kbG = 0

rG′′ +G′ − kbr
2
∞

D
rG = 0, G(1) = 1. (7.4)
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Equation (7.4) is in exactly the same form as (3.10) except for the sign of the second term,
which makes it a modified Bessel equation. Therefore, we have that

G(r) =
I0(δr)
I0(δ)

, δ = r∞

√
kb

D
(7.5)

Note that as kb → 0, δ → 0 and Fm
∞G(r)→ Fm

∞, so we reduce to the previous case.
Then letting

Fm(r, t)
Fm
∞

−G(r) = exp (−kbt)um(r, t) (7.6)

into (7.2a), (2.5b), and (3.5b), we obtain

∂

∂t
(Fm
∞[exp (−kbt)um +G]) =

D

r2∞r

∂

∂r

(
r
∂

∂r
(Fm
∞[exp (−kbt)um +G])

)
− kb (Fm

∞[exp (−kbt)um +G])

exp (−kbt)
(
∂um

∂t
− kbu

m

)
= exp (−kbt)

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
− kb exp (−kbt)um

+
D(rG′)′

r2∞r
− kbG

∂um

∂t
=

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
, (7.7)

um(r, 0) =
Fm

0

Fm
∞
−G(r) = 1− κ−G(r) = −(κ− 1 +G(r)),

(7.8a)
um(1, t) = 0. (7.8b)

But (7.7) and (7.8) are in exactly the same form as (3.9) as modified in section 4
under the “nonuniform bleaching” assumption, with

κ(r) = κ− 1 +G(r). (7.9)

Note that as δ → 0, G(r)→ 1 and κ(r)→ κ, reducing to the previous case. Therefore, we
have the following:

um(r, t) = −
∞∑
n=1

2[an(κ)]
J2

1 (j0,n)
J0(j0,nr) exp(−λnt), (7.10a)

Fm(r, t) = Fm
∞G(r)− exp(−kbt)Fm

∞

∞∑
n=1

2[an(κ)]
J2

1 (j0,n)
J0(j0,nr) exp(−λnt). (7.10b)

I(t) =
(1− κ)N

1 +K
exp(−kbt) +

NK

1 +K

[
2
∫ 1

0

r
I0(δr)
I0(δ)

dr

]
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− NK

1 +K

∞∑
n=1

2[an(κ)][2an(1)]
J2

1 (j0,n)
exp(−(kb + λn)t)

=
(1− κ)N

1 +K
exp(−kbt) +

NK

1 +K

[
2

δ2I0(δ)

∫ δ

0

ρI0(ρ) dρ

]

− 4NK
1 +K

∞∑
n=1

an(κ) exp(−(kb + λn)t)
j0,nJ1(j0,n)

=
(1− κ)N

1 +K
exp(−kbt) +

NK

1 +K

2I1(δ)
δI0(δ)

− 4NK
1 +K

∞∑
n=1

an(κ) exp(−(kb + λn)t)
j0,nJ1(j0,n)

,

(7.11)

where the integral is given by Bell, Theorem 4.15(i). Note that it is clear that as t→∞,
the solution reduces to the steady state. Also, note that as δ → 0, I1(δ)→ δ/2 and we are
reduced to the previous case.

The main problem with (7.11) is that one of the fitting parameters, kb, is buried
inside the integral in an(κ). This will make the optimization much more time consuming.
One could think of estimating kb from the control data. But the control data has the
same problem with unbleached molecules diffusing in from outside. If the diffusion is slow
enough, you might be able to get away with making a rough fit for kb from the data. This
would essentially make the control intensity a single exponential, justifying (7.1) and hence
the data previously fit.

Speedy Computation Method

Since the previous method seems unsuitable for curve fitting, we take the simpler
approach of simply subtituting (3.8) into (7.2), which yields

∂um

∂t
=

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
− kb (um + Fm

∞) , (7.12)

subject to (3.9b). This operator is somewhat similar to that in (4.4a), so we use the series
solution in (4.5) to obtain (for the case of uniform bleaching)

dTm
n

dt
= −λnTm

n − kbT
m
n − kbF

m
∞an(1), Tm

n (0) = −κFm
∞an(1),

Tm
n = −Fm

∞an(1)
[

kb

λn + kb
+
(
κ− kb

λn + kb

)
exp(−(λn + kb)t)

]
,

um(r, t) = −2Fm
∞

∞∑
n=1

J0(j0,nr)
J1(j0,n)j0,n

[
kb

λn + kb
+
(
κ− kb

λn + kb

)
exp(−(λn + kb)t)

]
,

Fm(r, t) = Fm
∞ − 2Fm

∞

∞∑
n=1

J0(j0,nr)
J1(j0,n)j0,n

[
kb

λn + kb
+
(
κ− kb

λn + kb

)
exp(−(λn + kb)t)

]
,
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(7.13a)

I(t) =
(1− κ)N

1 +K
exp(−kbt) +

NK

1 +K

− 4NK
1 +K

∞∑
n=1

1
j20,n

[
kb

λn + kb
+
(
κ− kb

λn + kb

)
exp(−(λn + kb)t)

]
, (7.13b)

where we have used the fact that this is mostly a repetition of previously-done work. Note
that in the limit that kb → 0, (7.13b) reduces to (3.20).

Though the convergence of this sum may be somewhat slower, it avoids the problem
of having to fit kb inside any sort of integral term.

Including Kinetics

Motivated by the previous section, we now use the same trick to include kinetic effects.
In this case, (5.1) becomes

∂Fm

∂t
=

D

r2∞r

∂

∂r

(
r
∂Fm

∂r

)
− kaF

m + kdF
i − kbF

m, (7.14a)

∂F i

∂t
= kaF

m − kdF
i − kbF

i, (7.14b)

which, upon substituting (5.2), become

∂um

∂t
=

D

r2∞r

∂

∂r

(
r
∂um

∂r

)
− (ka + kb)um + kdu

i − kbF
m
∞, (7.15a)

∂ui

∂t
= −(kd + kb)ui + kau

m − kbF
i
∞. (7.15b)

The boundary and initial data are given by (5.4) and (3.9b).
Motivated by (4.5), we adapt (5.7) by removing the −κ term, since by (7.13a) we see

that it isn’t going to appear as a coefficient:

ui(r, t) =
∞∑
n=1

2T i
n(t)

J1(j0,n)
J0(j0,nr)
j0,n

, T i
n(t) =

1
an(1)

∫ 1

0

rui(r, t)J0(j0,nr) dr,

(7.16a)

um(r, t) =
∞∑
n=1

2Tm
n (t)

J1(j0,n)
J0(j0,nr)
j0,n

, Tm
n (t) =

1
an(1)

∫ 1

0

rum(r, t)J0(j0,nr) dr.

(7.16b)

In this case, our initial conditions are given by

T i
n(0) = −κF i

∞, Tm
n (0) = −κFm

∞. (7.17)
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Substituting (7.16) into (7.15), we see that the equations analogous to (5.8a) become

d

dt

(
Tm
n

T i
n

)
= A

(
Tm
n

T i
n

)
− kb

(
Fm
∞
F i
∞

)
, A =

(
−λn − ka − kb kd

ka −kd − kb

)
.

Note that by maintaining a positive sign on our series in (7.16), we don’t have to worry
about changing the signs of the forcing terms. Solving the above, we have(

Tm
n

T i
n

)
= kbA

−1

(
Fm
∞
F i
∞

)
+ c+e

(α+−kb)tv+ + c−e
(α−−kb)tv−, (7.18a)

A−1 =
1

(α+ − kb)(α− − kb)

(
−kd − kb −kd

−ka −λn − ka − kb

)
. (7.18b)

where we have used linear algebra properties to relate the eigenvalues and eigenvectors of
our new A to the A in section 5.

From (7.17) we see that initial conditions for the problem are given by(
Tm
n

T i
n

)
(0) = kbA

−1

(
Fm
∞
F i
∞

)
+ c+v+ + c−v− = −

(
κFm
∞

κF i
∞

)
.

Solving the above for the c±, we obtain

V

(
c+
c−

)
= −(κI + kbA

−1)
(
Fm
∞
F i
∞

)
, V =

(
kd + α+ kd + α−
ka ka

)
(
c+
c−

)
= −V −1(κI + kbA

−1)
(
Fm
∞
F i
∞

)
. (7.19)

We could write down the complicated expressions, but as the inversion can be done more
conveniently in Matlab, we leave the solution in this form.

For the intensity, we are interested in

T i
n(t) + Tm

n (t) = kb
(−kd − kb − ka)Fm

∞ + (−λn − ka − kb − kd)F i
∞

(α+ − kb)(α− − kb)

+ c+e
(α+−kb)t(kd + ka + α+) + c−e

(α−−kb)t(kd + ka + α−)

= −kb
(kd + kb + ka)(Fm

∞ + F i
∞) + λnF

i
∞

(α+ − kb)(α− − kb)
+ c+e

(α+−kb)t(kd + ka + α+)

+ c−e
(α−−kb)t(kd + ka + α−)

= −kb
(kd + kb + ka)N + λnF

i
∞

(α+ − kb)(α− − kb)
+ c+e

(α+−kb)t(kd + ka + α+)

+ c−e
(α−−kb)t(kd + ka + α−). (7.20)

where we have used (3.2).
Therefore, our expression in (5.11a) is replaced by

I(t) = N + 4
∞∑
n=1

T i
n(t) + Tm

n (t)
j20,n

, (7.21)

where the summand is defined as in (7.20).



Section 8: Conclusions and Further Research
The purpose of this work was to study diffusion through the lens capsule, in particular

to estimate diffusion rates of various molecules through the capsule from data resulting
from fluorescence recover after photobleaching (FRAP) experiments.

Previously, the post-experiment data processing was done by fitting a linear combina-
tion of one or two exponentials with 3 or 5 independent parameters to the normalized data
(which accounts for the fact that fluorescence decreases with time). This was clearly just
an ansätz based on the expected exponential decay of intensity with time which failed to
account for the nature of diffusion, namely that different time scales for decay are all re-
lated (eigenvalues of a Sturm-Liouville problem), as well as the amplitudes of the different
modes.

Experimentalists observed strong sensitivity of the parameter estimation to the time
used to truncate the data — an obviously unsettling fact that leads to lack of confidence
in the method they were using. A better analysis was needed to derive a more robust
technique for parameter estimation.

Various mathematical models were derived accounting for different processes, geome-
tries and inhomogeneities. All models assume bleaching in a radially symmetric region
to be radially symmetric, which seems to agree fairly well with experimental observation.
During the measurement phase of the experiments (starting just after bleaching) fluorescing
particles are either bound (immobile) or free to diffuse (mobile), and uniformly distributed
throughout the membrane, with a constant total concentration due to transport equilib-
rium. The concentration of bound and mobile particles can change due to association
and dissociation reactions, which are assumed to follow simple mass-action kinetics. It’s
also assumed that the particles are in chemical equlibrium just before bleaching, with the
relative concentrations of mobile and immobile particles depending on an affinity constant;
no shortage of binding sites is also assumed.

The following cases were considered. In all cases Dirichlet data is given on a circle
large enough across which the lens will transport any needed particles very quickly.

1. Diffusion much faster than reaction, in which case a one-compartment, no kinetics
model was derived (Section 3). A Matlab code was written to implement the Bessel-
Fourier series solution and to find a best fit for the parameters to the data. For “large”
molecules the fit was very good, but for smaller molecules kinetics is expected to play
a role, and it should be incorporated in the model.

2. In Section 4, extensions were considered. First, the case of non-uniform bleaching
(bleaching fraction is a function of radial position) was analyzed, and the appropriate
modification derived, but not implemented in Matlab. Second, non-uniform sensing
was included and the series solution for the intensity derived. Finally, we considered
a two-compartment model with the (uniform) bleaching zone embedded in a larger
diffusion region. This introduces another parameter ω, the ratio of the radius of the
bleaching zone to that of the diffusion region, which has to be estimated as well.
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3. The one-compartment model including kinetics is derived in Section 5. This intro-
duces another parameter (a rate of reaction constant) to be estimated. A formula
(infinite series) for the intensity was derived and used in a Matlab code to estimate
the parameters. As expected, a check of the fit with both kinetics and kinetics-free
models, for the case of data showing a diffusion dominated process, resulted in nearly
identical fit, with the extra parameter (the reaction rate) being very small, but with
some variation in the affinity constant which is not explained. The fit for the case of
smaller molecules (which was not good for the kinetics-free model) is much better with
kinetics included. The diffusion coefficient and the affinity coefficients changed signif-
icantly from those fit with the kinetics-free model. One can conjecture that smaller
molecules are more likely to undergo association, thus corresponding to different val-
ues of the affinity parameter as compared to the larger molecules; this is the trend
observed with the two sets of data. Also, the kinetics model includes the details of
reactions that may have a cumulative effect on the solution over time, thus affecting
the parameters that produce the best fit, perhaps explaining the variations observed
in the diffusion and affinity coefficients with the small molecule data.

4. In Section 6 a model that includes diffusion in the axial direction is derived to account
for a possible radially symmetric axial variation of the radius of the bleaching zone.
The formula for the intensity (infinite series) is derived — it depends on the particular
shape of the bleaching zone.

5. Finally, in Section 7, a more refined model accounts for the continuation of bleaching
during the measurement phase (the laser is still on, although operated at a much lower
power). The one-compartment models of Sections 3 and 5 are refined to include the
bleaching kinetics during the measurement phase. These have also been implemented
in Matlab code.

In the future, the solution of a two-compartment reaction-diffusion model, including
the kinetics of bleaching in the measurement phase, can be attempted to determine if
more consistency is achieved on large molecule particles for models with and without
kinetics. Additionally, axial diffusion can be added to obtain a more complete model.
Matlab implementation should be done with all reasonable models for comparison, so that
a conclusion may be reached as to which model is sufficiently robust to be routinely used
for work with the lens capsule.



Nomenclature

If the same letter appears both with and without tildes, the variable with a tilde
has dimensions, while the one without is dimensionless. The equation number where a
particular quantity first appears is listed, if appropriate.

A: matrix arising in kinetics solution (5.8a).
an(·): constant arising in separation-of-variables solution (3.15).

B(r̃, t): concentration of bleached particles at position (r̃, t) (2.6).
b: fitting constant for ω(z) (6.11).
c: constant in kinetics solution (5.8b).
D: diffusion coefficient.

F (r̃, z̃, θ, t): concentration of fluorescent particles at position (r̃, z̃, θ, t) (2.1).
f(·): arbitrary function.
h: half-height of membrane (6.1).

I(t): averaged intensity at time t (1.1).
K: affinity constant, defined as kd/ka (2.3b).
k: rate constant (2.2).
lm: eigenvalue related to the eigenfunction of the diffusion operator in the z-direction

(6.5a).
m: indexing variable.
N : total concentration of particles (2.1).
n: indexing variable.

R(r): component of separation-of-variables solution (3.10).
r̃: radial coordinate (2.1).

S(r): strength of intensity measurement (4.10).
T (t): component of separation-of-variables solution (3.12).

t: time coordinate (1.1).
u(r, z, t): component of separation-of-variables solution (3.8).

v: eigenvector of A (5.8b).
Z: the integers.

Z(z): component of separation-of-variables solution (6.5a).
z̃: height above measurement plane (6.1).
α: eigenvalue of A (5.8b).
γD: correction coefficient in estimating D from τ1/2.
δ: parameter in steady-state solution (7.5).
θ: angular coordinate (2.7).

κ(r): bleaching fraction.
λ: eigenvalue related to the eigenfunction of the diffusion operator.
ρ: dummy variable of integration.
τ : time constant, variously defined.
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ω̃(z̃): radius of region of interest.

Other Notation

a: as a subscript, used to indicate association (2.2).
b: as a subscript, used to indicate bleaching (7.1).
d: as a subscript, used to indicate dissociation (2.2).
i: as a superscript, used to indicate immobile (2.1).

m: as a superscript, used to indicate mobile (2.1).
n ∈ Z: as a sub- or superscript, used to indicate a mode in an eigenfunction expansion

(3.11a) or simple indexing (1.1).
0: as a subscript on F , used to indicate an initial condition (2.5).

1/2: as a subscript on τ , used to indicate a time constant (1.1).
∞: as a subscript, used to indicate an exterior value (3.2).
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