
Compact Modeling for a Double Gate
MOSFET

21 October 2009

1 Introduction

MOSFETs (metal-oxide-silicon field-effect transistors) are an integral part of
modern electronics. Figure 1 shows an outline of a standard MOSFET and
also indicates the shrinking of these devices over the last 50 years. Improved
designs are currently under investigation, and one that is promising is the
double gate MOSFET.

Understanding device characteristics is critical for the design of MOS-
FETs as part of design tools for integrated circuits such as SPICE. Current
methods involve the numerical solution of partial differential equations gov-
erning electron transport. A typical example of such a solution is shown in
Figure 2. Numerical solutions are accurate, but do not provide an appropri-
ate way to optimize the design of the device, nor are they suitable for use
in chip simulation software such as SPICE. As chips contain more and more
transistors, this problem will get more and more acute.

There is hence a need for analytic solutions of the equations governing
the performance of MOSFETs, even if these are approximate. Almost all so-
lutions in the literature treat the long-channel case (thin devices) for which
the PDEs reduce to ODEs. The goal of this problem is to produce analytical
solutions based on the underlying PDEs that are rapid to compute (e.g. re-
quire solving only a small number of algebraic equations rather than systems
of PDEs).
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Figure 1: Schematic of MOSFET device.

2 Model

The formulation is presented in Appendix-1. The PDE problem (in dimen-
sionless variables) we consider is
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The domain is |x| < 1, 0 < y < 1, for which the boundary conditions are

w = Wbi, φ = 0 at y = 0, (3)

w = Wbi + Vds, φ = Vds at y = 1, (4)
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Then w(x, y) is an even function of x, enabling the more convenient condition
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= 0 at x = 0, (6)
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Figure 2: Numerical solution courtesy for the MOSFET device produced by
the group of Prof. Uno of Nagoya University. The colored diagram gives the
electron density. The curve gives a section of the electron density through
the middle of the device.

to be used with 0 < x < 1. With 0 < y < 1, the aspect ratio specified in
the problem formulation is δ = 1/12. Figure 3 shows the field equations,
boundary conditions and geometry.

In this form, the governing equations and boundary conditions are, except
for 0 < y < 1, those in §3 of the MITACS 2007 Simon Fraser report. The
solution given by Eq. 11 of MITACS is even in x, which indicates that Eq. 3
and its predecessor should have ± on their left-hand-sides. The replacement
of w(±1) by w(1) in Eq. 3 is consistent with this observation. Physically, the
sign of the voltage difference distinguishes between inflow and outflow rather
than determines the flow direction.

As in MITACS, the electric and Fermi potentials, w, φ, and the voltages
Wbi, Vds, Vgs have been scaled on Vth = kT/q, the thermal voltage of the
system. σ = 2× 10−4 and r is determined from

2r =
permittivity ratio, oxide to silicon

thickness ratio, oxide to silicon
.

We note that both σ and δ are small.



Figure 3: Domain, field equations and boundary conditions.

Such a small value of σ suggests that an approximate solution be con-
structed by deleting the forcing term in the Poisson equation (1). However,
this approach annihilates a significant feature of the electric potential w and
hence is not pursued here. The obvious alternative strategy is to neglect
terms involving δ = 1/12. Equivalently, for cross channel flow in the bulk
of the rectangle, assume x-derivatives of w dominate those with respect to
y and note that φ = φ0(y) then satisfies the governing equation for φ. (In
Chen et al. φ0(y) is taken to be a delta function). Thus solve

2
∂2w0

∂x2
= σ2ew0−φ0(y). (7)

The substitution,
w0(x)− φ(y) + 2 ln σ = W (x), (8)

reduces the differential equation (7) to the standard form,

2
∂2W

∂x2
= eW , (9)

whose even solution is

W (x) = 2 ln[2θ sec(xθ)], W (0) = 2 ln(2θ). (10)



This reproduces Eq. 11 of MITACS, after correcting a typo. The only rele-
vance of θ to angles is that 0 < θ < π/2. The parametric dependence of θ
on y, determined by applying the condition (5) at x = 1, is given by
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)

. (11)

Evidently a further relation between θ and φ0 is needed (unlike Abebe et
al. where this is specified in advance). A compatibility condition is estab-
lished, prior to any approximations and for δ > 0, by integrating (2) with
respect to x and using the second of conditions (5. Although the approxi-
mation, φ ∼ φ0(y) also eliminates the first term of (2), we choose to use the
compatibility condition as a convenient way to reduce the governing equation
for φ0 to an ODE. On inserting the above w ∼ w0 approximation, it follows
that

d
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and hence

θ tan θ
dφ0

dy
= A,

which MITACS identified as a constant current condition. Substitution of the
earlier relation (11) gives a first order differential equation whose integration
is elementary and yields

Ay = θ2 − 2θ tan θ − θ2

r
tan2 θ + B. (12)

Although the above construction likely fails near y = 0 and y = 1, where sig-
nificant boundary layers of thickness O(δ) are anticipated, the non-appearance
of δ in (11) allows θ0 = θ(0), θ1 = θ(1) to be determined by applying the con-
ditions on φ at y = 0, 1. Thus, according to (11),
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Estimates are
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{
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The constants A, B are then found by setting y = 0, 1 in (12) to obtain
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0

r
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Evidently θ(y), and hence φ0(y), varies little when Vgs % Vds, in which case

θ(y) ∼ π

2
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, φ0(y) ∼ Vdsy.

If Vgs & Vds, then
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.

In general, the parametric dependence of W on y disallows the obvious ap-
proximation φ ∼ Vdsy but in the former case this dependence is essentially
absent. At this stage, it must be borne in mind that only the cross-channel
mean of (2) has been used and that δ > 0 is required for its applicability.

The remaining conditions on w at y = 0, 1 are not satisfied by w0 and so
a correction w1 is needed in ‘boundary layers’ adjacent to these edges. On
assuming that y-derivatives of w1 are sufficiently dominant and |w1| & 1,
the governing equation for w gives

2δ2∂2w1

∂y2
= σ2ew0−φ0(y)w1 ∼ σ2eWbiw1, (13)

near y = 0, 1. Hence w1 exhibits exponential decay away from y = 0, 1 on
the scale

√
2e−Wbi(δ/σ) in each layer.

3 Results

To examine the accuracy of the analytical model of § 2, its predictions were
compared with numerical simulations carried out by Prof. Uno and also with
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Figure 4: (a) Potential in middle of device calculated by Prof. Uno. (b)
Analytic prediction. (c) FEMLAB calculation.

FEMLAB calculations carried out during the workshop. Two sets of param-
eter values were used. The first used the MITACS parameter values, except
with tox = 1.5 × 10−9 m, Vg = 2.75 V and VD = 1 V. Figure 4 shows the
electrostatic potential at the midpoint of the device for all three calculations.
The agreement is excellent. Note that the analytical model requires solving
two nonlinear equations for θ0 and θ1 and some interpolation, and is hence
extremely fast. Further details of the solution are shown in Figure 5. The
Fermi potential φ0(y) is nearly linear in this limit of large gate potential.

The second set of parameter values corresponds to a subcritical regime
and is shown in Figure 6. In this case Vg = 0.37 V, VD = 2 V, tox = 1.6×10−9

V and the channel is shorter: δ = 1/8. Now the Fermi potential is no
longer linear and the total electron density no longer has structure across
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Figure 5: (a) Fermi potential φ0(y) (green curve) and auxiliary variable θ(y)
(blue curve). (b) Electron density in device w(x, y) incorporating boundary-
layer correction (13).

the channel.

4 Conclusions

Guided by asymptotic analysis, a fast numerical procedure has been de-
veloped to obtain approximate solutions of the governing PDES governing
MOSFET properties, namely electron density, Fermi potential and electro-
static potential. The approach depends on the channel’s being long enough,
and appears accurate in this limit.
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Figure 6: (a) Fermi potential φ0(y) (green curve) and auxiliary variable θ(y)
(blue curve). (b) Electron density in device w(x, y) incorporating boundary-
layer correction (13).
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Appendix-1 
 

Compact Modeling for a Double Gate MOSFET. Henok Abebe and Ellis Cumberbatch 
 
Henok Abebe is a Senior Member of IEEE and works at MOSIS Service. (See 
http://www.isi.edu/~abebeh/ )     
MOSIS is a low-cost prototyping and small-volume production service for VLSI circuit 
development. Since 1981, MOSIS has fabricated more than 50,000 circuit designs for 
commercial companies, government agencies, and research and educational institutions 
around the world [1].    
 
A compact, physical, potential model for undoped (or slightly doped) short-channel 
Double Gate (DG) MOSFETs is required.  
 

1 Introduction 
 
Most transistors go by the name of MOSFET (metal-oxide-silicon field-effect transistor). 
The current design has various features that are proving undesirable as technology 
mandates the endless reduction in transistor size. There is extensive research and 
development underway with new designs. One which looks favourable is the double gate 
(DG MOSFET). Current methods of determining device characteristics for a single 
transistor include numerical solutions of the partial di!erential equations governing 
electron transport. (Quantum e!ects are now important, but this aspect is not intended for 
this workshop.) While numerical treatments are satisfactory in providing accurate results, 
they do not provide a framework for analyzing device parameter optimization. This 
becomes increasingly important as the scale of the devices drops to the nanoscale regime, 
and as the number of material parameters increases. Additionally, the time consumption 
of numerical solutions often precludes their use in SPICE, the simulation software used to 
obtain chip performance, when the chip contains many transistors. (This number can now 
approach 1 billion.)  
Almost all the analytical solutions for DG MOSFETs in the literature treat the 
long-channel case (L>> Tsi ) for which the PDEs reduce to ODEs, and there is a scarcity 
of solutions in the short-channel (PDE based) case. An analytical, physically based PDE 
model (or at least a model that is extremely fast numerically) would allow determination 
of optimal parameters for device performance, allow a reduction of the amount of time to 
determine device characteristics, and be available for use in SPICE. 
 

2 Introduction to MOSFETS 
 

The device comprises: a silicon wafer on which an oxide (SiO2) and a metal gate (or a 
polysilicon region) is deposited. Metal contacts are deposited at the source and drain. 
Positive voltage at the gate(s) generates large electron densities in the silicon, and current 
flow source-to-drain is achieved by a difference in voltage at those contacts. The DG 
MOSFET, is a new geometry in which a second gate is added. This design helps reduce 
short-channel interference e!ects and increase the performance of the device.  
 



 
 
Figure 1: Schematic diagram of a typical DG MOSFET illustrating device dimensions 
and model coordinates centered in the MOSFET silicon bulk. 
 
A current design of the DG MOSFET is shown in Figure 1. DG MOSFETs are of great 
interest due to their potential as a replacement for standard planar MOSFETs. Double 
gate devices possess more current e!ciency over planar devices of similar length scales 
as their design eliminates the need for a bulk region of carriers. DG MOSFETs are lightly 
doped which means, for modeling, that the electron density in the silicon body is well 
above the doping density, and the latter may be neglected. There is then no depletion 
region and no free boundary problem to solve.   

 
A substantial number of long-channel solutions are available [e.g. 2, 3 and 4]. We shall 
describe the character of these subsequently as they may be useful in formulating a 
short-channel approximation, required when the channel length approaches the sub-65nm 
range. A well quoted paper by Chen et al., [2], attempts such a 2-D solution for the case 
of devices in near-equilibrium. In this “threshold” scenario, the distribution of electrons 
in the silicon is relatively constant, allowing a linearization about this solution.  
 
Recently we developed an approximate solution based on assuming a quadratic 
electrostatic potential across the device, see [5]. This approach gives good accuracy for 
symmetric devices in all regions. However, its accuracy for asymmetric device 
deteriorates rapidly in the weak inversion and saturation regions. 
 

3 Drift-Diffusion Physics 
 

The electron number density is denoted by n and the electron current flux is assumed to 
be the sum of a diffusion term plus a drift term linear in !"#$E , the electric field. This 
gives 
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for the electron current flux, where q is the charge on an electron and n is the number 
density of electrons. In ( 1), the Einstein relation D=kT!n/q between the electron mobility 
!n and the diffusion coefficient D has been used. (k is Boltzmann’s constant and T is the 
temperature.) The last part of (1) defines the quasi-Fermi potential "n. With this 
definition the electron density can be expressed as thn V

ienn /)( !" #$ where ni is a constant 
known as the intrinsic electron density ( ni~1016m-3) and where 
 
                          Vth=kT/q                                    (2) 
                
is known as the thermal voltage. For our applications Vth=0.0259 volts, so that changes in 
potential of 1 volt give rise to factors multiplying n by exp(38.6). 
 
Gauss’s Law is qnD #$$%& '  
where ED ($ , is the electric displacement eld and # is the total charge density, given in 
this model by the electron charge only. 
Conservation of current: This is given by 0$%& J  
 
Since no current crosses the insulating gate boundaries the current is constant crossing 
any plane Y constant. This current may be expressed as  
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Boundary Conditions (refer to Figure 1). The potential and the displacement field are 
both continuous across the oxide-silicon interfaces. The oxide lms have zero charge and 
are thin so the potentials across them may be considered linear in the X-direction. This 
means that the (Robin) boundary conditions at the two interfaces are  
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where $sf, $sb represent the potentials at 2/siTX -$ and where the gate-source voltages 
applied at each gate is reduced by the di!erence in work functions *+  between the gate 
and semi-conductor materials. The conditions at the source and drain ends of the channel 
are determined by the built-in voltages between the p-n junctions of the source or drain 
and the silicon supplemented by the voltage difference applied.  
 

4 Non-Dimensionalization 
  

Device lengths, potentials and voltages are scaled as follows for the 2-D problem (no 
variation is considered in the third dimension). 
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For a typical case Tsi=10nm, L=60nm, LD=24 microns, !=1/12 and "=1.4&10-4. In terms 
of non-dimensional quantities the PDE system may now be written as 
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with ! and " small, and boundary conditions given on a rectangle |x|<1,0<y<1. 
 
 

5 The quasi-1-D or Long-Channel Approximation 
 

For Tsi /L= !! 0 the y derivatives in (6) may be neglected. In addition it can be 
shown that # is a function of y only so that (7) becomes an ODE. For the symmetric case 
in which the gate conditions are identical the 1-D Poisson equation for undoped 

symmetric DG-MOSFET is        , -kTq
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In scaled variables (8) becomes  

                      )(
2

2

2 "(! we
dx

wd                                                  (9) 

with the different scaling: 
 
In (9), ",w  are the scaled electrostatic and quasi-Fermi potentials, respectively, with # 
being dependent only on the source-to-drain coordinate, y .  The solution to (9) in the 
symmetric case is: 
           ))2/ln(cos(2)( 2/

0
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where 0w  represents the minimum value of w  at 0x ! .  The boundary condition at 
the oxide/silicon interface yields the transcendental equation for $: 
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A short-channel model of this type has been explored in [2], however, solutions outlined 
are valid only at near-threshold voltage operations. In practical use, large variations in Vgs 
are applied to the device and model developments for the non-equilibrium device 
functions are of great importance.  
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Appendix-2 
 

Mathematical Facts (may not be useful for practical application). 

Solution to wew !"
2

2 #
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For any analytic function( of z=x+iy. Note: This is slightly amended version of solution 
given in Polyanin and Zaitsev, Hand Book of Non Linear Partial Differential Equations. 


