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1 Introduction

The basic problem is to solve the two-dimensional scalar Helmholtz equation for a
point source (the antenna) situated in the vicinity of an array of scatterers (such as
the houses and any other relevant objects in 1 square km of urban environment).
The wavelength is a few cm and the houses a few metres across, so there are three
disparate length scales in the problem.

The question posed by BT concerned ray counting on the assumptions that
(i) rays were subject to a reflection coefficient of about 0.5 when bouncing off a
house wall and
(ii) that diffraction at corners reduced their energy by 90%. The quantity of partic-
ular interest was the number of rays that need to be accounted for at any particular
point in order for those neglected to only contribute 10% ofthe field at that point; a
secondary question concerned the use of rays to predict regions where the field was
less than 1% of that in the region directly illuminated by the antenna.

The progress made in answering these two questions is described in the next
two sections and possibly useful representations of the solution of the Helmholtz
equations in terms other than rays are given in the final section.

2 Ray Counting

There will in general be many rays from a transmitter T through a set of buildings
to an observer O. We wish to calculate the amplitude resulting from these rays to a
prescribed accuracy by truncating the sum so that it only includes those rays that
have undergone at most N diffractions or reflections. If we ignore diffracted rays and
assume that all reflection coefficients p satisfy Ipl ~ pmax then the energy in a ray
reflected n times is at most P~ax times the transmitted energy. (We ignore the effects
of spherical spreading, as advised in [1].) Since the requirement is to get an upper
bound on the total contribution of the omitted rays without actually calculating
them, this factor of P~~x is the most we can say about the intensities. Now let
R; = number of rays propagating from T to 0 via exactly n reflections. Then the
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total power in the omitted rays, as a fraction of the transmitted power, is at most
00

L RnP~:x
n=N+l

and we wish to ensure that this is at most 10% (or some other specified tolerance.)
In order to do this, we have to obtain an upper bound on Rn and the problem is that
most of the natural bounds that one can write down are exponential in n, and will
therefore not guarantee convergence of (1). For instance, suppose that from each
wall of a building at most Nw walls of other buildings are visible, with a value of
Nw that is a fixed upper bound, valid for all buildings in the area of interest. Then
it is straightforward that R; grows no faster than N~, because after each reflection
there are at most Nw walls to choose as the next wall to reflect from. But this is
not enough to cause (1) to converge unless NwP~ax happens to be less than 1.

We therefore consider a relatively simple but not untypical geometry of buildings,
and we wish to obtain for it a bound on Rn that ensures convergence of (1) for all
Pmax < 1 : a polynomial in n would be satisfactory.
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Figure 1: Paradigm configuration of buildings

We consider a regular infinite row of equal rectangular buildings between parallel
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infinite walls, as in figure (1). This could represent a row of office blocks separated
by cross streets between two major roads. Alternatively, it could represent a row of
houses separated by side passages leading from the street area to the back garden
area. We take the dimensions and terminology to be as in figure (1) with

Wl = width of the north corridor

W2 = width of the gaps

l2 = length of the gaps = y-dimension of buildings

W3 = width of the south corridor

Wh = width (x-dimension) of the buildings.

The typical situation here is that the transmitter T will be in say the north
corridor, and it is necessary to consider observer positions 0 throughout the diagram.
For 0 in the north corridor there is not a difficulty, and for 0 in one of the gaps
the results of the following section give the necessary information. We therefore
consider the case where 0 is in the south corridor. In such cases, we understand
that it would generally not be necessary to count rays that make more than one
passage down one of the gaps. Omitting those, we are left to count rays that make
say nl reflections in the north corridor, then n2 reflections in one of the gaps, then
n3 in the south corridor and finally arrive at O. For instance, figure (1) shows a ray
with (nI, n2, n3) = (2,1,2).

Figure 2: Four ray, four gap example.

There are exactly (n + 1)(n + 2)/2 triples (nI, n2, n3) of non-negative integers
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satisfying n = nl + n2 + n3 but there will be more than one ray from T to 0
with a given triple. For instance figure (2) shows 4 rays from T to 0, all with
(nb n2, n3) = (1,1,1), using four different gaps. A satisfactory bound on Rn can be
obtained as follows :

We first obtain an upper bound for rays where the first and last of the n2 reflec-
tions are from the east wall of the gap used. For these we show that
(a) Given a particular choice of gap, there is a most one ray with the given (nI, n2, n3)
parameters.
(b) Given (nI, n2, n3) there is a bound on the number of gaps that the ray can use.

To see these, think of a ray that leaves T at an acute angle ±O to the eastgoing
corridor axis. It travels for an eastwards distance 11 involving nl reflections. It then
enters one of the gaps, travelling at angles ±(7r /2 - 0) to the southward axis, making
n2 reflections on its passage south through the gap. It then travels a distance 13
west to reach 0 after a further n3 reflections. To accomplish this, the nl reflections
alternately off the north and south walls of the north corridor must end with a
reflection off the north wall. The n2 reflections start and finish on the east wall of
the gap so n2 is odd. The n3 reflections must start on the south wall of the south
corridor. Hence the reflections occur in a known order from known reflectors; so the
position of the n-fold reflected image of T is known; so the angle of launch to reach
o is known, establishing (a). For (b) we put down some inequalities on the lengths.
The z -interval between successive reflections in the north corridor is wt! tan O. So
if the ray makes precisely nt reflections while travelling along that corridor, leaving
it a distance 11 east of T, then

11
nt - 1 :::;(wt! tan 0) :::;n1 + l.

Similarly for traversing the gap we have

12
n2 - 1 :::; () :::;n2 + 1,

w2tan

(2)

(3)

and for the south corridor

(4)

Multiplying (2)by (3) we have

l1l2(n1 - 1)(n2 - 1) :::;-- :::;(nt + 1)(n2 + 1).
WtW2

Thus the value of It is restricted to a range of

l1+ -11- = 2(nl + n2)wlw2/l2.

(5)

(6)

However, a restriction on the range of 11 restricts the number of gaps that a ray
with this (nl,n2,n3) can use. In fact, a range [11-,11+] allows at most

(l1+ -ll-) + W2 + 1 (7)
Wh +W2
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gaps to be used. Substituting (6) into this we see that the number of usable gaps is
at most

(8)
where

2WlWZ Wz
Cl = ( ) , d = + 1.1z Wh + Wz Wh + Wz

The sum of (8) over odd values of nz for a fixed value of r = nl + nz is

(9)

(10)

Removing the l J makes a slight increase, and then summing over r from 0 to n
gives at most

n(n + 1)(n + 2) d(n + 1)(n + 2) (11)
Cl 6 + 2 .

In fact, a similar bound could be obtained by arguing with the south corridor in
place of the north, so the factor of Cl from (9) here can be replaced by

2 min( Wl, W3)WZ
C = ---'-----'--

lZ(Wh + W2)
(12)

to give a better bound if W3 < Wl'

Then doubling this to include rays whose first and last nz reflections are from the
west wall of the gap used, we have at most

cn(n + 1)(n + 2)/3 + d(n + 1)(n + 2) (13)

rays with odd nz.

It remains to add in a bound on the number of rays with n2 even. These are
covered by (a) or (b):

(a) T and 0 are opposite the same gap: in such a case, nl and n3 must each be 0
or 1, with nl + n3 of the same parity as n. For each of the allowed possibilities for
(nI, n3), there may be two different rays, according as the first of the nz reflections
is on the east or west wall of the gap. In any case there are at most 4 relevant rays
if n ~ 2, 2 if n = 1, and 1 if n = O.

(b) When T and 0 are not opposite the same gap, suppose say that 0 is east of
T. The rays must make the first of their nz reflections from a west-facing wall, and
so the order of the reflections is completely determined by (nI, nz, n3), except for
the fact that we have not specified which gap the ray goes through. However, the
combined effect of the nz reflections on the image of T is the same, whichever gap
it is, so in fact the value of () is uniquely determined by (nI, nz, n3) in such a case,
and therefore the gap is uniquely determined. So the number of such rays is at most
the number of (nI, nz, n3) with nz even and nl + nz + n3 = n, which is at most

5



(n/2 + 1)2. This always exceeds the upper bound in case (a), so it suffices to use
this latter form as the upper bound. We therefore have

Rn ~ cn(n + l){n + 2)/3 + d(n + 1)(n + 2) + (n/2 + I? (14)

This is undoubtedly quite a weak upper bound - Rn will not really be as large as
O(n3) - but it is enough to ensure convergence of (1) which was our aim. For any
particular dimensions of the buildings and corridor widths, and a given Pmax, the
value of N required can be computed explicitly from this. For instance, taking the
case

W2 = Wh (building and gap widths equal);

min( Wl, W3) = l2 (one corridor width equal to gap length, the other wider);

pmax = 1/2;

it turns out that N = 6 is enough to make (1) less than 10%. "Ve might even
conjecture that in general (1) will be O(N3/2N).
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Figure 3: T-junction paradigm

3 Intensity Estimation

Even for relatively simple configurations of houses, counting all the rays through
every point is time consuming. However, we can get a rough 'intensity map' by

6



ignoring diffraction and dividing the domain up into regions which can be reached
by 1,2,3,... reflections; the region which can only be reached by 3 reflections will
have roughly half the intensity of that which can be reached by only 2 reflections,
if the reflection coefficient is 1/2.

A paradigm problem for this intensity map is the T-junction:

To calculate the boundaries of our intensity regions we need to calculate the
rays which pass through the corners A,B. The boundary of the region which can be
reached without reflection is simply the shadow boundary OAC. To calculate the
boundary of the region which can be reached by 1 reflection we need to calculate
the rays with one reflection passing through A. The distance the ray travels down
the side road after a further n-rn reflections is then x = (2(n - m) + 2)d tan Onm i.e.

d?
:r~nm = (2(n - m) + 2);;(2n + 1) (15)

By maximising this distance with respect to m we can find out which rays propagate
furthest down the side road and we find Xnm is maximum when m = n/2 - 1/4.
Thus the rays which propagate furthest down will correspond to integer values of
m on either side of this maximum. We see that these will have roughly the same
number of bounces before and after the corner. Our final intensity map will look
something like figure 4

Figure 4: Final intensity map

The method can be extended, in principle, to more complicated domains. With
a second junction, as shown in figure 5. The rays forming the boundaries of the
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regions Dn may either pass through A or E, and thus we will need to consider the
rays through each of these points.

Figure 5: Two junction problem

4 Alternative representations of solutions of Helm-
holtz Equation

There are several other approaches besides that of geometrical optics that may
be considered, depending on the structure of the environment. In particular, for
housing distributions that are either periodic or nearly random then there may be
the possibility of constructing 'homogenised' models that give a quick estimate of
the average field strengths.
(i) Nearly Periodic Environment: WKB expansions and generalisations

Several suggestions were made concerning the use of vVKB approximations when
many large-wavelength-scale scatterers are present. These can be illustrated with
reference to the
a) Paradigm o.d.e.

d2<j> 2
dx2 +k f(x)4>=O, -L<x < L (16)

where f > 0 is a function with period 1 (house scale) with slow modulation over a
large 'estate' length scale L( lkm)j k » 1 is essentially the inverse of the wa.velength
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on the house scale. When L = 00 it is usual to write

<prv A exp( ±iku) (17)

where uP = f( x) and A ex 1/ f1/4, the signs being chosen to satisfy appropriate
radiation conditions. This WKB representation is the basis for ray theory but it has
the disadvantage of neglecting all reflections from the potential f( x) (the reflection
coefficient of an isolated scatterer is exponentially small as k -+ 00). Although it
can thus only describe situations where nearly all the energy is being transmitted
through the medium, it can be modified to account for modulations on an L scale
caused by slowly varying f by introducing a 'multiple scale' ansatz

<prv A(x,X)exp(iku(x,X))

where, say, x = LX. A particularly interesting regime from the mathematical
viewpoint occurs when L ~ O(k), when the modulation can cause ku to change by
0(1). The introduction of boundary conditions at x = ±L (the edge of the estate)
causes waves to travel in both directions and the representation (17) can be used
estimate the high eigenfrequencies in such an estate.

The introduction of an 'antenna' at x = 0, say could be discussed in terms of the
paradigm

d2<p
dx2 + k2f(x)<p= J(x) , -L < x < L (18)

but the presence of the localised forcing invalidates the use of the WKB approxi-
mation near the origin. It may be possible to get round this by constructing some
kind of localised expansion near x = 0; also it was pointed out that the solution of
(18) can always be represented via a Finite Fourier transform as

(19)

where
<p~+ k2 f<Pn = An<Pn

with l<Pnl = 1 and suitable boundary conditions at x = ±L and

(20)

It was also pointed out that any WKB representation relies on f having no abrupt
changes on a scale of x rv 0(k-1), for exactly the same reasons that the J-function
in (18) would invalidate (17).

Finally it was realised that all the above discussion is closely related to the idea of
Anderson localisation and the questions of how much change in A and u occur over
one period (or 'quasi'-period) of f [2], [3], [4]. Hence, delicate questions concerning
the limiting behaviour of discretisations and 'propagator matrices' may well arise,
whose answers will probably differ from similar questions posed in 2-D problems.
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b) 2-D problems
While many of the above ideas can be easily generalised to the 2-D version

- L < x < L, -L < y < L (21)

with reflection/diffraction conditions on a house in each cell n < x < n + 1, m <
y < m + 1 (maybe with a slow modulation), the extra spatial dimension may allow
or demand representations within a cell different from the simple formula (17).
In particular it was proposed that use might be made of the 'hybrid method' [5]
proposed for wave propagation in slowly varying waveguides. Crudely speaking the
solution of (21) with say ±8</>/8y+ o:(x)</> = 0 (0: nearly periodic on 0(1) scale), on
y = ±1 is represented as

</> = exp(iAx)tP(X,y) (22)

where in the unforced problem, tP and A satisfy an eigenvalue problem in y. Hence
in (21) tP can be represented as an eigenfunction expansion and the idea behind the
hybrid method is to retain only the lower terms in this expansion, the higher terms
being converted into a contour integral by using Watson's transforms and hence, via
a steepest descents analysis, into a ray representation. However the details of the
construction of the eigenfunction expansion so as to incorporate the antenna remain
very unclear.

In the 'periodic housing estate' problem (21), the hybrid method may involve
generalising (22) to

</> = exp( iA{ . :£)tP I{I = 1 (23)
and integrating over the direction ( (i.e. subjecting each house to plane wave irra-
diation), but again the implementation details are unclear.
(ii) Random Environments
When the environment comprises many random scatterers it was suggested that one
crude modelling approach would be to follow that of radiative heat transfer in the
'optically thick' limit [6]. The argument might go as follows: Let q(:£,{) be the e.m.
energy flux at :£ in direction (, so that J J q . (ds = E( x) is the local energy density.
Also let l(x) = 0(1) be the l~callength-s~l; over which radiation is scattered and
absorbed (house length) and L be the estate scale as before. In the optically thick
limit L » 1. Also assume the absorption coefficient, i.e. the proportion of the
energy, E, absorbed per scatterer is p( x) = 0(8) say. Then the variation of q in the
direction { is given by -

q (1 - 8)
(Slq = "I + i":- 47r

where V' is defined on the l-scale. Hence, on the L-scale,

q = (1 - 8) E _ i( ( .V')q
47r L -

We now assume that 8 « 1 and solve for q iteratively to give

(1 - 8) l - ( l ) 1 -
q = 47r E - 47r L ({ . V')E + L2 47r{· V'(l{ . V')E
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and integrate over the unit sphere in 1. space to give

l - -
E '" (1 - 8)E + 3L2 "V(l"V • E)

(note J 1. . ds = 471",J 1. . (1..ds) = !1)

Thus if we finally make the optically thick assumption that 8
obtain

l"V(l"V E) = pE

for a suitably scaled absorption coefficient p : thus the energy at any point in the
estate satisfies a modified Helmholtz equation!

It has recently been suggested that work by RL Weaver [7], [8] may develop this
theme. Also, concerning reflection from localised random scatterers, expertise is
available from Dr Mark Williams, Department of Mathematics, Sheffield, who has
studied foliage microwave scattering in conjunction with RSE, Malvern. Also, in-
evitably Mike Berry's 1981 Ann Phys paper has been cited [9].
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