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The retention of undissolved gasses ( ie hydrogen) in semi-solid tank wastes is complicated
and poorly understood. How the gas is retained affects the release mechanisms, rates and
release volumes that can be achieved. This in turn affects our estimates of risk and our
decisions on how to mitigate risks and how to retrieve the waste for processing for long-term
storage.

One type of tank waste is a clay-like material called sludge. This is a fine particulate
with a yield stress that may vary from 10 to 10,000 Pa, depending on the composition and
history of the waste. Laboratory experiments on simulated wastes suggest that weak sludges
retain round bubbles while strong sludges contain noodle- or sheet-shaped gas volumes. We
would like to understand the gas-retention process and identify the parameters that control
the retained gas bubble shape and size (yield stress, void-fraction, ... ?).

We expect that the mechanisms controlling the growth of the retained gas volume de-
termine the shape and size of the bubbles. Factors affecting the growth mechanisms might
be

• steady growth

• surface instabilities

• agglomeration of small bubbles

• feeder networks

• heterogeneity of the medium

• breathing

• bubble interactions- ie will two nearby bubbles tend to grow towards each other or
away from each other?

Saltcake waste has additional complications. This material is made up of larger particles
and so acts more like a porous medium, but does not forma rigid matrix. Particles may
be displaced, or fractures may form. There may also be "ca\·erns"- larger regions without
solids- created when the material is transferred into the tank. \Ve would like to know if the
gas retention mechanisms are greatly different from that in sludge, and if so, what additional
factors must be considered?

Finally, we would like to know if there are factors that can limit the release from a
"dendritic" (noodle or sheet) gas volume to be significantly less than the full connected
volume. For example will pores collapse as the pressure is released? This is perhaps the
most important question as far as its impact on safety issues. If there is no significant
difference between the release fraction of a spherical or a dendritic bubble.
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1 Introduction
Nuclear waste in the form of sludge of rather uncertain composition is held in 177
cylindrical tanks, typically 23m in diameter and 10m high. The radioactivity splits
some water molecules into free radicals, which are thought to recombine on suitable
catalytic sites to form hydrogen gas. The rate of production of gas (hydrogen and
other species) is typically about 4m3jday in the SY-101 tanks. When the concen-
tration of hydrogen in the roof of the tank exceeds 4%, there is a risk of deflagration.
The study group was asked to consider the mode in which the gas is released, whether
as dangerous large eruptions or as acceptable continuous background release. We
were also asked how much gas was stored in the sludge, where and in what form.
The sludge is neither solid nor fluid, but rather a yield material with a yield stress
of about 103Pa.

The study group based its approach on a video produced by Pacific Northwest
of a laboratory experiment in which gas was generated in a yield material. In
these experiments oxygen was produced from hydrogen peroxide, and the material
was a clay suspension. The video showed bubbles growing in the material, and the
height of the sample rising, rather like baking bread. After some time, some bubbles
were large enough to overlap, and they merged. The result of several mergers was to
form cracks, fairly horizontal, which grew by being inflated by gas and then breaking
sideways into a nearby bubble. A model of this crack growth is given in section 3.1
below. Gas was released to the surface from the network of cracks.

In addition to sludge, some tanks contain salt-cakes. These had been the subject
of a previous study group.

Before proceeding to the detailed modelling, two simple observations can be
made.

1.1 Largest immobile spherical bubble
Outside a stationary bubble there will be a hydrostatic pressure gradient psg with
Ps = 2 X 103kg m -3 the density of the sludge. Inside the bubble the pressure is
constant if we ignore by comparison the density of the gas. There will therefore
be a pressure imbalance across a spherical bubble of radius a of 2psga. The yield
material can support this without moving by pushing with its yield stress Ty at the
top and pulling similarly at the bottom. Thus the spherical bubble will not move if

2psga < 2Ty.
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For the given parameters we find the diameter of the largest immobile spherical
bubble is 10 cm. This distance will recur frequently in the following. Larger bubbles
will move upwards with a only finite region of material around them above the yield
stress and so in motion.

If the bubble is not spherical, then its vertical height will give the driving hy-
drostatic pressure for motion. For an isolated bubble, the resisting yield stress will
be exerted over an area approximately equal to the surface area of the bubble, since
material from the top of the bubble must be driven down to the bottom as the bub-
ble moves. Hence the critical height will be somewhat larger than 10 cm. However
the bubbles are not isolated, but are surrounded by other bubbles which make the
medium very compressible. Hence it is necessary only to move sludge from the tip
of the mobile bubble to the compression of surrounding bubbles. In this case we
retain 10 cm as the estimate of the height of the largest immobile bubble.

Some thought was given to the size of the smallest bubbles. In an ordinary fluid,
it is necessary for the capillary pressure to be smaller than the pressure necessary to
drive gas into solution. In a yield material, there is a problem of capillary pressure
overcoming the yield stress in order to expand an isolated bubble - while this can
be achieved near to the surface of the bubble, it cannot at some distance. What can
be predicted is the minimum size of undulations along the surface of a crack: with
the given value for surface tension, , = 8 X 10-2 N m :', undulations smaller than
,fTy "'" 80 microns will smooth out.

1.2 Rate of gas retention
The rate of gas production of 4m3 f day within a fairly full tank is equivalent to
1m" of sludge producing 1m3 gas at standard pressure and temperature in 3 years.
Hence in the top few metres of the tank, bubbles must start overlapping on a time
scale of 3 years. At the bottom of the tank where the pressure is 3 atmospheres, it
may take 10 years before the bubbles overlap one another. Thus there could be a
considerable build up of gas at depth in undisturbed tanks.

Some estimate can be made between the distance between large bubbles after the
lapse of 3 years. Gas dissolved in the sludge will prefer to go to the larger bubbles
whose penalty from the capillary pressure is smaller. The distance gas can diffuse
in the sludge is given by J = Vl5i. Using D = 10-11 m2 S-1 and t = lOB s (3 years),
we have J = 3 cm as the typical distance between bubbles. At this separation, there
should be sufficient compressibility available for critical height of immobile bubbles
to be 10cm.

2 Porous media models

2.1 Overall permeability
The very simplest view of the gas flow through the sludge is that through a porous
medium. Now in steady state, gas moves through the height 10 m within the time to
generate a volume of gas equal to that of the sludge, say 3 years. Thus there must
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be an average superficial velocity of V = 10-7 m S-1. We estimate the typical gas
viscosity as J1.g = 10-3 Pas. Finally the driving pressure gradient is the weight of the
sludge Vp = plJg with P8 = 2 X 103 kg m-3• Darcy's law then gives a permeability
of k = J1.g V/Vp = ~1O-14m2. Using the standard correlation k = (pore size)2/100,
this corresponds to pores of the size of about 10-6 m. Now all expectations are
of bubbles very much larger. Hence we conclude that almost all of the pores are
blocked for almost all of the time, in order that the relative permeability is much
smaller than that appropriate to the expected pore size.

2.2 Layered model with relative permeabilities
Based on the depth of the tank being 10 m and our assumption that bubbles taller
than 10 cm rise, the tank is divided into 100 horizontal layers. Each layer contains
the same fixed mass of sludge and a variable amount of gas. The gas pressure in
the layers is set equal to the hydrostatic pressure from the weight of sludge above,
and so increases with depth but does not vary in time. The same mass of gas is
produced per unit time in each layer. Let 4>n be the volume fraction of gas in the
nth layer. This volume fraction of gas therefore increases according to the uniform
mass-production rate and the pressure in the layer. Flow from one layer to another
is controlled by a relative permeability which vanishes if 4>n < <Pc and varies as
(<Pn - <Pc)2 above the critical volume fraction <Pc which is set equal to 0.1. When the
relative permeability exceeds the critical value, a fraction Q' = 0.7 is released into
the layer above.

The algorithm proceeds as followed. Time is advanced by 10 days by increasing
the volume fraction of the gas by 1% in the top layer and by an amount corresponding
to the pressure in the lower layers. The layer with the largest non-zero permeability
is found, and a fraction Q' of its gas transferred to the layer above. This process
of transfer from the layer with the largest permeability is repeated until all the
permeabilities vanish. Time is then advanced again by 10 days.

This layered model allows one (i) to follow the evolution of the total height of
sludge, (ii) to determine the statistics of the volumes of gas released and see how
frequent catastrophic releases are, and (iii) to see how gas is distributed throughout
the depth.

Computer simulations found that the height of the sludge increases by about 10%
or 1m, corresponding to the volume fraction 4>n in all the layers hovering around
the critical value <Pc = 0.1. The height oscillates randomly with a period of about
15years and an amplitude of about 5%. The time-scale is controlled by the rate of
production of gas, and the amplitude by Q', the size of the fraction of gas released
from one layer to another. As one should probably view each layer as having a
cross-section of size 10 cm, the 23m wide tanks should average out these variations
in the height of the sludge.

The simulations showed that very often as one layer releases gas into the layer
above, a cascade to the top is triggered. The next layer above often contains gas,
and the addition from below pushes its volume fraction over the critical value. In
addition the higher layers are at lower pressures and so a critical mass from below
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has a larger than critical volume higher up. Thus the volume of gas released varies
between that from a single top layer, say a 10 cm bubble, to that from about 50
layers (volume 2.5 x 10-2 m3). All sizes in between these limits seem to be equally
likely. The larger releases from deep down cannot be very frequent because one must
wait longer there for the greater mass required to increase the volume fraction to
the critical value.

We therefore conclude from this model that gas is released fairly constantly.
It is however worrying that every layer contains about 10% gas by volume. De-
pressurizing this gas at the bottom would produce 30% volume of gas.

2.3 Continuum version
While there are good reasons to study a model with discrete layers 10 cm thick, a
continuum version was considered. The gas production is described by

where Q is the mass production rate per unit volume, and q is the flux. This flux
is given by Darcy's law

k(<p)
q = - --"lPg,

J-lg

where
k(<p) = {ko(<p - <Pc)2 ~f<p > <Pc

o If <p < <Pc
is the relative permeability. The pressure and density in the gas are related by the
gas law pg = pgRT. Finally the expansion of the sludge is controlled by the excess
of the gas pressure above the hydrostatic sludge pressure

Numerical solution of these partial differential equations found that the sludge
goes to a steady state almost monotonically (a phenomenon observed in most single
shell tanks), in which gas is released steadily and the volume fraction goes to just
above the critical value throughout the depth. In the future it might be more inter-
esting to incorporate the effect of a yield stress in the last equation above, although
this might necessitate going back to a discrete layered system. This modification
might produce a chaotic release.

3 Crack models
There is a large literature on crack propagation in different materials, e.g. cracks in
purely elastic materials and cracks in Newtonian viscous fluids. A major difficulty
is to decide on the mechanism by which the cracks become longer.
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3.1 Inflating crack
The video showed individual bubbles growing until some merged, which grew further
in the form of a crack. The crack expanded in width through the addition of more
gas from the sludge. Occasionally the length of the crack increased by jumping to
the next bubble adjacent to the tip. We suppose that this jump occurred when the
stress at the tip exceeded the yield stress.

Let the half-length of the crack be 1 and its half-width w. Let the gas pressure
inside the bubble be Pg, and the hydrostatic pressure in the sludge far outside the
crack be Ps. Now because the crack grows from a slit and because the pressures
inside and far outside are constant, the bubble will take an ellipsoidal form

X2 + y2 z2
[2 + w2 = 1.

Its volume is therefore ~lIPW. Standard elasticity theory relates the width to the
pressure excess

2l Pg - v,w - - ~=----=-...,..
- 11" Iis(1 - v)"

where J-Ls is the elastic shear modulus and v is the Poisson ratio. Pure sludge will
be effectively incompressible, u = 0.5, but once there are sufficient bubbles in the
sludge, one should include an effect from the compressibility of the gas 8(1/pg)/8p
multiplied by the volume fraction of the bubbles and cracks in the sludge.

The cracks grow by the diffusion of gas from the sludge. If Q is the mass of
gas produced per unit time per unit volume of the sludge, and if J is the distance
between cracks (estimated earlier to about 3 cm) then there will be a mass flux of
gas into the cracks of QJ per unit surface area. With a surface area of 211"[2, the
growth of the mass of gas in the cracks is given by

As the width of the crack grows, stress will build up at the tip of the crack. If
we assume that the tip of the crack is a bubble of radius a, the tensile stress at the
tip is

2(pg - psh/(l/a).
When this exceeds the yield stress Ty, the tip of the crack will jump forward to the
next bubble. This will increase the volume of the crack and so decrease the gas
pressure inside it. The crack will therefore pause at the new size, waiting for gas to
inflate it further.

We can smooth out the jumping to find the approximate evolution of the size
of the crack with time. We first assume that the difference in pressures remain just
below critical value for the tip to yield. Substituting this value into the expression
for the width of the crack, we find

W =
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While the difference in pressures is important for the width of the crack, it is likely
to be small absolutely, except near the top of the tank. Thus to calculate the density
of the gas P» from the gas law, we can take the gas pressure pg to be constant in
time, equal to the hydrostatic pressure p, in the sludge. Using this, together with
the above expression for the width of the crack, the equation for the mass increase
of the crack can be integrated to give

Thus the length of the crack grows quadratically in time. Taking pg.l Q = 3 years,
o = 10 cm, a = 1mm, and guessing Ty = J..L,(l - v), it will take 1year for the crack
to grow to 21 = 2 m long, at which time it will be about 2w = 6 cm wide and have
a volume of about 0.1 m".

3.2 Application
In the video the cracks grew fairly horizontally. This will have been due to the
side walls exerting a confining pressure, forcing the clay suspension to expand only
in the vertical direction. The stress in the bubbly clay suspension will thus be
anisotropic, the (negative) horizontal normal stress exceeding the (negative) vertical
normal stress. In such an anisotropic background stress, it is easier to open up the
material with horizontal cracks rather the vertical cracks. This argument may not
be appropriate to the sludge tanks which are much wider. The time-scales are
also much longer, so giving time for creep to relax the ani sot ropy (stress would be
isotropic in a fluid). One further observation is that the process of crack growth
in the bubbly sludge is by the tip jumping to a nearby bubble, which will not be
strictly horizontal. The cracks will therefore not remain strictly horizontal. The
study group were unable to determine whether the deviations from horizontal of the
cracks were likely to be significant in determining when the cracks were sufficiently
large to start to rise.

Once the cracks reach the critical height to be mobile (see section 1.1), they will
migrate to the top of the tank, collecting on their way any gas in cracks they pass
through (see section 2.2). The study group thought that after the passage of a crack,
the sides would seal together, although they might remain a weak point ready to
open up for the passage of subsequent crack/bubbles. It is possible that the suface
of a crack might not join perfectly everywhere, and this would leave a bubble to
grow in the future.

If a crack were to meet another crack before either were mobile, then one would
expect the smaller to empty into the larger, because it is at a higher pressure.

4 Conclusions
There are two simple conclusions from the porous medium and crack models. Firstly,
we expect gas to released from the sludge safely at a constant rate in small bubbles,
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typically 10cm in size. Equivalently, the height of the sludge should remain fairly
constant. This conclusion assumes that there is no seal or crust which stops gas
passing through any level (although PNNL point out that a seal could occur if, for
example, a rigid salt cake had its pores plugged by fines). One would worry about
the top layer drying out creating such a seal. Second and less happily, quite a large
mass of gas is probably stored under pressure in the lower levels of the sludge. It
would therefore be very unwise to stir up the sludge, releasing this mass.

Turning to the laboratory experiments in the video, some suggestions can be
made for future investigations. To test the idea that the hydrostatic pressure at
depth in the tanks means that there is a large mass of gas stored there, the ex-
periments could be run under pressure, and changes in gas released measured. A
complication might be that the rate of gas produced in the hydrogen peroxide re-
action might depend on pressure. Of course it is an open question how far this
reaction does model the production of gas by the nuclear decay. One would also be
interested in the effect of the aspect ratio of the container and the ratio of the yield
stress to the elastic shear modulus.

While the study group was considering how gas might percolate to the top sur-
face through a network of disk-shaped cracks, it received two visits by the creator
of Percolation Theory, J.M. Hammersley. Rather disarmingly, he said that we knew
nothing about percolation (by which he meant that very little has been rigorously
proven) and that it would take 6 months for a computer to produce an estimate (a
somewhat longer time-scale than that the study groups permit themselves). Per-
haps in this topic of utmost danger, we should keep in mind that we have established
nothing with any certainty. It would therefore be wise to monitor very regularly the
rate of release of gas, there being serious danger when it fluctuates (either up or
down!).

ADDENDUM

Crack bubble dynamics
When the yield stress of the sludge is high, the material resembles and behaves
like a wet clay soil, and its possible behaviour can be understood on this basis. In
particular, accumulation of Hz and formation of voids is similar to fracture initiation
and propagation in elastic materials.

Failure in soils is associated with a transition from elastic to plastic behaviour
on a critical surface called the yield surface, consisting of three parts: the Hvorslev
surface, the Roscoe surface, and the tension failure surface. It is the last which
concerns us here, and a simple expression describing failure on this surface is

T = C + pe tan 1jJ, (1)

where T is the shear stress, c is the cohesion, Pe is the effective pressure (or effective
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normal stress) and 'IjJ is the angle of solid grain to grain friction. The idea behind
(i) is that c represents the grain to grain adhesion (e.g. due to adsorption forces in
clays), while Pe is essentially the pressure transmitted through the soil grains, and
thus p, tan 'IjJ represents solid friction. If the shear stress (a measure of which may be
the second invariant of the deviatoric stress tensor) reaches the yield surface, then
plastic deformation occurs, so as to maintain the soil on the yield surface. Plastic
flow is thus not normally associated with viscous behaviour, which is more relevant
beyond the 'liquid limit' (when soils behave viscously). In order to be specific, we
focus on the concept of fracture in an elastic-plastic sludge, while realising that,
particularly at lower yield stresses, a viscoelastic law may be more appropriate.

Crack model
Consider a two-dimensional crack of width h and length 2i in an elastic medium. If
P is the excess pore pressure over the far field normal stress, then (if P is spatially
uniform) h is given by

h""' !!..(l2 - X2)1/2, (2)
J.l

where x is distance along the crack, and J.l is the shear modulus. The volume (per
unit width) of the crack is

v '"hi, (3)
and conservation of mass takes the form (if we adopt the perfect gas law P =
pRT/MH2 for H21 where MH2 is its molecular weight)

d [MH2 ] Jdt RT pV = 4 l,

where J is the mass flux of H2 diffusing to each side of the crack.

(4)

4.1 Crack tip propagation
The stress field at the tip of a crack is characterised by a square root singularity,

tc
G'" yf2nr' (5)

where r is polar distance from the crack tip, and K ('" p[1/2) is the stress intensity
factor. This local stress field is associated with stored elastic energy, which is released
as the crack propagates. The energy release rate (per unit length of crack) is C, and
is given by

f{2
C '" -. (6)

J.l

The Griffith criterion asserts that crack extension occurs if C is equal to the energy
R required for growth. For example, for a brittle material, this will be surface
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energy" thus growth will occur if G = 2,. In metals, however, the relevant energy
is plastic energy.

In order to specify the crack tip speed, we need to know the rate-limiting mech-
anism for energy transfer. For example, dynamic fracture propagation occurs if
G > R, when the excess energy generates kinetic energy in the medium. The re-
sultant crack speeds are on the order of the elastic wave speed. Subcritical crack
propagation (when G < R) can also occur, providing another energy transfer mech-
anism is available to make up the deficit. For example, stress corrosion in rocks and
ceramics is mediated by the diffusion of active chemical species.

Viscous separation

We postulate the following mechanism for determining crack tip propagation in
sludge. We conceptualise the material as consisting of solid grains separated by thin
viscous fluid films. The time required to separate two circular plates of radius dp/2,
initially a distance ho apart, is

37r1']d!
tsep ~ 64h6F' (7)

where F is the net separation force and 1'] is the viscosity. Identifying this with the
net separation stress CTsepvia F = 7rCTsepd;/4, we thus have

31']d2
t '" psep '" 216hoCTsep

We also interpret h5 as a measure of porosity via h5 ~ a;cf>/3, where cf>is the liquid
saturation, and the factor 3 represents a grain surrounded by six comparable films.
Finally, we associate the crack tip velocity with dp/tsep, where dp represents grain
diameter. Thus

(8)

(9)

and more generally (analogously to the general form for Darcy's law), we would
propose a crack tip velocity of the form

. dp1= -C(cf»CTsep, (10)
1']

where C(cf» is an 0(1) function of cf>. It may be possible to test this hypothesis
experimentally.

In the present instance, we suggest that the separation stress is p - T, where T

is the yield stress given by (1). The cohesion acts directly on the separating film,
while the frictional resistance P« tan 1jJ acts on the separating grains through grain
contacts.

9



Propagation rates
Measured speeds from the video were on the order of 10-5 m S-l (centimetres per
hour). If we suppose O"sep '" T '" 103 Pa, dp '" 10-5 m (10 microns), 1] = 10-3 Pa s,
then we have from (10), i '" 10 m S-l. It seems that the separation rate predicted
by this 'law' is much too rapid.

However, let us examine the model in greater detail. Equations (2), (3), (4) and
(10) are essentially

h "" pi ,
J-L

V '" hi,

(p~f) = 4RT Jl,
MII2

. d
l = 2C(cfJ)(p - T), (11)

1]

giving four relations for the variables h, p,l, V, J, which thus means a further rela-
tionship for J is necessary. We consider this below. We have

J-Lh J-LV
p '" 'T ""[2' (12)

thus

i=~C[~~ -T]. (13)

Now the implication of the large tip propagation rate is that I relaxes rapidly to a
stable quasi-equilibrium

(14)

and thus the crack tip propagation is in fact controlled by the slower diffusion of H2
to the crack. Specifically, (llh is now (with p~ T)

(15)

and, following the 1995 report (cf. equations (1.30), (1.31)), we estimate J from

VcR* ~ 4JI,

where R* is the volumetric production rate, and also

(16)

(17)

where ~c is the critical supersaturation. In fact, (16) determines the catchment
volume Vc, and (17) implies
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v ~ 4RT PIJD~c. (18)
MH2 T

These various simple relations, and their three-dimensional equivalents, are presum-
ably capable of fairly straightforward rejection (or not) on the basis of experiments,
e.g. (18) is a prediction for V, bubble volume, versus time, depending on yield
stress which may be used in (14) to give a prediction for crack length, 1, versus time.
They also form the basis for a more elaborate model involving crack populations
and drainage, i.e. a more elaborate model could have a population n, where n(V, t)
is the number of cracks per unit volume V. The model would then develop along
the lines of age-dependent population models so that V is given by (18), n is some
nucleation rate and they are linked by

an [V] an = [.]at + ar n, (19)

where [V] and [n] are unknown functions of these variables.
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