
Pattern Reduction in Paper Cutting

Greycon

1 Background

A large part of the paper industry involves supplying customers with reels of specified
width in specifed quantities. These 'customer reels' must be cut from a set of wider
'jumbo reels', in as economical a way as possible. The first priority is to minimize
the waste, i.e. to satisfy the customer demands using as few jumbo reels as possible.
This is an example of the one-dimensional cutting stock problem, which has an
extensive literature [1, 2, 3, 4]. Greycon have developed cutting stock algorithms
which they include in their software packages. Mathematically, the problem would
be stated

CUTTING STOCK

Input: positive integer J (the jumbo width), distinct positive integers rl,"" rs
(the various customer reel widths), and positive integers d1, ••• , a, (the quantity of
each customer width that must be produced).

Task: use as few jumbos of width J as possible to satisfy the demand for da customer
reels of width ra (for each a = 1, ... ,s).

-'-

A solution to CUTTING STOCK consists of a series of 'patterns', each corre-
sponding to a different (unordered) set of customer reels that may be cut from a
single jumbo. The solution also specifies how many jumbos must be cut according to
each pattern to satisfy all demands. Typically, the number of patterns in a solution
are in the range 5-30, with occasional large problems of up to 80 patterns. Each
pattern consists of 2-10 customer reels and is used for 1-1.5 jumbos.

Within the class of solutions having minimum waste, a secondary problem is to
minimize the number of different patterns needed. The motivation here is to reduce
the number of times that the knives have to be reset on the paper-cutting machine.
The specification now becomes
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PATTERN

Input: positive integer J, distinct positive integers rl,... ,rs and positive integers
dt, ... ,ds.

Task: find a minimum-waste solution to the corresponding instance of CUTTING
STOCK, which further minimizes the number of patterns used.

The problem studied here is the second part of PATTERN, i.e. we assume that
a solution of minimum waste (or very nearly so) is given and the task is to refine it
by reducing the number of patterns, without increasing the waste.

It is convenient to express a collection of patterns in the form of an array P.
Each row (indexed by i, taking values 1, ... ,n) represents a single pattern, which
we shall denote Pi; each column (indexed by a, taking values 1, ... , s) corresponds
to a customer reel width. The entry Pia specifies how many times customer width
ra appears in pattern Pi. This array P is supplemented with a list of 'multiplicities',
Ci, giving the number of times each pattern is used.

There are two types of reduction that Greycon already implement in their soft-
ware. First, there are 2 -t 1 reductions, which replace two patterns Pi and Pj with
a single one Pi, This is possible whenever Pk can be found such that

A necessary and sufficient condition is

for all a.

Secondly, there are the so-called 3 -t 2 'staircase' reductions, which take three
patterns, of the generic form

'~

rl r2 r3 r4
1 1 0 0 c
0 1 1 0 d
0 0 1 1 c

and reduce them to

rl r2 r3 r4
0 1 1 0 c+d
1 0 0 1 c

Here the customer reel widths appear in the top row, and the pattern multiplicities
in the right most column. The condition for three patterns to be the subject of a
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3 ~ 2 staircase is that one of them should be completely 'covered' by the other
two, and these two must have equal multiplicity, i.e. Pja ~ Pia + Pka for all a,
and c, = Ck. It must also in general be checked that the patterns reached by the
reduction are feasible, in the sense that L:a raPia ~ J for all i. (Note that feasibility
is automatically guaranteed in 2 ~ 1 reductions.)

Greycon claim that 3 ~ 2 staircases account in practice for approximately 90%
of all 3 ~ 2 reductions. The other 10% are clear targets for new approaches. For
example, the following reduction, reproduced from Allwood and Goulimis [5]' is not
a staircase:

1200 1150 1100 1000 900 800
0 2 1 0 0 1 2
1 0 1 1 0 1 2
0 0 0 2 2 0 1

.!.

1200 1150 1100 1000 900 800
0 1 1 1 0 1 4
2 0 0 0 2 0 1

The remainder of the report presents the further contributions made by partic-
ipants in the Study Group. Having shown that the pattern reduction problem is
NP-hard (even when the cutting stock problem is easy), we go on to put forward pro-
posals for designing efficient heuristics, for which the computational budget imposed
by Greycon was 1 minute on a Pentium-based PC. Initial application to several test
problems is also described.

,,2 Computational Complexity

Before looking at the issue of pattern reduction, we first remark that the problem
CUTTING STOCK is NP-hard. To see this consider the problem

3-PARTITION

Input: a positive integer Band posit.ive integers al, ... , a3m such that B /4 < a, <
B /2 for each i = 1, ... ,3m, and such that L:i a, = mB.

Question: can the input be partitioned into m disjoint sets (which must necessarily
be triples) such that the sum of the a, in each set is equal to B?

If the a, are the various customer reel widths (appearing with multiplicities equal
to the corresponding demands) and B is the jumbo width, then 3-PARTITION asks
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whether there exists a solution of zero waste, and is therefore contained in CUTTING
STOCK. It is known to be strongly NP-hard (see, for example Garey and Johnson
[6], pp 96-100). Hence CUTTING STOCK is also NP-hard, and remains so even if
J is bounded by a polynomial in the number of customer reels demanded.

However, there are instances of CUTTING STOCK that are easy to solve. In
particular, suppose that all the customer reels satisfy Ta > J/3, so that no more than
two customer reels can be cut from a single jumbo. A minimum-waste solution is
generated by the 'First-Fit-Decreasing' rule. The first jumbo supplies a reel with the
largest width, together with a second reel if possible, of the largest width that will
fit; subsequent jumbos are cut in the same way, looking at the remaining demand.

Turning now to pattern reduction, each instance of PATTERN is clearly at least
as hard as the corresponding CUTTING STOCK instance, and so is generally NP-
hard. What is not so obvious is that PATTERN may remain hard even when
CUTTING STOCK is easy. Let 2-PATTERN be the same as PATTERN, but with
the restriction ra > J/3 for all a, so that the waste-minimization is easy.

Theorem

2-PATTERN is strongly NP-hard.

Proof

The proof involves constructing a reduction from 3-PARTITION to 2-PATTERN.
Given an instance of 3-PARTITION, construct an instance of 2-PATTERN with
4m different customer widths. Let J = 24m, with r, = Sm + i for i = 1, ... , 3m
and r3m+i = 12m + i for i = 1, ... , m. Thus there are 3m 'small' widths, with
J/3 < r, < J/2, and m 'large' widths, with r, > J/2. Moreover, any combination of
a small width and a large width fits in a single jumbo. Let the demands be d, = ai

for i = 1, , 3m (i.e. taken from the input to 3-PARTITION), and d, = B for
i = 3m + 1, ,4m. The total number of customer reels required is therefore 2mB.

,,< In this instance of 2-PATTERN, the minimum number of jumbos is mB, achieved
if and only if each pattern contains a large width and a small width. The number of
patterns in any such solution is at least 3m, since there must be at least one pattern
for each small width. A minimum-waste solution with 3m patterns exists if and only
if the corresponding instance of 3-PARTITION has a solution, and we have already
seen that this question is strongly NP-hard. 0

3 Systematic Searching for Reductions

The 2-PATTERN problem discussed above shows that even when all the patterns
that can appear in minimum-waste solutions are known, minimizing the number
of patterns can be nontrivial. (Note that the theorem shows that the problem is
NP-hard even when small integers are involved, in contrast to, say, the knapsack
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problem.) However, it is possible to systematically search for particular types of
reduction, of which the 2 -+ 1 and 3 -+ 2 staircase are examples.

With a little more effort, one can pick out all 3 -+ 2 reductions. Suppose that
there is a set of p 'available' patterns. (Ideally, this set will include all patterns
that appear in some minimum-waste solution, but in any case should represent
the most ecomonical ways of cutting a single jumbo.) Provided the customer reel
widths ra are all bounded below by a fixed fraction of the jumbo width J, p is only
polynomially large in the number of reel widths s. (None of the examples supplied
by Greycon had any ra less than J/16.) Now suppose that one has a (minimum-
waste) solution using n patterns Pt, ... , Pn• Run through all triples (Pi, Pj, Pk),

where i,j, k = 1, ... ,n with i < j < k and calculate the contribution fa that they
make to the total demand for customer width ra, namely

(1)

If any triple can be the subject of a 3 -+ 2 reduction, there are patterns Pa and Pb,

picked from the original set of p patterns, and an integer x satisfying 0 < x ~ t,
where t = c, + Cj + Ck, such that

fa = xPaCt + (t - x)PbCt (0' = 1, ... , s). (2)

There are O(n3) triples in the starting solution and O(p2) possibilities for (Pa, Pb).

However, the 3 -+ 2 reductions can be identified by examining fewer than O(n3p2)
cases: rewrite (2) as

(3)

and then for each choice of Pb and x, calculate the right hand side of (3), checking
whether it corresponds to a valid pattern. In other words, one has to examine only
O(n3pt) cases to compile all 3 -+ 2 reductions. Typically p rv 103, while n, t rv 101

and so this difference is significant.

The same idea can be applied to higher reductions. All m1 -+ m2 reductions could
be found by examining O(nmlpm2-1tm2-1) cases. However, for m2 > 2, exhaustive
searches of this sort are probably impractical in real problems.

4 A Possible Algorithm

Having studied small examples of the various types of pattern reduction that might
be important, it is possible to set about designing an algorithm that can be applied to
much larger problems. It should be capable of catching 2 -+ 1 and 3 -+ 2 staircase
reductions, but also more general possibilities. In addition, it should respect the
computing budget of 1 minute of Pentium time for typical real problems. This
section describes an initial implementation of one such algorithm, and also identifies
ways in which it might be further refined.
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Overview

The operation of the algorithm is summarized in the following remarks:

(a) The algorithm consists of a series of 'rounds'. Each round selects a pair of
patterns, say Pi and Pj, and makes a series of 'moves' in an attempt to make
them coincide.

(b) Each move involves a single interchange of customer reels between two of the
patterns in the current solution, and has the effect of bringing the patterns
Pi and Pj closer together by reducing the metric o(Pi, Pj) = L:a IPia - Pjal.
There are two distinct types of move:

(I) The patterns involved in the interchange are Pi and Pj themselves;

(11) The patterns involved in the interchange are one of Pi and Pj, and a
third, 'catalyst' pattern Pi:

(c) Each round finishes when no further moves reducing o(Pi, Pj) are possible. If
o(Pi, Pj) has been reduced to zero then a pattern reduction has been found.
Whether or not this has been achieved, a new pair (Pi, Pj) are chosen for the
next round.

Remarks

(1) The algorithm preserves all row and column sums in the table of patterns, and
so Pi and Pj must be chosen to have the same row sum, i.e. the same number
of customer reels, otherwise there is no possibility of making them the same.

(2) The patterns involved in each interchange of reels should have the same mul-
tiplicity, to preserve the quantity of each customer width produced. Hence if
c, =1= Cj then only type II moves are available.

(3) Type II moves are made only when no type I move is available.

(4) Checks are needed to ensure that interchanges do not produce infeasible pat-
terns, by substituting a large reel for a small one in a jumbo roll that is already
full or nearly full.

(5) If patterns Pi and P, (of the same multiplicity) can take part III a 2 ~ 1
reduction, this can be a.chieved by a sequence of type I moves.

(6) A 3 ~ 2 staircase reduction corresponds to a series of type II moves, in which
the two patterns with repeated multiplicity take part in the interchange, one
of them playing the catalyst to make the other two match.
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A small example

The following example shows how type I and type Il moves can work together to
effect a pattern reduction that would not be found by a 2 -+ 1 or 3 -+ 2 staircase
procedure. It is also not difficult to check that no further reduction is possible.

rl r2 r3 r4
3 2 0 0 1
0 3 2 0 1
0 0 3 2 1
2 0 0 3 1

rl r2 r3 r4
2 2 1 0 1
1 3 1 0 1
0 0 3 2 1
2 0 0 3 1

rl r2 r3 r4
2 2 1 0 1
2 2 1 0 1
0 0 3 2 1
1 1 0 3 1

It is assumed in this example that the customer widths are sufficiently close that
no infeasible patterns will be encountered (for example, taking ro: :s; J/5 for all a
will do). Initially, all pairs of patterns are equally unmatched, so (i,j) = (1,2)
is chosen arbitrarily. The first move is type I, swapping reels of widths rl and r3
between the first and second patterns. No further type I moves are then available.
The second move is type Il, with pattern P4 used as a catalyst. The interchange of
reels occurs between patterns P2 and P4, involving widths rl and r2.

Choices of implementation

Within the general framework outlined above there are various ways in which the
details may be implemented. Some of the choices to be made are the following:

(1) Subject to the constraint that Pi and Pj have the same row sums in each
round, their choice is arbitrary. However, it seems reasonable to choose them
to be already as closely matched as possible, since, intuitively at least, fewer
moves will then be required to reach a reduction. The initial implementation
calculates the Hamming distance, i.e. the number of customer widths ro: for
which Pia #- Pjo:, for each pair (i,j). It then chooses the first pair in the lexi-
cographic ordering of all pairs for which the minimum distance occurs. (The
lexicographic ordering is taken to mean (1,2), (1,3), ... , (1, n), (2,3), (2,4)' ... ,
where n is the current number of patterns.)

(2) If a round does not end in a pattern reduction then to avoid being caught in a
loop, the same (Pi, PJ pair must not be chosen in the next round. This could
be achieved by a tabu list (implemented in the initial version), or by some
random choice among the possible candidates.

(3) There is often freedom in choosing the reel widths involved in an interchange.
The input data generally lists the items in increasing or decreasing order of
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size, and the initial implementation simply takes the first possibility that does
not generate an infeasible pattern.

(4) There is no need to check for feasible patterns at each move, as initially imple-
mented. An alternative would be to check only when each reduction is made,
returning to the most recent feasible solution if the feasibility test fails. Al-
lowing the collection of patterns to become temporarily infeasible might open
up new possible reductions.

Possible refinements

The main shortcoming of the algorithm appears to be that it does not allow moves
between patterns of different multiplicity. As a result, it would miss some 2 -t 1
reductions (although these could easily be detected separately) and also examples
such as the non-staircase 3 -t 2 reduction given in Section 1. On the positive side,
it will catch all 3 -t 2 staircases, and also many n -t n - 1 reductions with n > 3.

However, there is no reason why the method should not be extended to allow
more moves. For example, the non-staircase in Section 1 can be effected by

1200 1150 1100 1000 900 800
0 2 1 0 0 1 2
1 0 1 1 0 1 2
0 0 0 2 2 0 1

-l-

1200 1150 1100 1000 900 800
0 1 1 1 0 1 2
1 1 1 0 0 1 2

., 0 0 0 2 2 0 1

-l-

1200 1150 1100 1000 900 800
0 1 1 1 0 1 2
0 1 1 1 0 1 2
2 0 0 0 2 0 1

Here the first move is performed by the current algorithm, but the second involves
an interchange (using widths 1200 and 1000) between patterns P2 and P3, which
have different multiplicities. When making such moves, the relative multiplicities
must be taken into account, in order to preserve the level of production of each
customer width.
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Finally, initial experimentation indicates that steps are needed to prevent the
algorithm entering a repeating cycle of moves that does not lead to a reduction. The
algorithm can be terminated by putting a very small limit on the maximum length
of the tabu list, but this is not satisfactory, since it sometimes leads to reductions
being missed.

5 Test Problems

Greycon provided several real problems, which have been used to make a preliminary
evaluation of the effectiveness of the proposed algorithm. The input to each problem
was a set of patterns generated by a waste-minimization algorithm accompanied by
preliminary pattern reduction, although we found that not all 2 -+ 1 and 3 -+ 2
staircase reductions had been made.

Some samples are given below, giving just the input and final output, together
with the number of moves used. Some of the lengths have been rescaled to reduce
the numerical values of the ror and J. Execution times were well within the allocated
computing budget, with typical problems requiring only a few seconds on a modest
PC.

The scope for pattern reduction seems sensitive to the waste percentage of the
input. If the waste percentage is small, say below 1%, then there are generally
few feasible moves available, but if the percentage approaches 5% then the possible
pattern reductions can be quite dramatic.

Problem 1

170 180 200 220 250 260 266
0 0 0 0 0 0 3 1
0 0 0 0 2 1 0 1
0 2 0 1 0 1 0 1
1 0 1 1 0 0 1 1
1 0 1 0 2 0 0 1

170 180 200 220 250 260 266
o
o
2

000 1
1 1 1 0
o 002

1 1 2
o 1 2
001

Jumbo size 870, 5.2% waste, 4 moves used
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Problem 2

850 900 1000 1100 1250 1270 1300 1330 1340 1345
0 0 0 0 0 0 1 2 0 0 2
0 0 0 0 0 0 0 3 0 0 1
0 0 0 0 2 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1 1 1
1 0 1 0 2 0 0 0 0 0 1
0 0 2 1 1 0 0 0 0 0 1
0 2 0 0 2 0 0 0 0 0 1
2 0 0 1 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 1
0 2 0 1 0 0 1 0 0 0 1

850 900 1000 1100 1250 1270 1300 1330 1340 1345
0 0 0 0 1 0 1 1 0 0 4
0 0 0 0 0 1 0 0 1 1 1
1 0 1 1 0 0 0 1 0 0 4
0 2 0 0 2 0 0 0 0 0 2

Jumbo size 4350, 5.5% waste, 5 moves used

Problem 3

This example is a case where no reductions were found. Lengths have been rescaled
by a factor of 50, giving J = 85.
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16 17 18 20 21 24 27 28 30 31 36 38 41 43 45
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 3
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 4
1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 3
0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3
1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 10
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 11
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 5
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 7
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 9
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 4
0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 2

Note that 12 of the 19 patterns completely fill the jumbo. Of the remainder, 5
patterns have length 84 and 2 have length 83. Overall, there is less than 0.2% waste.

Problem 4

This was the largest problem, involving 91 customer widths, ranging from 1500 to
2490 .. The jumbo width was 4340 (although it could be taken to be 4300 with-
out changing anything that follows), and so it is an example in which the first-fit-

" decreasing rule generates a minimum-waste solution. The initial solution supplied
by Greycon is given below by listing the two widths in each pattern, in preference
to the large, sparse matrix P. Overall, the waste is 4.1%.
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c, Pattern c, Pattern Ci Pattern
4 2480 1820 4 2460 1840 16 2450 1850
4 2430 1870 16 2420 1880 4 2410 1890
8 2400 1900 4 2380 1920 6 2300 2000
4 2260 2040 5 2250 2050 10 2490 1800
2 2480 1810 9 2380 1900 4 2340 1940
9 2180 2100 2 2460 1810 4 2290 1980
2 2190 2080 4 2480 1720 16 2330 1930
4 2300 1960 *6 2130 2130 4 2320 1670
4 2310 1970 * 4 2270 1980 11 2250 2000
4 2240 2010 2 2280 2020 4 2220 2030
1 2200 2050 16 2450 1780 11 2400 1830

* 10 2150 2080 5 2390 1830 2 2190 2020
7 2180 2030 4 2460 1790 4 2170 2030

* 6 2150 2050 4 2140 2060 * 4 2130 2070
4 2120 2080 4 2110 2090 * 4 2100 2100

10 2490 1700 4 2210 1980 4 2420 1760
16 2470 1680 16 2200 1950 4 2160 1990
4 2480 1660 4 2450 1690 6 2440 1700
5 2480 1650 4 2370 1610 4 2360 1740

16 2350 1750 7 2300 1800 17 2480 1600
4 2440 1640 1 2380 1700 16 2430 1630
4 2430 1620 11 2400 1650 * 4 2050 1980
4 2470 1520 6 2410 1580 16 2430 1530

16 2230 1730 16 2400 1500 14 2280 1590
1 2030 1500

The algorithm reduced the number of patterns from 73 to 70, using 5 moves and
leaving most of the originalinput unchanged. (Greycon subsequently revealed that
a solution using 61 patterns has been found by A. Diegel;thiswould provide a useful

" target for any future algorithm refinements.) The seven patterns marked with an
asterisk are those involved in some move of the reduction. Hence, in the matrix
notation, the reduction may be condensed down to
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1980 2050 2070 2080 2100 2130 2150 2270
0 0 0 0 0 2 0 0 6
1 0 0 0 0 0 0 1 4
0 0 0 1 0 0 1 0 10
0 1 0 0 0 0 1 0 6
0 0 1 0 0 1 0 0 4
0 0 0 0 2 0 0 0 4
1 1 0 0 0 0 0 0 4

1980 2050 2070 2080 2100 2130 2150 2270
0 0 0 0 0 1 1 0 16
1 0 0 0 1 0 0 0 8
0 1 0 1 0 0 0 0 10
0 0 1 0 0 0 0 1 4

6 Summary

Greycon's initial presentation to the Study Group posed several questions, which
are listed below, along with (partial) answers arising from the work described above.

(1) Given a minimum-waste solution, what is the minimum number of
patterns required?
It has been shown in Section 2 that even when all the patterns appearing
in minimum-waste solutions are known, determining the minimum number of
patterns may be hard. It seems unlikely that one can guarantee to find the
minimum number of patterns for large classes of realistic problems with only
a few seconds on a PC available.

(2) Given an n -+ n - 1 algorithm, will it find an optimal solution to the
minimum- pattern problem?
There are problems for which n -+ n - 1 reductions are not possible although
a more drama.tic reduction is. For example, suppose there are three customer
widths, all slightly smaller than J/3. Then

1'1 1'2 1'3
2 0 1 1
1 2 0 1
0 1 2 1

may be reduced to
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but there is no set of two distinct patterns satisfying the same demands.

(3) Is there an efficient n -t n - 1 algorithm?

In light of Question 2, Question 3 should perhaps be rephrased as 'Is there an
efficient algorithm to reduce n patterns?' However, if an algorithm guaranteed
to find some reduction whenever one existed then it could be applied iteratively
to minimize the number of patterns, and we have seen this cannot be done
easily.

(4) Are there efficient 5 -t 4 and 4 -t 3 algorithms?

(5) Is it worthwhile seeking alternatives to greedy heuristics?

In response to Questions 4 and 5, we point to the algorithm described earlier,
or variants of it. Such approaches seem capable of catching many higher
reductions.

(6) Is there a way to find solutions with the smallest possible number
of single patterns?

The Study Group did not investigate methods tailored specifically to this
task, but the algorithm proposed here seems to do reasonably well. It will not
increase the number of singleton patterns under any circumstances, and when
the number of singletons is high there will be many possible moves that tend
to eliminate them.

(7) Can a solution be found which reduces the number of knife changes?

The algorithm will help to reduce the number of necessary knife changes be-
cause it works by bringing patterns closer together, even if this does not pro-
ceed fully to a pattern reduction. If two patterns are equal across some of the
customer widths, the knives for these reels need not be changed when moving
from one to the other.

Contributors
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Notes added

(a) In the week following the Study Group, a paper [7] was presented at the C096
conference by a group from the University of Lisbon, which addressed some of
the issues discussed here.
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(b) The theorem in section 2 has been extended to the case J/3 < ra ~ J/2 for
each 0', so that no three customer reels fit on a single jumbo, but any two do.
The proof is considerably more complicated.
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