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1 Introduction

Microfluidics is a relatively new and fast growing research area in fluid mechanics.
The devices in question are thin wafers containing etched or printed interconnecting
channels through which fluids are pumped, which can mix and/or react at various
nodes to produce an output product. Microfluidic devices have applications in many
manufacturing and chemical detection processes. For example, they can be used to
manufacture monodisperse droplets with very well defined properties for pharmaceutical
applications; or form the basis for miniaturised ‘lab-on-a-chip’ sensor arrays for detecting
biological substances or toxins. The potential applications include pharmaceuticals,
biotechnology, the life sciences, defence, public health and agriculture (Ouellette, 2004).
An excellent review of the current state knowledge is given by Stone et al. (2004).

The particular problem posed by Unilever to the 49th European Study Group with
Industry concerns the formation and transport of droplets in an interconnected network
of microchannels. Two streams, one of oil and one of water, feed into the device network
and interact, producing oil droplets of a controlled size as the output. This problem in
microfluidics is closely related to multiphase transport in porous media (see the reviews
by Olbricht, 1995; Payatakes, 1982).

For manufacturing processes, Unilever wishes to parallelize massively a process such as
droplet formation with a large number of output channels producing droplets of equal
size. However, their experiments reveal that instabilities in the flow pattern lead to some
output channels containing single-phase flow or at least inconsistent droplet formation.
Unilever would like to understand what network design features lead to such behaviour.
A further related question is how to make such a network robust, in order that fouling
and blocking of one part of the system will not have catastrophic consequences on the
entire manufacturing process.

From our discussions with Unilever, we have attempted to address the following issues
in this report:

• The generalisation of Kirchhoff’s laws of mass conservation and momentum
(electric-circuit theory) to multiphase (immiscible) steady flows in complex
networks of channels and nodes.

• The sensitivity of instabilities to the tolerances of chip manufacture (principally
channel width). What tolerances are required to suppress these instabilities?

• Advice on design principles to give robustness to the network.
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Figure 1: A bubble flowing through a capillary tube highlighting
the Poiseuille flow upstream and downstream of the bubble and the
lubrication film between the bubble and the tube wall.

2 Droplet dynamics

A paper of fundamental importance to modelling the transport of droplets in micro-
channels is by Bretherton (1961) who studied the motion of bubbles in capillary tubes
(figure 1). It is assumed that a bubble with mean diameter much greater than that of the
capillary tube is immersed in a liquid and that there is an imposed pressure gradient.
Far upstream and downstream of the bubble the flow in the liquid can be modelled
as Poiseuille flow. In between the bubble and the capillary tube walls there will be a
thin layer of liquid. There are large forces associated with this thin lubrication layer and
there is a net pressure drop across the bubble which is proportional to Ca2/3, where Ca is
the Capillary number. Thus, Bretherton (1961) was able to show that the total pressure
drop within the capillary is the sum of a pressure drop associated with the Poiseuille flow
away from the bubble and a pressure drop due to lubrication forces near to the bubble.
Subsequently Hodges et al. (2004) has extended Bretherton’s work by examining the flow
around a viscous drop in a capillary. Hazel and Heil (2002), Wong et al. (1995a) and
Wong et al. (1995b) further extended the work of Bretherton by examining flow within
non-circular tubes, while Borhan and Mao (1992) considered the influence of surfactants.

Manga (1996) examined the dynamics of drops in branched tubes using a boundary
integral technique. He examined the case of a single tube branching into two tubes
and he showed that the likelihood of drops entering the high-flow-rate branch increases
as (i) the viscosity ratio between the drops and suspending fluid decreases, (ii) the
capillary number Ca increases, and (iii) the drop size increases. Stark and Manga (2000)
developed a model to track the motion of bubbles within a network of tubes of varying
radius. Their model included the effect of pressure drop within capillary tubes due to
both Poiseuille flow in the suspending fluid and due to the so-called Bretherton effect.
They also examined the effect of different nodal laws to specify the path taken by a
bubble at the junction between branching tubes. Manga (1996) developed a network
model to examine how the hydraulic conductivity of an interconnected network of tubes
is influenced by the presence of bubbles. Their model identified critical flow paths which
amplify fluctuations in the hydraulic conductivity and hence fluid flow.

The breakup of a droplet at a constriction in a capillary tube is of considerable relevance
to oil recovery and has been extensively studied by Payatakes (1982); Olbricht and
Kung (1992); Borhan and Pallinti (1999); Tsai and Miksis (1994, 1997) for example.
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Figure 2: Some challenging free boundary problems involving moving
contact lines between the oil (shaded) and water phases.

Tice et al. (2004) examined the influence of viscosity on the formation of droplets
in microfluidic channels while Anna et al. (2003); Gañán Calvo and Gordillo (2001)
showed how flow focussing (forcing a capillary jet through a narrow orifice) can lead
to monodisperse formation of bubbles and droplets. Song et al. (2003) and Thorsen
et al. (2001) examined microfluidic formation of droplets at T-junctions while Sugiura
et al. (2001) and co-workers have experimented with different microfluidic geometries to
develop monodisperse droplets.

3 Parameter estimation

A typical microfluidic channel in the network has a length of approximately L = 1 cm and
a width and height of around a = 100 µm. A typical flow rate of 1 ml/hr equates to a flow
velocity in such a channel of the order of 1 cm s−1. We take the dynamic and kinematic
viscosities for water as µw = 10−3 kg m−1 s−1 and νw = 10−6 m2 s−1. respectively. The
dynamic viscosity of oil is taken to be µo = 10−2 kg m−1 s−1 and the surface tension at
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the interface is assume to be roughly σ ≈ 50 dyn cm−1. From these values the Reynolds
number and Capillary number are calculated to be

Re =
U a

νw

∼ 1, Ca =
µwU

σ
∼ 10−2.

Clearly, surface tension effects are very dominant and this leads to some very interesting,
but difficult, free boundary problems at the nodes where the oil and water phases meet
(figure 2). Due to the time constraints of the Study Group week, we decided not to
tackle these problems directly, but instead to concentrate on developing a multiphase
(nonlinear) generalisation of an electric-circuit theory model. This is described in the
section below.

4 A network model

In this section we consider the flow in two model networks:

• A ‘Wheatstone bridge’ network, which has two inlets and two outlets, as illustrated
in figure 3. This network has just 8 links and 8 nodes and has been studied
experimentally by Unilever.

• A parallel mixing network, which has three inlets and m+1 outlets for some positive
number m, as shown in figure 4. This produces droplets from single phase inlet
flows, and is an example of a possible application of the technology. The network
has 8m + 5 links and 6m + 6 nodes. Water flows in through inlet node 2, whilst
oil enters through inlet nodes 1 and 3. The idea is that oil droplets in water are
formed at nodes 6, 11, . . . , 5m + 4, and that compound droplets of oil in water in
oil form at nodes 8, 13, . . . , 5m + 5.

The volume flow rates of oil and water in each of the j = 1, 2, . . . , L links are qoj and
qwj and the pressure at each of the i = 1, 2, . . . , N nodes is pi. Note that we will assume
that the pressure in each of the phases is equal. The effect of differing fluid pressures,
due, for example, to surface tension, could be included in the model at a later date.

We describe the network using an N × L matrix E. If the jth link connects the i1th
and i2th nodes, with i1 < i2, then the jth column of E has just two nonzero entries, −1
in the i1th row and +1 in the i2th row. The matrix E is therefore sparse with just 2L
nonzero entries. We measure flow rates in each link to be positive in the direction from
the i1th to the i2th node.

We will consider pressure-driven flows, which is more likely to be the arrangement used
in practice, with pressures prescribed at the I inlet and O outlet nodes and the inlet and
outlet flow rates to be determined.
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Figure 3: The Wheatstone bridge network. Bold face numbers refer
to links and plain numbers to nodes in the network.

4.1 Single phase flow

Conservation of mass gives
L∑

j=1

Eijqoj ≡ Eqo = 0, (1)

where Eij are the components of the matrix E and qo is a column vector with components
qoj.

If we assume that the flow in each of the links is laminar, the pressure drop across each
link is linearly related to the flow rate by

pi1 − pi2 ≡ −pE =
kjµoLj

r4
j

qoj , (2)

where p is a row vector with components pi, µo is the viscosity of the oil, Lj the length of
the jth link, rj a length representative of the cross-sectional length scale of the link and
kj a constant, dimensionless shape factor. For example, for laminar, Poiseuille flow in
a pipe of circular cross-section, kj = 8/π. We will assume that there is no pressure loss
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Figure 4: The parallel mixing network.
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across the nodes, although this could be included in the model. Note that the matrix-
vector multiplication form of (1) and (2) indicates that representing the network using
the sparse matrix E is a sensible approach.

There are N −O − I unknown pressures and L unknown flow rates, whilst conservation
of mass, (1), provides N −O− I equations, and the dynamical relation (2), L equations.
Equations (1) and (2) therefore provide a linear system of N − O − I equations and
N − O − I unknowns.

Rather than use the applied pressure as a basis for nondimensionalizing the system, we
will use the capillary pressure pc = 2σ/r due to a hemispherical oil/water meniscus of
radius r, with r a typical cross-sectional channel dimension. The reasons for this will
become clear in the next section. The flow rate due to this pressure drop in a channel of
length L is qc = 2σr3/kµoL, where k is a typical shape factor. Typically, pc ≈ 1000Pa
and qc ≈ 4× 10−10m3s−1, in line with the typical values given in section 3. We therefore
define dimensionless variables

p̂j =
pj

pc

, q̂oj =
qoj

qc

, (3)

in terms of which (1) and (2) become

L∑
j=1

Eij q̂oj ≡ Eq̂o = 0, (4)

p̂i1 − p̂i2 ≡ −p̂E = Rj q̂oj, (5)

where

Rj =
kj Lj r4

k L r4
j

(6)

is the resistance of the jth link. Equations (4) and (5) are equivalent to Kirchhoff’s laws
for an electrical network, with pressure difference equivalent to voltage difference, and
flow rate equivalent to current. It is well known that the linear equations (4) and (5)
subject to prescribed inlet and outlet pressures are linearly independent, and therefore
have a unique solution.

Figure 5 shows a typical solution for the Wheatstone bridge network illustrated in
figure 3, with unit resistance in each link, driven by unequal inlet pressures. We should
also note that if one of the inlet pressures is too low, the flow may reverse and flow out
through an inlet and possibly in through an outlet. For single phase flow, if we assume
that the outlets are attached to oil reservoirs at zero nominal pressure, this remains an
acceptable solution. The situation is different for oil/water flows, as we shall see.

4.2 Oil/water flow

If both oil and water flow into a network and mix, we are faced with all the usual
problems associated with multiphase flow (see, for example, Drew and Passman, 1999).
We need models for the forces that the two phases exert upon each other and upon the
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Figure 5: A typical solution for the flow of oil in the network shown
in figure 3.

channel walls. For steady flow, this amounts to knowledge about the rate at which one
fluid moves relative to the other, and the frictional pressure gradient in the channel. In
the work reported here, we make the simplest possible assumption, which is that the
fluids do not slip relative to each other, and that the frictional pressure gradient is linear
in the two fluid flow rates. Irrespective of these considerations, conservation of mass at
each node is given by

L∑
j=1

Eij q̂oj ≡ Eq̂o = 0,
L∑

j=1

Eij q̂wj ≡ Eq̂w = 0. (7)

The linearity of the frictional pressure gradient can be expressed as

p̂i1 − p̂i2 ≡ −p̂E = Rj (q̂oj + µq̂wj) , (8)

where µ = µw/µo ≈ 0.1.

In pressure-driven flows, which we study here, we must also specify the pressure at I
inlet and O outlet nodes, as we did for single phase flow. However, at the inlet nodes
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we must also specify the composition of the incoming fluid to be either oil or water.
There are N −O− I unknown pressures and 2L unknown flow rates, whilst conservation
of mass (7) provides 2(N − O − I) equations, the dynamical relation (8) L equations,
and knowledge of the inlet composition a further I equations. The number of unknowns
therefore exceeds the number of equations by L−N+O. We can see where this imbalance
comes from by considering a simple network with I inlets and O outlets joined at a single
interior node. In this case N = I + O + 1 and L = I + O, so that L − N + O = O − 1,
and the number of extra equations required depends solely on the number of outlets.
The extra equations are required to specify how the fluid phases divide as they leave
the node. This conclusion applies in general to any internal node in a network. If the
flow leaves a given node through n links, then n− 1 extra equations must be applied at
that node. There is a simple, and plausible, way of obtaining these extra equations. We
calculate the total oil and water flow rates into the ith node, Qoi and Qwi, and deduce
the mean inlet oil fraction, αi = Qoi/(Qoi + Qwi). The new conditions are that the oil
fraction should be αi in each of the links where the flow is directed out of the node. The
key point is that once we have applied these equations in (n − 1) of the outflow links,
applying it in the remaining outflow link is not necessary by conservation of mass (7).
This means that these extra conditions, which we note are nonlinear, can be applied
at each node in the network without having to determine a priori which nodes have
more than one link with outflow. The “equal oil fraction” law agrees with the numerical
experiments of Stark and Manga (2000). Some of the constraints associated with trying
to apply different extra conditions are described later in section 6.

It was also felt that we should include the effect of an oil/water meniscus at junctions
where drops are formed. The capillary pressure due to such a meniscus is around 2σ/rj,
where σ is the surface tension. If the magnitude of the pressure drop across the link is less
than this, no flow occurs. We can build this into the model by including an additional
pressure loss in links where we know a priori that the fluid is exiting into a single phase
flow of the fluid that does not form the continuous phase. We rewrite (8) as

p̂i1 − p̂i2 ≡ −p̂E = Rj (q̂oj + µq̂wj) + C sgn (q̂oj + q̂wj) for |q̂oj + q̂wj| > 0,

|p̂i1 − p̂i2| ≤ C for q̂oj + q̂wj = 0. (9)

Since we have nondimensionalized pressure on a capillary scale, we expect that C is
O(1), and in the following results, we have taken C = 1 when using this modified flow
law. In fact, we need to smooth out this discontinuous function to be able to use it in a
numerical solver. We used

p̂i1 − p̂i2 = Rj (q̂oj + µq̂wj) + Csgn (q̂oj + q̂wj)
(
1 − e−|q̂oj+q̂wj |/qsm

)
, (10)

with qsm = 10−4. There are other possibilities that could be used as dynamic laws instead
of (10), which are discussed in section 6.

In order to solve the nonlinear system of equations (7) and (10), along with specified
inlet and outlet pressures and inlet oil fractions (0 or 1), we used Newton iteration,
implemented as a MATLAB function. The version of the code that solves for the parallel
mixing network is fully annotated, and listed as appendix A. It should be noted that the
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code could be made much more efficient by reusing the Jacobian to give a quasi-Newton
method, but we have not pursued this here. Even for a parallel mixing network with
m = 100, the largest system tackled here, the solution can be obtained in about 15
minutes on a 2.8GHz Pentium IV PC.

Before presenting some results, we should note that for both types of network, whether
or not the effect of oil/water menisci was included, we found no numerical evidence for
non-uniqueness of the solution. When we started by finding the solution for either single
phase oil, single phase water or an oil fraction of 0.5 in each inlet, and then used this as
the initial guess for the situations described below, the solution to which the iteration
converged was always the same. We have not, however, attempted to prove that the
solution is unique, although this is an interesting problem.

4.3 Results for the Wheatstone bridge network

In figure 6 we show the solution when single phase oil enters through node 1 and single
phase water through node 2. Mixing therefore occurs at nodes 4 and 6, but, to begin
with, we have not included the effect of the oil/water meniscus in links 4 and 5 (see
figure 3). In figure 6a, the outlet oil fraction is about 0.22 at node 7 and also, by
symmetry, at node 8. If we reduce the pressure at the water inlet, the water flow rate
decreases, as we would expect, until, when p ≈ 2.5, the water flow rate falls to zero.
Only oil then flows through the network, as shown in figure 6b. If we drop the water
inlet pressure further, node 2 becomes an outlet for single phase oil.

Figure 7 shows the analogous results when we include the effect of the oil/water meniscus
in links 4 and 5. As we would expect, the pressure losses across these links are higher
than those shown in figure 6, and the water inlet pressure can fall slightly more before
the flow rate of water falls to zero.

4.4 Results for the parallel mixing network

Figures 8 to 10 show the outlet flow rates and outlet oil fractions for parallel mixing
networks of various sizes. The effect of the oil/water meniscus in the appropriate links
(see figure 4) has been included. In addition, the inlet flow lines for the single phase
oil and water (links 7k − 6, 7k − 5 and 7k − 4 for k = 1, 2, . . . , m and 7m + 1, 7m + 2
and 7m + 3 in figure 4) have resistances 100 times smaller than that of each of the links
within the network. The reasons for this are discussed in section 5. In each network,
the flow rates decrease the further the outlet is from the inlet, as the driving pressure is
decreased by the frictional pressure drop. In addition, the outlet oil fractions decrease
along the network, since the oil outlet flow rates fall more rapidly than the water outlet
flow rates, as a consequence of the higher viscosity of the oil. As the number of outlets
increases, the outlet conditions appear to converge towards a form that is independent
of the number of outlets. This phenomenon could be investigated using an asymptotic
approach valid for large m, which could take the form of an effective medium theory, but
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Figure 6: Two solutions for the flow of oil and water in the network
shown in figure 3. In b), the inlet water pressure is too low to drive
any flow, and single phase oil leaves the outlet. If p2 < 2.5, single
phase oil would also be driven out of inlet node 2.
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Figure 7: Two solutions for the flow of oil and water in the network
shown in figure 3, including the effect of an oil/water meniscus in
links 4 and 5. In b), the inlet water pressure is too low to drive
any flow, and single phase oil leaves the outlet. If p2 < 2.25, single
phase oil would also be driven out of inlet node 2.
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we have not investigated this further here. We also found that if the inlet pressure was
too low, it was not sufficient to drive a flow through the network, as we would expect.

The outlet oil flow rates can be increased by increasing the pressure at the oil inlets.
However, for sufficiently high oil inlet pressures, the water is unable to hold back the oil,
which flows into the water inlet line through link 5 (see figure 4). This is illustrated in
figure 11. Once the inlet pressure at node 2 increases past 13.98, oil flows through node
5. Of course, in this case there is now no longer an oil/water meniscus in link 4, but
there is in link 5.

5 Stability of parallel microfluidic networks

As mentioned in the introduction, it may be necessary to operate many microfluidic
devices simultaneously, for example in order to obtain a high production rate of droplets;
or to test for the presence of many different chemicals at one time. Instead of utilising
a large number of self-contained microfluidic circuits, the component devices may be
connected in parallel, as shown in figures 4 and 12.

Microfluidic devices connected in parallel share a single fluid supply pump and other
supporting infrastructure. This greatly reduces the overall cost and physical complexity
of the system. However, the user can only control the behaviour of the network by
adjusting the fluid flow rate at the inlet, Qin, and the pressure at the outlet, pout. It is
important that each branch of the network should operate reliably with this low level of
control, even if the exact pressure-flow characteristics of the individual branches in the
network differ due to variations during the manufacture of the network. Therefore in the
following sections we consider how network design and device manufacturing tolerances
affect the performance of a massively parallel microfluidic network, and show how the
stability of networks can be improved.

5.1 A parallel array of nozzles

We will analyse a parallel array of nozzles shown in figure 12. This circuit could be
used for a simple droplet production process. The network is made up of N parallel
branches which are fed with fluid from a single low-resistance supply vessel, and drain
into a single large output vessel. Each branch contains a single nozzle, connected to the
main fluid supply vessel by a channel with resistance Ri, as described by equation (5).
The pressure-flow characteristics of the nozzles are represented by nonlinear resistances.
The pressure drop across the ith nozzle, ∆p

(f)
i , is related to the flux of fluid in the nozzle,

qi, by the expression
∆p

(f)
i = fi(qi) for i = 1, 2, . . . , N.

We now account for the small variations in the flow characteristics of the channels and
nozzles which result from the manufacturing process. We express the resistances Ri and
the functions fi(q) as the sum of the average values, R̄ and f̄(q) respectively, which are
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Figure 11: The outlet flow rates and outlet oil fractions for a parallel mixing network
with m = 50. The water inlet pressure is 10, as is the oil inlet pressure at node 3, whilst
the oil inlet pressure at node 2 is 13.98. For higher pressures at node 2, oil enters the
water inlet flow line through node 5.
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independent of i, and a small correction term which represents the variations between
the components:

Ri = R̄ + εR̂i , fi(q) = f̄(q) + εf̂i(q) for i = 1, 2, . . . , N , (11)

where 0 < ε � 1 is a measure of the manufacturing tolerance, and

R̄ =
1

N

N∑
i=1

Ri , f̄(q) =
1

N

N∑
i=1

fi(q) for all q.

Note that the definitions of R̂i and f̂i imply that

N∑
i=1

R̂i = 0 ,
N∑

i=1

f̂i(q) = 0 for all q.

The mathematical description of the system is straightforward. Conservation of mass in
the network requires

Qin =
N∑

i=1

qi. (12)

Because the input and output vessels are assumed to have a very low resistance to flow,
the total pressure drop across each branch of the network is equal to the difference of
the inlet and outlet pressures. Therefore

pin − pout = Ri qi + fi(qi) for i = 1, 2, . . . , N. (13)

We seek a solution of (11)–(13), to determine the qi and pin, using regular perturbation
analysis. We expand the fluxes, qi, and the inlet pressure in powers of ε:

qi = q
(0)
i + ε q

(1)
i + ε2 q

(2)
i + . . . (14)

pin = p
(0)
in + ε p

(1)
in + ε2 p

(2)
in + . . . (15)

Substituting these expansions into (11)–(13) and collecting the leading order terms, we
find

Qin =
N∑

i=1

q
(0)
i , (16)

p
(0)
in − pout = R̄q

(0)
i + f̄(q

(0)
i ). (17)

The leading order problem is solved by an even distribution of the fluxes between the
branches,

q
(0)
i =

Qin

N
, p

(0)
in =

R̄Qin

N
+ f̄(Qin/N). (18)
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At the next order, O(ε), the perturbations R̂i and fi(q) enter the analysis. Equations for

q
(1)
i and p

(1)
in are found by inserting the expansions (14) and (15) into equations (11)–(13)

and retaining terms of O(ε) only. We find

0 =
N∑

i=1

q
(1)
i , (19)

p
(1)
in = R̄ q

(1)
i + R̂i q

(0)
i + f̂i(q

(0)
i ) + q

(1)
i

(
df̄

dq

) ∣∣∣∣∣
q=q

(0)
i

. (20)

Solving equations (19) and (20), we obtain

q
(1)
i = −R̂i Qin/N + f̂i(Qin/N)

R̄ +
(

df̄
dq

)∣∣∣
q=(Qin/N)

, p
(1)
in = 0. (21)

Combining the leading order solution, (18), and the first correction, (21), we have shown
that the flux in the ith branch of the network is described by

qi =
Qin

N
− ε

R̂i Qin/N + f̂i(Qin/N)

R̄ +
(

df̄
dq

)∣∣∣
q=(Qin/N)

+ . . . , (22)

=
Qin

N
− (Ri − R̄) Qin/N + (fi(Qin/N) − f̄(Qin/N))

R̄ +
(

df̄
dq

)∣∣∣
q=(Qin/N)

+ . . . . (23)

Equation (23) shows that the differences between the fluxes in the ith branch and the
average flux q̄ = Qin/N depends on (Ri − R̄) and (fi(q) − f̄(q)), as expected. However,
(23) also shows (qi − q̄) may be reduced by making the average channel resistance, R̄,
large. This occurs because the fluid flow divides between the branches according to the
overall flow resistance of the branch. By increasing R̄, the deviations in the resistance of
the channels and nozzles become small compared to the overall resistance of the branch,
and their effect on the division of the flow will be also small. However, it may only
be possible to increase the mean resistance R̄ of the vessels whilst keeping errors R̂i

of the same order of magnitude by lengthening the channel (not by narrowing). Such a
requirement of long input channels may create some difficulties in compact device design.

We can also consider the effect on the network operation of blocking some branches of
a parallel network. If a proportion p (0 ≤ p ≤ 1) of the channels become blocked, the
change in the flux per channel will be

∆q̄ =
Qin

N
− Qin

N − pN
(24)

=
Qin

N

(
p

1 − p

)
. (25)

Thus the change in the average flux per channel due to channel-blocking events decreases
as N → ∞. Therefore channel blocking will cause less disruption to the operating regime
of the remaining open channels if N is large.
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Figure 12: The parallel array of nozzles, analysed in Section 5.1.
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6 Further comments

6.1 Imposing other nodal conditions

pin

p̂

p̄

πRin

R̂

R̄

Qo, Qw

Qo, q̂w

0, qw

Figure 13: Imposing other nodal laws: the case when all oil droplets
enter the same preferential outgoing channel.

In the derivation of our two-phase network model in section 4.2, extra conditions were
required at nodes where flow splitting occurs, to specify how the phases divide as they
leave the node. For the subsequent calculations, the simple condition of equal oil/water
fraction into each outgoing channel was used. However, the work of Manga (1996) reveals
that the equal oil/water fraction is an oversimplification of the droplet dynamics at a
bifurcation. Indeed, droplet size and structure, viscosity ratio, capillary number as well
as the network vessel properties themselves all have the ability to alter the proportion
of droplets entering a particular outgoing channel at a junction.

A natural question to now ask is: can other nodal conditions be imposed in our network
model? To test such an idea, we examine whether a nodal law for which every oil droplet
is drawn down a single outgoing channel will lead to a consistent set of equations. For
simplicity, we take a single bifurcating node (figure 13) where the incoming flow is a
mixed phase of oil droplets and water. The upstream and downstream pressures pin, p̂
and p̄ are set. The incoming oil and water volume flow rates are Qo and Qw respectively
and the ratio of the two is fixed. Without loss of generality, we assume the pressure
drop into the upper branch (pin − p̂) is larger than the pressure drop into the lower
branch (pin − p̄) and that all the oil droplets are thus drawn into the upper branch (our
new nodal condition). The resistances of the upstream mother vessel Rin, the upper

outgoing vessel R̂ and the lower outgoing vessel R̄ are known and the water phase splits
into volume flow rates q̂w and qw in the upper and lower outgoing vessels respectively.
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From the model in section 4, the following system of equations arises:

(pin − π) = Rin(µQw + Qo), (26)

(π − p̂) = R̂(µq̂w + Qo), (27)

(π − p̄) = R̄µqw, (28)

Qw = q̂w + qw, (29)

where π is the internal pressure at the node itself. The first equation (26) is only required
to determine the magnitude of the incoming volume flow rates; any possible constraint
can be found from the other equations. Eliminating π from (27) and (28) and solving
for the water volume flow rate qw in the lower vessel, using (29), leads to

qw =
R̂

µ(R̂ + R̄)

(
µQw + Qo − (p̄ − p̂)

R̂

)
.

This solution is only physically sensible if the water volume flow rate into the lower
outgoing channel is less than the incoming water volume flow rate, qw � Qw. Otherwise,
water would have to be drawn in from the upper channel, leading to the water and oil
phases travelling in opposite directions there. Of course, qw < 0 is perfectly acceptable,
resulting in the lower outgoing channel feeding water into the mixed phase upper channel,
q̂w > Qw (so long as the lower outgoing channel is connected to a water reservoir).
Applying the inequality to the expression above leads to the constraint

R̂

µR̄

(
Qo − (p̄ − p̂)

R̂

)
� Qw.

This constraint only allows oil droplets to all take the same channel out of the node if

• the pressure drop in the oil-laden channel is large enough compared to other
outgoing channel (possibly reversing the flow in the other outgoing channel for
instance);

• the resistance in the oil-laden channel (R̂) is much lower than the other outgoing
channel;

• the viscosity ratio µ is close to unity;

• the oil fraction is not too large (Qo < µQw appears to be a reasonable rule-of-
thumb).

Whilst we have approached the nodal condition and necessary constraint from a network
point-of-view, it is worth noting that some of these observations above are similar to those
made by Manga (1996) in terms of droplet dynamics and channel selection.
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6.2 Alternative laws for the flow dynamics in the channels

Our network model is presently based on no-slip between the two phases, leading to a
linear relationship between pressure and volume flux through a vessel. For single-phase
carrying vessels this relationship is perfectly valid, but for mixed-phase channel flow large
slip forces and nonlinear pressure-flux relationships must be considered. One example is
that of Bretherton (1961), which applies to long bubbles (of volume exceeding 4πr3/3
where r is the cross-sectional radius of the vessel itself) where the viscosity of the bubble
can be neglected. In this case, the pressure-flux relation resembles (Stark and Manga,
2000)

Q ∼ ∆P −
∑

bubbles
∆Pb(Q),

where Q is the mass flux, ∆P is the pressure drop across the vessel and ∆Pb is the
pressure drop across each bubble, which is proportional Ca2/3. In fact, the work of Wong
et al. (1995b) in polygonal capillary channels suggests in certain regimes the pressure-flux
relation ∆P ∼ Q2/3. Future extensions to the network model could accommodate this
behaviour depending on the oil fraction, capillary number, etc. However, it is important
to note that these analyses may predict well the behaviour of gaseous bubbles inside a
liquid phase, but not oil droplets, as their internal viscosity is likely to have a significant
effect (see Hodges et al., 2004, for details).

7 Conclusions

By assuming no-slip between the two-phases, Kirchhoff’s laws, which form the basis
of electric-circuit theory, can be generalised to model two-phase flow in a microfluidic
network of channels. For a network of N nodes and L links (channels), of which I nodes
are inputs with pressure and phase composition specified and O are output nodes with
pressure specified, L − N + O extra equations are required to explain how the phases
divide at nodes. These equations must remain consistent with mass conservation of each
phase, possibly leading to constraints. The simplest consistent condition to impose at
the dividing nodes is that the volume fraction of each phase remains equal in each of the
outgoing channels. For n-phase flow, it is straightforward to extend this network theory,
imposing only one momentum equation in each channel, leading to (n − 1)(L − N + O)
extra equations being needed. As with two-phase flow, imposing an equal volume fraction
in each of the outgoing channels for each phase leads to a complete system consistent
with mass conservation of each phase (proof by induction). Preliminary results for a
Wheatstone bridge and parallel-mixing network have been obtained, although no non-
uniqueness in the flow field has been found.

On the issue of network stability, we have shown that by making the overall resistance of
the branches of a parallel network of microfluidic devices large relative to the expected
variation of resistance between the branches, the division of the fluid flow across the
network will become more uniform. This will allow consistent operation of the nozzles
(or other components) in all branches of the network. Due to manufacturing tolerances,
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however, this may only be possible by building long feeding channels, which will prove
difficult to fit on to a compact device. We have also shown that large parallel networks
are more resilient than small networks to blockages of some network branches. Overall,
our work suggests that large parallel networks offer good prospects for boosting the
efficiency and reliability of microfluidic circuits.

Microfluidics is clearly an important and growing area of research with many exciting
questions to be answered. At present, we have only had time to examine steady network
flow. The possibilities to look at unsteady drop formation at nodal junctions and the
associated pressure rises and falls over time, which generate feedback through the system,
appear some of the exciting challenges for the future.
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A MATLAB code to solve for flows in the parallel

mixing network

function [qw, qo] = networkm(m0, alphain0, pin0, valvesin, cont)

% NETWORKM: calculates flow in a parallel mixing network of m0 units.

% The output arguments qw and qo are the m0+1 outlet water and oil

% volume flow rates. There are three inlets with pressures pin0 and

% oil fractions alphain0, and m0+1 outlets at zero pressure.

% If cont==1, use initial guess saved in file networkmdata.mat, as

% provided by the previous run of networkm. If valvesin==1, the

% effect of menisci in the appropriate links is included.

% The water/oil viscosity ratio, mu, the link resistances, R, and

% index numbers of the links that have menisci, valves, are specified

% internally. If the solution cannot be obtained directly, calculate

% the flow for single phase inputs, then set cont=1, and try the

% required values.

global N L e I O alphain pin pout mu R n valves m

if (length(alphain0)~=3)|(length(pin0)~=3)|(m0<1)|...

(any(alphain0>1))|(any(alphain0<0))

disp(’Incorrect input data’)

qw=[]; qo=[]; return

end

alphain = alphain0; pin=pin0;

m = ceil(m0); % number of repeating units

N = 6*m+6; % number of nodes

L = 8*m+5; % number of links

I = 3; % number of inlets

O = m+1; % number of outlets

n = 2*L+N-O-I; % number of unknowns

% The matrix l specifies the 2 nodes joined by each link.

l = zeros(2,L);

l(:,1) = [1; 4]; l(:,2) = [2; 5]; l(:,3) = [3; 7];

l(:,4) = [4; 6]; l(:,5) = [5; 6]; l(:,6) = [6; 8];

l(:,7) = [7; 8];

for k = 2:m

l(:,7*k-6) = [5*k-6; 5*k-1]; l(:,7*k-5) = [5*k-5; 5*k];

l(:,7*k-4) = [5*k-3; 5*k+2]; l(:,7*k-3) = [5*k-1; 5*k+1];

l(:,7*k-2) = [5*k; 5*k+1]; l(:,7*k-1) = [5*k+1; 5*k+3];

l(:,7*k) = [5*k+2; 5*k+3];
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end

l(:,7*m+1) = [5*m-1; 5*m+4]; l(:,7*m+2) = [5*m; 5*m+4];

l(:,7*m+3) = [5*m+2; 5*m+5]; l(:,7*m+4) = [5*m+4; 5*m+5];

for k = 1:m

l(:,7*m+k+4) = [5*k+3; 5*m+5+k];

end

l(:,8*m+5) = [5*m+5; 6*m+6];

% The sparse matrix e allows us to calculate pressure drops across

% links and total flow rates into nodes as a sparse matrix multiplication.

e=spalloc(N,L,2*L);

for i = 1:L

e(l(1,i),i) = -1; e(l(2,i),i) = 1;

end

pout = zeros(1,O); % outlet pressures

mu = 0.1; % water/oil viscosity ratio

R = ones(1,L); % link resistances

% inlet lines have low resistance

R([1:7:7*m-6 2:7:7*m-5 3:7:7*m-4]) = ...

0.01*R([1:7:7*m-6 2:7:7*m-5 3:7:7*m-4]);

valves = [];

if valvesin

% specify links with nonlinear valves

for k = 1:m

valves = [valves 7*k-3 7*k-1];

end

valves = [valves 7*m+1 7*m+4];

end

if cont

load networkmdata % load initial guess

if length(x)~=n

disp(’Stored data is not for this network’)

qw=[]; qo=[];

return

end

else

q = [(1-mean(alphain))*ones(1,L) mean(alphain)*ones(1,L)];

p = zeros(1,N-O-I); % simple initial guess

x = [q p];

end
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nitermax = 50; niter=0;

% Newton iteration to get solution

f0=f(x); nf = norm(f0); nf0 = 1e16;

disp(sprintf(’Initial error norm is %3.3g’,nf))

while (nf>1e-8)&(niter<nitermax)&(nf<nf0)

nf0 = nf; J = jacobian(x,f0);

if isempty(J)

disp(’not physical’), return

end

dx = -J\f0’; x = x+dx’;

% Modify guess so that oil and water flow in the same direction

qw = x(1:L); qo = x(L+1:2*L);

for i = 1:L

if qw(i)*qo(i)<0

if abs(qw(i))<abs(qo(i))

qw(i) = -qw(i);

else

qo(i) = -qo(i);

end

end

end

x(1:L) = qw; x(L+1:2*L) = qo;

f0 = f(x); nf = norm(f0); niter = niter+1;

disp(sprintf(’New error norm is %3.3g’,nf))

end

if (niter<nitermax)&(nf<nf0)

qw = x(1:L); qo = x(L+1:2*L);

if any((qw(L-O:L)<0)|(qo(L-O:L)<0))

disp(’not physical’)

else

output(x); save networkmdata x

end

else

disp(’not converging’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function f = f(x)

global N L e I O alphain pin pout mu R valves

% extract pressures and flow rates and combine with inlet and outlet values

qw = x(1:L); qo = x(L+1:2*L);

p = [pin x(2*L+1:end) pout];
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f =(e*qw’)’; f = f(I+1:end-O);

% sum of water flow rates is zero at interior nodes

f1 =(e*qo’)’; f = [f f1(I+1:end-O)]; ]

% sum of oil flow rates is zero at interior nodes

f1 = -p*e-(mu*qw+qo).*R; % pressure loss proportional to flow rates

% add in the effect of the valves

qt = qw(valves)+qo(valves); % total volume flow rate

f1(valves) = f1(valves) - fvalves(qt);

f = [f f1];

for i = I+1:N-O

qw0 = e(i,:).*qw; qo0 = e(i,:).*qo;

qwplus = qw0(qw0>0); qoplus = qo0(qo0>0);

% flows into the ith node

qwminus = qw0(qw0<0); qominus = qo0(qo0<0);

% flows out of the ith node

Qw = sum(qwplus); Qo = sum(qoplus); % total flows in

alpha = Qo/(Qo+Qw+eps);

% associated oil fraction -- factor of eps to avoid 0/0

% check to avoid problems associated with zero flow rate

if length(qominus)<length(qwminus)

qominus = qo0(qw0<0);

elseif length(qwminus)<length(qominus)

qwminus = qw0(qo0<0);

end

f1 = qominus-alpha*(qominus+qwminus);

f = [f f1(1:end-1)];

% oil fraction equal to alpha in outlet links

end

f1 = qo(1:I)-alphain.*(qo(1:I)+qw(1:I));

% specify the inlet oil fraction

f = [f f1];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function J = jacobian(x0,f0)

global n L

% calculate the Jacobian associated with f0 at x=x0.

del = 1e-8; J = zeros(n,n);

dir = sign(sign(x0(1:L)) + sign(x0(L+1:2*L)));

dir = [dir dir ones(1,n-2*L)];

% we calculate dir to stop the perturbation of x0 changing the sign

% of a flow rate

for j = 1:n
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del1 = dir(j)*del;

x0(j) = x0(j)+del1;

f1 = f(x0);

if length(f1)~=n

J = []; return

else

J(:,j) = (f1-f0)’/del1;

x0(j) =x0(j)-del1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function output(x)

global pin pout L I O N e X Y m

% plot solution

qw = x(1:L); qo = x(L+1:2*L);

alpha = [];

for j=L-O+1:L

alpha = [alpha qo(j)/(qw(j)+qo(j))];

end figure(100),clf subplot(2,1,1)

plot(1:m+1,qw(end-m:end),’b-x’,1:m+1,qo(end-m:end),’r.-’)

legend(’water’,’oil’,-1),ylabel(’outlet volume flow rate’) XLim([1

m+1]),xlabel(’output number’) subplot(2,1,2),plot(1:m+1,alpha,’k.-’)

ylabel(’oil fraction’) xlabel(’output number’),XLim([1 m+1])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dp = fvalves(qt)

% the pressure drop in links with a meniscus

dQ = 0.0001; % a small factor to give almost a step function.

dp = sign(qt).*(1-exp(-abs(qt)/dQ));
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