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Abstract
Wavelets are used in many applications, including image processing, signal analysis and
seismology. The critical problem is the representation of a signal using a small number of
computable functions, such that it is represented in a concise and computationally efficient
form. It is shown that wavelets are closely related to filter banks (subband filtering) and
that there is a direct analogy between multiresolution analysis in continuous time and a filter
bank in discrete time. This provides a clear physical interpretation of the approximation
and detail spaces of multiresolution analysis in terms of the frequency bands of a signal.
Only orthogonal wavelets, which are derived from orthogonal filter banks, are discussed.
Several examples and applications are considered.

1 Introduction

The fundamental aim of signal processing is the construction of a set of basis (or more
generally expansion) functions that allow a concise, efficient and informative representation
of a signal. Clearly, the choice of basis functions depends on the signal; the Fourier basis
(complex exponentials) is usually satisfactory for smooth signals but it is poor if the signal has
discontinuities or has portions of both low and high frequencies. More specifically, since the
Fourier basis functions have infinite support in the time domain, they have poor time resolution
properties and therefore do not reveal the instants ti at which changes in a signal f(t) occur.
The short time Fourier transform (STFT) improves this situation by placing a window round
the exponential basis functions, thereby allowing individual portions of the signal to be analysed
and revealing more local information about the signal. The main disadvantage of the STFT is
that the width of the window is constant and must therefore capture information in both the
low and high frequency portions of the signal. A wavelet basis is superior because it can adapt
to local changes in the signal; narrow windows can be used in the high frequency regions of the
signal and wider windows can be used in the low frequency regions. The wavelet transform of
a function f (t) is the representation of f (t) in a wavelet basis, and the elements of the basis
are scaled and translated forms of a mother wavelet 'fjJ(t). .

It is shown that the calculation of the coefficients of the dilated and translated versions
of 'fjJ(t) in the representation of f(t) can be be performed recursively and implemented in a
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perfect reconstruction filter bank, that is, a filter bank in which the output is exactly equal to
the input. Two-channel filter banks are considered in section 2 and the conditions for perfect
reconstruction are derived. An orthogonal filter bank is a particular class of filter bank, and
the conditions for perfect reconstruction in this type of filter bank are obtained in section 3.

The multiresolution analysis of f(t) into nested subspaces is considered in section 4 and
it is shown that the equations that govern this wavelet decomposition of f (t) are identical to
the equations that define perfect reconstruction in an orthogonal filter bank. This analogy
between filter banks, whose input is a discrete signal, and the multiresolution analysis of the
continuous function f(t) allows the coefficients of the representation of f(t) in a wavelet basis to
be implemented in a filter bank. Several examples of the applications of wavelets are considered
in section 5.

Attention is restricted to orthogonal filter banks which lead to orthogonal wavelets,
and the Daubechies wavelets are the best examples of this class of wavelet. More general
biorthogonal filter banks have greater design freedom in the choice of filters that lead to perfect
reconstruction, and two multiresolutions are required, one for the analysis bank and one for the
synthesis bank.

2 Two-channel filter banks

A two-channel filter bank is shown in figure 1. It consists of two lowpass filters Ho and Fa, two
highpass filters H; and Fl, two downsamplers ..!. 2, and two upsamplers t 2. The downsamplers
remove all the odd-numbered samples, and the upsamplers insert a zero between every pair of
samples. The filters Ho and HI are called analysis filters, and the filters Fa and Fl are called
synthesis filters.
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Figure 1: A two-channel filter bank.

The input signal x = {x(n)} is separated into two frequency bands, a low frequency band
corresponding to the upper channel, and a high frequency band corresponding to the lower
channel. The signal in each band between the analysis and synthesis stages may be coded for
transmission or storage, and compression may occur in which case information is lost. Perfect
reconstruction requires that the analysis bank be connected directly to the synthesis bank, and
thus no compression occurs. The downsamplers improve the efficiency of the filter bank because
each channel carries only half the data (information); the exclusion of the downsamplers implies
that all the input goes into each channel, thus doubling the work that is performed by the filter
bank, but with no increase in information.

The analysis of the filter bank in figure 1 requires that the upsamplers and downsamplers
be formally defined. Thus if r = {r(n)}, s = {s(n)}, and t = {t(n)} then
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1. The nth component of r = (~2) t is the (2n)th component of t,

r(n) = t(2n). (1)

It is shown in [11J, chapter 3, that the a-domain form of (1) is

(2)

where R(z) and T(z) are the z-transforms of r and t respectively.

2. The nth component of s = (t 2) t is

s(2n) = t(n)
s(2n + 1) = 0, (3)

and the z-domain form of (3) is [11], chapter 3,

(4)

Although the filters Ho, Fo, HI and FI are linear and time-invariant, it follows immediately
from (1) and (3) that downsampling and upsampling are linear but not time-invariant. The
downsamplers and upsamplers create aliases and images respectively, and these are removed
by the filters. In particular, Ho and HI must be band-limited to lower and upper halfbands
respectively,

Ho(w) = 0

HI(w) = 0

if
7r
2 ~ Iwl < 7r

7r
o ~ Iwl < 2'if

to remove aliases. It is shown in the next section that the condition for perfect reconstruction
implies that the synthesis filters are defined by the analysis filters.

2.1 Perfect reconstruction

The conditions for perfect reconstruction in a two-channel filter bank are derived, and the
constraints that they impose on the coefficients of the filters are considered.

The input to the downsampler in the upper channel in the filter bank in figure 1 is
Ho(z)X(z) where X(z) is the z-transform of the input sequence {x(n)}, and thus it follows
from (2) that the z-transform of the output of the downsampler in the upper channel is

Uo(z) = (~2) Ho(z)X(z)

= ~ [Ho (A) X (A) +Ho (-A) X (-zt)],

and hence the output of the upsampler in the upper channel is, from (4),

Vo(z) = UO(z2)
1

= 2[Ho(z)X(z)+Ho(-z)X(-z)].

Similarly, the output of the upsampler in the lower:channel is

1VI (z) = - [Hdz) X (z) + Hd-z) X (-z)],
2
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and thus the z-transform of the output y = {y(n)} of the filter bank is

Y(z) = Fo(z)Vo(z) + FI (z)Vi (z)
1 1

= 2" (Fo(z)Ho(z) + FI (z)HI (z)] X(z) + 2" (Fo(z)Ho( -z) + FI (z)H1 (-z)] X( -z).

(5)

Equation (5) shows that Y(z) is a function of X(z) and X( -z), and since perfect reconstruction
requires that Y(z) = X(z), it follows that

Fo(z)Ho(z) + FI(z)H1(z) = 2,

Fo(z)Ho(-z) + FI(z)HI(-Z) = O.
(6)
(7)

Equation (6) is the condition for the absence of distortion and (7) is the condition for alias
cancellation, and the two equations define the conditions that must be satisfied by the filters
for perfect reconstruction. They can be stated in matrix form by making the substitution
z -1- -z, in which case they become

Fo( -z)Ho( -z) + FI (-Z)HI( -z) = 2,

Fo( -z)Ho(z) + FI (-z)HI (z) - 0,

and (6)-(9) can be combined to yield

(8)
(9)

[
Fo(z) FI(Z)] [Ho(z) Ho( -z) ] _ [2 0]

Fo ( - z) FI (- Z) HI (z) HI ( - z) - 0 2 ' (10)

or

(11)

where F m(z) is the synthesis modulation matrix and Hm(z) is the analysis modulation matrix.
The frequency domain forms of (6) and (7) are obtained by substituting z = eiw, and these
equations require that Fo(w = O)Ho(w = 0) = 2 and Fl(w = 7r)Hl(W = 7r) = 2. It follows that
the lowpass and highpass filters must be normalised so that

Ho(w = 0) = Fo(w = 0) = viz and (12)

It is noted that their more usual values are

Ho(w = 0) = Fo(w = 0) = 1

It follows from (10) that

detHm(z) = Ho (z)HI(-z) -HI(z)Ho(-z) = -detHm(-z),

and

and thus det Hm(z) is an odd function of z, It also follows from (10) that

[ ] 1 [ 0 ] [H1(-Z) -Ho(-z)]
Fo(z) F1(z) = det Hm(z) 2 -H1(z) Ho(z) ,

and thus
( ) _ 2Hl(-Z) F ( ) _ -2Ho(-z)Fo z - and I z - .

det Hm(z) det Hm(z)
If Ho(z) and HI(z) are finite impulse response (FIR) filters, then Fo(z) and Fl(Z) are also FIR
filters if det Hm(z) is of the form cz-l where l is an odd integer and c is an arbitrary constant.
The choice c = 2 leads to

and (13)
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and these definitions of the synthesis filters in terms of the analysis filters guarantee that the
alias cancellation condition (7) is satisfied. It is noted that the frequency domain form of (13)
is

Fo(w) = eiwl HI (w + 71') and FI(w) = _eiwl Ho(w + 71'),

and thus Fo(w) and FI(w) are lowpass and highpass filters respectively if Ho(w) and HI(w) are
lowpass and highpass filters respectively, as required.

The condition for perfect reconstruction can be cast in a more convenient form by
substituting (13) into (8), which yields

Po(z) + Po( -z) = 2, (14)

where

Po(z) = Fo(z)Ho(z), (15)

is the lowpass product filter. It follows from (14) that all the even coefficients, apart from the
constant coefficient. of Po(z) are zero,

n n

The design of a perfect reconstruction two-channel filter bank has been reduced to the following
three steps :

1. Design a lowpass filter Po(z) that satisfies (14). The design variables are the odd
coefficients of Po (z).

2. Factorise Po(z) into Fo(z)Ho(z).

3. Calculate the highpass filters from the alias cancellation condition (13).

There are several methods that can be used to achieve the first step, and the factorisation
in the second step is not unique because if Po(z) = n (z - (Xi), the assignment of the factors
z - (Xi to Fo(z) and Ho(z) must still be determined, and thus there is considerable scope for the
design of filters that satisfy additional properties. The next section considers the alternating
flip, which simplifies the design procedure because only the lowpass filter Ho(z) is designed
and the remaining filters are then defined from it. Furthermore, the alternating flip leads to
orthogonal filter banks.

2.1.1 The alternating flip

The alternating flip defines the coefficients hl(n) of HI(Z) in terms of the coefficients ho(n) of
Ho(z),

n=O ... N, (16)

where Ho(z) and HI (z) have N + 1 coefficients. Furthermore, N must be odd since it guarantees
double shift orthogonality between ho = {ho (n)} ~=o and hI = {hI (n)} ~=o,

N

L ho(n - 2k)hl (n) = 0,
n=O

(17)

for all integers k. It will be shown that this double shtft orthogonality provides the link between
perfect reconstruction in an orthogonal filter bank and multiresolution analysis.
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Example 2.1 If N = 5, then from (16),

ho = ho(O) ho(l) ho(2) ho(3) ho( 4) ho (5)
hI = ho(5) -ho(4) ho(3) -ho(2) ho(l) -ho(O),

and it is clear that
5 5 5

Lho(n)hl(n) = Lho(n-2)hl(n) = Lho(n-4)hl(n) =0,
n=O n=2 n=4

and thus (17) is satisfied for all the double shifts of a filter with six coefficients. However it is
readily verified that (17) not satisfied if N is even. 0

It follows from (16) that

(18)

in the z-domain, and

(19)

in the frequency domain, and thus HI(w) is highpass if Ho(w) is lowpass.
The simplifications in the design of a perfect reconstruction filter bank that follow from the

application of the alternating flip are obtained by substituting (18) into (13),

Fo(z) = zl-N Ho (z-I) ,

where both l and N are odd integers. The choice l = N yields Fo(z) = Ho (z-I) and thus the
lowpass product filter (15) is given by

Po(z) = Ho(z)Ho (z-I) , (20)

which must still satisfy (14). The frequency domain form of (20) is
-- 2Po(w) = Ho (w)Ho(w) = IHo(w)1 ,

and thus the frequency domain form of (14) is

(21)

Furthermore, it is easily verified from (19) that

(22)

HI (w) Ho (w) + HI (w + 71') Ho (w + 71') = 0, (23)

Ho (w) HI (w) + Ho (w + 71') HI (w + 71') = O. (24)

It is shown in section 3 that (21) is the fundamental design equation of an orthogonal filter
bank. Equations (22)-(24) follow directly from the alternating flip and therefore do not yield
extra information. However they are included because they will be referenced in section 3 where
it will be shown that the alternating flip leads to an orthogonal filter bank. Comparison of (15)
and (20) shows that the application of the alternating flip implies that Po(z) is a function of
Ho(z) rather than Ho(z) and Fo(z), and thus the design of an orthogonal filter bank reduces
to the design of the lowpass analysis filter Ho(z); the highpass analysis filter HI (z) is defined
by the alternating flip and the synthesis filters Fo(z) and FI (z) are defined by (13).
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3 Orthogonal filter banks
Equation (11) states that perfect reconstruction in an arbitrary filter bank is achieved if the
analysis bank is inverted by the synthesis bank. Restrictions on the class of matrices limit the
class of filters, and in particular, an orthogonal filter bank is derived by restricting Hm(z) to be
unitary, up to a scalar multiplier, on the unit circle in the z-plane. This leads to paraunitary
matrices, which are extensions of unitary matrices [16].

Definition 3.1 The matrix H(z) is paraunitary on the unit circle Izl = 1 if

for all w, (25)

where d is an arbitrary positive constant. This extends to all z :f: 0 by

HT (z-I) H (z) = H (z) H (z) = dJ. (26)

o
,

The positive constant d is included so that the analysis modulation matrix, for which d = 2,
can be constrained to be paraunitary. It follows from (25) that H(z) is paraunitary on the unit
circle in the z-plane, that is, in the frequency domain, and that its extension (26) to the rest
of the z-plane (apart from the origin) follows from z = z-I = e-iw if Izl = 1.

It follows from (26) that the analysis modulation matrix Hm(z) is paraunitary if

[
Ho (z-I) HI (z-I) ] [Ho(z) Ho(-z)] _ [2 0]

Ho (_z-I) HI (_z-I) H1(z) HI(-z) - 0 2 '

and since the right hand side is a multiple of the identity matrix, the order of multiplication on
the left hand side can be reversed,

[
Ho(z) Ho(-z)] [ Ho (Z-I) HI (z-I) ] _ [2 0]
HI(z) HI(-z) Ho (_z-I) HI (_Z-l) - 0 2 . (27)

The frequency domain form of (27) is

[
Ho(w) Ho(w + rr) ] [ Ho (w) HI (w) ] [2 0]
HI(w) HI(w + rr) Ho (w + rr) HI (w + rr) - 0 2 '

(28)

and thus (21)-(24) are reproduced. This establishes that if the synthesis filters are defined by
(13), then the alternating flip definition of the analysis highpass filter (16) necessarily leads to
an orthogonal filter bank.

It follows from (27) that

(29)

(30)

(31)

(32)

and it is seen that (32) follows from (31) by the substitution z ~ z-I. It is instructive to
consider the inverse z-transform of each of these equations because it will reveal the conditions
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that the coefficients of Ho(z) and HI (z) must satisfy in an orthogonal filter bank. It is adequate
to consider the general function

P(Z)Q(Z-l) + P( -z)Q( _z-l),

because the left hand sides of (29) and (30) are obtained by setting P(z) = Q(z). In particular,
if P(z) t-t p(n) and Q(z) t-t q(n), then

P (z) Q (z-l) + P (-z) Q (_z-l) t-t 2 2:p(n)q(n - 2k),
n

and thus the inverse z-transforms of (29)-(32) are

2:ho(n)ho (n - 2k) = 6(k),
n

(33)

(34)
n

2:h1(n)ho(n - 2k) = O.
n

(35)

These equations define the double shift orthogonality conditions, and their satisfaction
guarantees that the filter bank is orthogonal. Equations (33) and (34) are the normalisation
condition on the 2-norm of the coefficients, and (35) is exactly the same as (17), as expected.
It is important to emphasize that only (33) need be solved; the alternating flip necessarily
implies that if this equation is satisfied, then (34) and (35) are also satisfied. Although the
coefficient forms (33)-(35) are equivalent to the z-domain forms (29)-(32), the former are
preferred because it will be shown that the equivalence between multiresolution and perfect
reconstruction in an orthogonal filter bank is clearer.

Comparison of (10) and (27) shows that the synthesis filters are given by

and (36)

or
fo(n) = ho(-n) and

and thus the synthesis filters are anticausal if the analysis filters are causal. These results are
summarised in the following theorem.

Theorem 3.1 The coefficients of the filters in an orthogonal filter bank are given by

h1(n) = (-ltho(N - n),
fo(n) = ho( -n),
fI(n) = h1(-n).

n=O ... N,

The coefficients ho(n) satisfy the double shift orthogonality condition,

2:ho(n)ho(n - 2k) = 6(k).
n

o
Example 3.1 The simplest example of an orthogonal filter bank is obtained with

1
Ho(z) = y'2(1 + z-l),
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whose output is a scaled form of the moving average of the input, where the scale factor y'2 is
included to satisfy (12). The filter H1(z) is a scaled from of the moving difference,

1 -1H1(z) = y'2(1 - z ),

and the synthesis filters are, from (36),

1
Fo(z) = y'2(1 + z) and

These filters, which satisfy (33)-(35) trivially, give rise to the Haar wavelet. It is easily verified
that det Hm(z) = 2z-1, as required since N = 1. 0

Example 3.2 The coefficients

satisfy the double shift orthogonality condition (33). They define the Daubechies wavelet D4,
which is a member of the Daubechies family of wavelets. This family of filters and wavelets has
maximum flatness at w = 7r and therefore good approximation properties. It is easily verified
that det Hm(z) = 2z-3, as required since N = 3. 0

Theorem 3.1 shows that all the filters must be the same length (N + 1), but this may be a
disadvantage in some applications. This constraint is relaxed in biorthogonal wavelets, which
leads to greater design freedom. Furthermore, some applications require that the filter have
linear phase, which implies that the filter coefficients are symmetric or anti-symmetric, but this
property can only be achieved by a very restricted class of orthogonal filter, as shown in the
following example.

Example 3.3 Consider an anti-symmetric filter for which N = 5,

ho = ha (0) ha(1) ha(2) -ha (2) -ha (1) -ha (0).

Since this vector must be orthogonal to its shift by two and shift by four, it follows that

ha(0)ha(2) -ha(1)ho(2) = 0 and ha(O)ha(l) = o.

Since N = 5, it follows that ha(O) 1= 0, and thus ha(l) = 0, which implies that ha(2) = 0, and
hence only the first and last coefficients of the filter are non-zero. 0

The next section considers multiresolution analysis, which is defined for a continuous rather
than discrete function. It will be shown that a multiresolution analysis yields the double shift
orthogonality conditions (33)-(35), and this enables the link between subband filtering and
multiresolution analysis to be considered in greater detail.

4 Multiresolution analysis

Every measurement or observation is made on a particular scale, and this defines the amount
of information that is contained in the measurement. For example, when a distant object is
viewed, only the low level (coarse) detail can be observed and hence a small scale is used.
However as the distance between the observer and object decreases, higher level (finer) details
are observed and the scale increases. Another example of scale occurs in maps, for which a small
scale is used to cover a large area and thus local detail is absent, but as the scale increases,
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a smaller physical area is covered and more detail is included. These two simple examples
show that measurements can be made on different scales. Multiresolution is a mathematical
description of an object (measurement, image, etc.) in terms of scale, or level of detail.

The scale in which an object is viewed is intrinsically related to sampling a function f(t).
Specifically, if f (t) is sampled at 2j samples per unit time, the scale of the discrete signal f (n)
is defined because details that occur at a frequency that is higher than that specified by the
sampling theorem are not represented in f (n). However if the sampling frequency increases
to 2j+l, then finer detail can be captured in the discrete signal. The changes in detail that
occur as the sampling frequency changes must be defined quantitatively, and this leads to a
multiresolution decomposition of f (t).

4.1 Scale spaces

The relation between scale and detail is formalised by defining a subspace \tj c L2 (R) that
contains all functions fj(t) that are represented at a scale 2j, that is, functions that can be
reconstructed by sampling at 2j samples per unit time. Similarly, the subspace \tj+l contains
all functions f)+l(t) that can be represented at a scale 2)+1, and since the space \tj+l contains
functions tJ.fJ (t) that are not in \tj, it follows that there exists a detail space Wj such that

and \tj n Wj = {O} . (37)

where tJ.fj (t) E Wj. The zero intersection condition guarantees that only the zero vector lies
in both \tj and Wj. By definition, \tj C \tj+l, and this defines a family of nested subspaces,

.. , C V-2 C V-I C Vo C Vi C V2 .... (38)

Multiresolution decomposes a function f(t) into a sum of functions fJ(t) E \tj where each space
\tj is associated with a scale or level of detail. In particular, the recursive application of (37)
leads to

(39)

or in terms of functions,

fo(t) + tJ.fo(t) + tJ.ft(t) + tJ.fz(t) + ... + tJ.fJ(t) = fJ+l(t)· (40)

Equations (39) and (40) show that multiresolution analyses a signal f(t) in terms of a low
level approximation that lies in a space VD and successively finer details that lie in the spaces
Wb k ~ O. In the frequency domain, (40) states that the function fo(t) E Vo is a low frequency
approximation of f(t), and higher frequencies are added as more detail spaces Wj are included,
and thus the approximation of f(t) by fj(t) increases as j increases. This frequency domain
interpretation of scale spaces is shown in figure 2 for j = 3,

h(t) E V3 = V2$ W2
= Vi $ WI $ W2

= Vo$ Wo $ W1 $ W2·

It is seen that the function fo(t) E Vo has a lowpass frequency spectrum but that each of the
functions tJ.fj(t) E Wj has a bandpass frequency spectrum.

It follows from (39) that Wk is contained in \tj if k < j, and thus if it is assumed that Wj
is orthogonal to \tj, it follows that Wj is orthogonal to Wk :

\tj 1.Wj ::::::;.Wj 1.Wk. (41)

This condition implies that if fJ(t) is orthogonal to tJ.fj(t), then tJ.fj(t) is orthogonal to tJ.fk(t).
Two properties of the spaces \tj are obtained by considering changes of scale and translation

of a function fJ(t) E Vi :

10



(a)

frequency

(b)

.--------r----------+---------,--- ----,, ,, ,, ,
1 W2 V 2 V 2 W2l
, ,, ,

frequency

(c)

.-------,-------,-------1----------,---------------, ,, ,, ,, ,
, W 'W1: 2 :,,

W1: W2:, ,, ,, ,

frequency

(d)

--- --- --7-- --- ..- -- ---- -r----f----.- ..-----.-------,-------.
t I I I
I I I I
I I I I

W2 1 W 11 Wo Vo Vo Wo 1 W 1 i W2 i
I I I I

frequency

Figure 2: The frequency domain interpretation of multiresolution: (a) Vg, (b) Vg = V2 $ W2,
(c) V3 = VI $ W1 $ W2, and (d) V3 = Vo $ Wo $ W1 $ W2.

1. Consider the effect of a change in scale,

or more generally,

(42)

since scaling in time causes an inverse scaling in frequency,

. 1 (W)jet) f+ F(w) <==> j (2Jt) f+ V F V '

where F(w) is the Fourier transform of jet).

2. The translation of jj (t) to iJ (t - k) does not cause a change in the space Vi to which it
belongs,

(43)

because the translation of a function only causes a change in the phase of its Fourier
transform,

jet) f+ F(w) <==> j (t - k) f+ e-iwk F (w) .

The two extreme limits on the space Vi are obtained by considering j ~ ±oo.
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1. As j -t -00, the space Vj contains the constant function, and since Vj C L2 (R), the
constant function must be the zero function,

,lim V = {O}
)-+-00 )

or
00n Vj = {O}.

j=-oo
(44)

This is called the emptiness condition and implies that llfi(t)II -t 0 as j -t -00.

2. As j -t 00, all possible scales or levels of detail are contained in Vj and the completeness
condition,

Iim Vj = L2 (~)
)-+00

or Closure (900 Vi) ~ £' (IR) , (45)

is satisfied. The closure guarantees that the limits of all vectors in the subspaces Vj are
included [8], page 52. In particular, the union V-oo of all the nested subspaces Vj is not
the same as the space L2 (~) but is dense in L2 (~) since for every function f(t) E L2 (~),
there exists a function in V-oo that is arbitrarily close to f (t).

It follows from recursive application of (37) that

Vj+l = v., EB w., EB W-j+l EB··· EB Wj-1 EB Wj,

and the emptiness condition (44) and completeness condition (45) yield

00

L2 (~) = EB Wj.
j=-oo

(46)

It follows that if the orthogonality condition (41) of the subspaces Wj is satisfied, then these
spaces form an orthogonal decomposition of the space of square integrable functions.

This section has considered some properties that the spaces Vj must satisfy but there exists
one more requirement that must be considered for a complete description of a multiresolution
analysis. In particular, it is assumed that there exists a function cfJo(t) = cfJ(t) such that the
integer translates {cfJ(t - k) : k E Z} of cfJ(t) form an orthonormal basis for VG. It will be shown
that this enables an orthonormal basis for the space Vj to be developed.

These requirements of a multiresolution analysis are collected together in the following
definition.

Definition 4.1 A multiresolution analysis consists of a sequence of nested subspaces (38) such
that the following conditions are satisfied :

1. Scale invariance: Equation (42).

2. Translation invariance: Equation (43).

3. Emptiness: Equation (44).

4. Completeness: Equation (45).

5. There exists a function cfJo(t) = cfJ(t) such that {cfJ(t - k) : k E Z} is an orthonormal basis
of Vo. 0

The next sections consider the dilation and wavelet equations and the decomposition
relation, which enable expressions for cp(t) and an orthonormal basis for Wj to be developed.
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4.2 The dilation equation

The nested property of the subspaces Vj implies that if j(t) = 4>(t - k) E VD, where
{4>(t - n) : nE Z} is an orthonormal basis for VD, then j (2jt) = 4> (2jt - k) E Vj, and thus

(47)

is an orthonormal basis for Vj. The abbreviated notation

denotes the kth translate of the jth basis function. The scale factor 2t is included so that the
basis functions are normalised for all scales j and translations k,

By assumption, Vo "C VI and since 4>(t) E VD, it follows that 4>(t) E VI and thus there exist
constants c(n) such that

4>(t) = V2I: c(k)4>(2t - k).
k

(48)

This is the dilation equation, also called the two-scale or refinement equation because it relates
the basis functions at level j = 0 to the basis functions at level j = 1. It will be shown in
section 4.5 that the coefficients c(n) are exactly equal to the coefficients ho(n) of the lowpass
filter Ho(z) in an orthogonal filter bank, and thus the dilation equation must be solved for the
scaling function 4>(t) for given constants c(n). This equation is usually solved by the cascade
algorithm, which is an iterative method.

The equivalence between the constants c(n) and filter coefficients ho (n) is suggested by
considering the conditions that these constants must satisfy to guarantee that the functions
{4>ok(t)} = {4>(t - k)} are orthonormal. In particular, it follows from (48) that

4>(t - m) = V2I: c(k)4>(2t - 2m - k),
k

and hence

( 4>(t), 4>(t - m)) = i:4>(t)4>(t - m) dt

= 2 f,1 c(k)c(l) i:4>(2t - k)4>(2t - 2m -l) dt

= 2: c(k)c(l) 100 4>(t)4>(t + k - 2m - l) dt
k,l -00

= 2: c(k)c(l)o(2m + l - k)
k,l

= 2: c(l)c(2m + l).
I

(49)

Since the set of functions {.j;(t - k}} are orthonormal, it follows that

( cjJ(t) , cjJ(t - m) ) = L:c(k)c(k - 2m) = o(m),
k

(50)
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and thus the coefficients c(n) have double shift orthogonality, which characterises the conditions
on the coefficients of an orthogonal bank, (33)-(35). The full equivalence between orthogonal
filter banks and multiresolution will be established by considering the wavelet equation and
decomposition relation.

Equation (48) is obtained by considering Vo C Vi., but it is valid for all subspaces, that is,
Vj C Vj+I' This follows by making the substitution t -+ 2jt - m and multiplying both sides of
the equation by 2~,

2~<jJ(2jt - m) = 2i¥ L c(k) <jJ(2j+1t - 2m - k).
k

(51)

The function fj(t), defined by

fj(t) = L ajk<jJjk(t),
k

(52)

is the orthogonal projection of a function f(t) E Vm, j < rn, onto the space Vj. This projection
is a low level approximation of f(t), and it will be shown in section 4.6 that a fast recursion
enables the coefficients ajk in the space Vj to be calculated.

4.3 The wavelet equation

The derivation of the wavelet equation is similar to that of the dilation equation, except that the
space Vo is replaced by the space Wo. In particular, since Wo C VI, it follows that if'lj;(t) E Wo,
then 'lj;(t) E VI and thus there exist constants d(n) such that

'lj;(t) = V2L d(k) <jJ(2t - k).
k

(53)

It will be shown that the constants d(n) are equal to the coefficients of the highpass filter HI(z)
in an orthogonal filter bank, in the same way as the coefficients c(n) of the dilation equation are
equal to the coefficients of the lowpass filter in the filter bank. Thus the wavelet equation (53)
yields the mother wavelet 'lj;(t) directly from the scaling function. The condition (50) on the
coefficients c(n) arises from the orthogonality of the basis functions {<jJ(t - k)}, and similarly, a
condition on the coefficients d(k) can be deduced by imposing the orthogonality condition (41).
If the inner prod uct of both sides of (53) with <jJ(t - m) is taken, then following (49) identically,
the result

L c(k)d(k - 2m) = 0,
k

is obtained, and it is noted that this equation has the same form as (35). Although 'lj;(t) E Wo,
an orthogonal basis for Wo has not yet been developed, but the decomposition relation of <jJ(t)
and 'lj;(t) , which is considered in the next section, ensures that {'lj;(t - k) : k E Z} generates the
whole space Wo.

4.4 The decomposition relation

It follows from (37) that if {'lj;(t - k) : k E Z} generates the whole space Wo, there must exist
constants a(2k) and b(2k) such that

V2<jJ(2t) = L a(2k)<jJ(t - k) +L b(2k)'lj;(t - k),
k k

(54)
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is satisfied. The even indexed coefficients of the unknown coefficients are used because this
simplifies the following analysis. Let 2k -t 2k - l, in which case (54) becomes

and the substitution t -t t - ~ yields

V2CP(2t -l) = 2: a(2k -l)cp(t - k) + 2: b(2k -l)1jJ(t - k),
k k

(55)

and thus
1

( cp(t), cp(2t -l) ) = J2a( -l).

From the dilation equation,
1

(cp(t),cp(2t -l) ) = J2c(l),

and hence

a(l) = c(-l), (56)

which is the solution for the coefficients a(2k) in (54). The expression for the coefficients b(2k)
follows by taking the inner product of (55) with 1jJ(t),

V2( cp(2t -l), 1jJ(t) ) = 2: b(2k -l)( 1jJ(t- k), 1jJ(t) ),
k

and from the wavelet equation,

V2( cp(2t -l), 1jJ{t) ) = d(l),

and thus
d(l) =L b(2k -l)( 1jJ(t- k), 1jJ(t) ).

k

If 1jJ(t) is orthogonal to all its integer translates and normalised to unit magnitude, then it
follows from this equation that

b(l) = d( -l). (57)

Equations (56) and (57) are the solutions of the decomposition relation (54) if 1jJ( t) is orthogonal
to all its integer translates. The substitution of these solutions into (55) yields

V2cp(2t -l) = 2: c(l - 2k)cp(t - k) + 2:d(l - 2k)1jJ(t - k),
k k

and the transformation t -t 2j t followed by multiplication by 2j yields

2i.¥CP(2j+lt -I) = 2t 2: c(l- 2k)cp(2jt - k) + 2t L d(l- 2k)1jJ(2jt - k),
k k

which is the decomposition relation between levels j and j + 1, that is, Vj+l = Vj $ Wj. Thus
(54) has a s~tl~ion between levels j = 0 and j = 1 and hence there exists a solution between
any two levels. It follows that

(58)
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is an orthonarmal basis for the space Wj.

The substitution t ~ 2jt - m in the wavelet equation and multiplying both sides by 2t
yields

2t'IjJ(2jt - m) = 2i:p L d(k)q;(2j+lt - 2m - k),
k

which is a generalisation of the wavelet equation from Wo C Vl to Wj C Vj+ 1. This is equivalent
to (51), which is the dilation equation between Vj and Vj+l. The abbreviated notation

(59)

denotes the kth translate of the j th basis function. Since Wj.L Wk, it follows that

( .1.. (t) .1. (t)) = {1 if j = m and k = n
'l'Jk , 'l'mn 0 otherwise.

The implications on the wavelet equation of the orthonormality of the functions (58) must be
considered. Following the procedure in (49), it is easily shown that

( 'IjJ(t) , 'IjJ(t - m) ) = L d(k)d(k - 2m) = 6(m),
k

and hence the orthonormality of the basis functions (58) implies a double shift orthogonality
of the coefficients den).

Equation (46) shows that the spaces Wj form an orthogonal decomposition of L2 (R), and
thus there exist constants bjk such that

J(t) = L L bjk'IjJjk(t).
j k

(60)

The functions (58) are the wavelet basis functions at level i, and (53) shows that the mother
wavelet 'ljJoo(t) = 'IjJ(t) is derived directly from the wavelet equation. The physical interpretation
of (60) follows from figure 2, in which it is shown that each basis function in the set (58) has
a bandpass frequency spectrum, and thus the level of detail or approximation increases as j
increases. Finally, it will be shown in section 4.6 the coefficients bjk can be computed recursively
and quickly from the coefficients ajk in (52).

The next section combines the results on orthogonal filter banks and multiresolution
analysis, and this enables their equivalence to be considered.

4.5 Multiresolution and orthogonal filter banks

Three equations, the dilation equation, the wavelet equation and the decomposition relation
have generated three conditions on the coefficients c(n) and d( n). These conditions are
summarised and the identification of the coefficients c(n) and den) with the filter coefficients
b« (n) and hl (n) is established.

1. The dilation equation and the orthonormality of the functions {q;(t - k) : k E Z} :

L c(k)c(k - 2m) = 8(m).
k

(61 )

2. The wavelet equation and the orthogonality of the spaces Vo and Wo :

L c(k)d(k - 2m) = O.
k

(62)
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3. The decomposition relation and the orthonormality of the functions {'if;(t - k) : k E Z} :

L d(k)d(k - 2m) = o(m).
k

(63)

The link between orthogonal filter banks and multiresolution analysis follows directly by
comparing (33)-(35) and (61)-(63); both sets of equations involve a double shift orthogonality,
and thus the coefficients c(n) and d(n) in a multiresolution analysis are also the filter coefficients
in an orthogonal filter bank. Moreover, the alternating flip guarantees that if (33) is satisfied,
then it necessarily follows that (34) and (35) are also satisfied, and hence the alternating flip
can also be used to define the coefficients d(n) in terms of the coefficients c(n),

d(k) = (_l)kc(N - k), k=O ... N, (64)

where N is odd. The only remaining issue is the identification of c(n) with the lowpass filter
coefficients ha (n) rather than the highpass filter coefficients hI (n). Since a necessary (but not
sufficient) condition for the convergence of the cascade algorithm for the scaling function f/J(t)
is that the filter C(~) = Ec(k)e-iwk satisfies C(w = 7r) = 0, [11] page 234, it follows that the
coefficients c(n) must be identified with the lowpass filter, and thus the coefficients d( n) are
identified with the highpass filter.

4.6 The fast wavelet transform

It has been shown that a multiresolution analysis of a function requires two sets of spaces, the
approximation spaces Vi and the detail spaces Wj• A function in V;+I can be written as the sum
of a function in Vj and a function in Wj, and this process can be repeated in a recursive manner.
The function iJ-l(t) E Vi-I is a low level approximation to fj(t) E Vj, and it is necessary to
calculate the coefficients aj-I,k and bj-I,k from ajk. This calculation can be done in a fast
recursive manner called the fast wavelet transform (FWT), which is derived in theorem 4.l.
This is an analysis transform because it enables the coefficients of a low level approximation
of fj(t) to be calculated. By contrast, the inverse fast wavelet transform (IFWT) , which is
derived in theorem 4.2, is used for the synthesis of fj(t) from its low level approximations. It
will be shown that these recursions can be implemented in a filter bank in which the coefficients
ajk are generated by the lowpass filter with coefficients c(-n) and the wavelet coefficients bjk
are generated by the highpass filter with coefficients d( -n), that is, aniticausal filters are
required. Two important issues that must be considered for the implementation of the fast
wavelet transform are the initialisation of the recursion and the effect of signals of finite length.
Both these points will be discussed after the FWT and IFWT have been derived.

Theorem 4.1 A function

fj+l(t) = L aj+l,lf/JHI,I(t) E Vi+l = Vi $ Wj,
I

(65)

has coefficients ajk and bjk'

ajk = L c(l- 2k)aj+l,1
I

in the spaces Vj and Wj respectively.

Proof Consider the dilation equation (51),

and bjk = L d(l - 2k)aj+l,I,
I

(66)

f/Jjm(t) = L c(l - 2m)f/Jj+l,I(t).
I

(67)
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The equivalent equation that is derived from the wavelet equation is (59),

'l/Jjm(t) = L del - 2m)<pj+l,I(t).
I

The recursion for the coefficients ajk in (66) is derived by taking the inner product of both sides
of (67) with !J+l(t), which is defined in (65),

(68)

( !J+l(t), <Pjm(t)) = L e(l - 2m) ( !j+l(t),<Pj+l,l(t) )
I

= L e(l - 2m) ( L aHl,k <Pj+1,k(t), <PHl,l(t) )
l k

= L e(l - 2m) L aHl,k ( <Pj+1,k(t), <Pj+1,l(t) )
l k

= L e(l - 2m) L aHl,ka(k - l)
l k

= L e(l - 2m)aHl,l. (69)
I

The left hand side of (69) is simplified by using the decomposition of !J+1(t) E V;+1 into a
portion in V; and a portion in Wj,

!J+1(t) = L aj+l,I<PHl,l(t) = L ajl<Pjl(t) +L bjl'I/Jjl(t),
I I I

and since V; is orthogonal to Wj,

(70)

( !Hl(t), <Pjm(t)) = (L ajl<Pjl(t) +L bjl'I/Jjl(t), <Pjm(t) )
l I

= (L ajl<Pjl(t), <Pjm(t) )
I

= L ajla(l - m)
I

= ajm·

The combination of this result and (69) establishes the recursion (66) for the coefficients ajk.
The recursion for the wavelet coefficients follows identically, except that (68) is used instead of
(67). 0

The recursions (66) represent the convolution of {aH r} with the anticausal filters c(-n)
and d( -n), followed by downsampling, as shown in figure 3.

Theorem 4.2 The coefficients aj+l,l in (65) can be reconstructed from their values at lower
levels by

aj+l,l = L e(l - 2k)ajk +L d(l- 2k)bjk·
k k

(71)

Proof By definition,

<Pjk(t) = 2t<p(2jt - k)
ill= 2 2 L e(n) <p(2j+1t - 2k - n)

n

= L:c(n)<pj+l,2k+n(t),
n

(72)
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c (-n) ~
2

aj+1

d (-n) ~
2

a.
J

b.
J

Figure 3: The implementation of the fast wavelet transform as the analysis stage of a two-
channel filter bank.

and similarly,

V;jk(t) = L d(n) <Pj+1,2k+n (t).
n

(73)

The inner product of (70) with <Pj+I,m(t) and the application of (72) and (73) yields

L aj+l,l( <Pj+1,I(t), <Pj+l,m(t) )
I

= L ajl L c(n)( <Pj+1,21+n(t), <Pj+I,m(t) )
I n

+L bjl L d(n) ( <Pj+1,2l+n(t), <Pj+1,m(t) )
I n

= L ajl L c(n)6(m - 2l- n)
1 n

+L bjl L d(n)6(m - 2l- n)
I n

= L c(m - 2l)ajl +L d(m - 2l)bjl.
I I

The left hand side of this equation is aj+l,m and thus the result (71) is established. 0

The inverse fast wavelet transform (71) is implemented by upsamp ling {aj} and {bj} and
then filtering with, respectively, filters with coefficients c(n) and d(n), as shown in figure 4.

The combination of figures 3 and 4 shows that the approximation of fj+l(t) by fj(t), and
then its synthesis from fj(t) and 6.fj(t) is implemented by an orthogonal filter bank. More
importantly, the fast wavelet transform is implemented by a tree of filter banks, as shown in
figure 5. It is seen that the coefficients {aj} are defined by the outputs of the lowpass filters
and the coefficients {bj} are defined by the outputs of the highpass filters.

The filters c(-n) and d(-n) are the anticausal forms of the filters ho(n) and hI (n) in figure
1, and thus a multiresolution analysis is implemented as a tree of analysis filter banks, where
the filters satisfy the conditions of an orthogonal filter bank. There exist two further issues, the
initialisation of the fast wavelet transform and the effect of signals of finite length, that must
be considered before the transform can be implemented.

The initialisation of the fast wavelet transform needs special attention because the
assumption of multiresolution analysis of a function f (t) requires that it lie in a space Vj.
The simplest assumption is that the sampled values f(n) of f(t) are used as input to the filter
bank. Assuming that the transform is initiated at level j = 0, it follows that there must exist
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a·
J

1 2 c (n) a.
J

b.
J

1 2 d (n)

+1

Figure 4: The implementation of the inverse fast wavelet transform as the synthesis stage of a
two-channel filter bank.

a'lJ-
a.J

aj+1

b . 1J-
b'J

Figure 5: The fast wavelet transform implemented as a tree of filter banks.

a scaling function <j;(t) such that

fs(t) = 2: f(n)<j;(t - n),
n

where fs(t) is the underlying continuous function that is defined by the samples f(n). This
equation is satisfied by the delta function, <j;(t) = 6(t), but most scaling functions do not satisfy
it. A better approach requires that the coefficients ajk interpolate exactly the function values
[2], chapter 6, [14], [15].

Consider now the implementation of the fast wavelet transform for signals of finite length.
A basic assumption of wavelet theory is that the signals are of infinite duration, but all signals
are of finite duration. If the signal is sufficiently long, the assumption of a signal of infinite
length is adequate in the middle of the signal where boundary effects need not be considered.
However problems occur at the boundary of the signal, where the sample values x(n) for n < 0
and n > L are not defined for a signal of length L+ 1. This finite length must be considered, and
the problem is filtering this class of signal because the convolution Eh(k)x(n - k) is not always
defined. It is necessary to extend the signal x(n) such that the convolution is defined, and
there exist two possibilities, periodicity (wraparound) and extension by reflection (symmetric
extension) [11], [13]. It is noted that extension by zeros (extrapolation by zeros) yields poor
results and is not considered satisfactory.
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5 Examples

Wavelets are used extensively In many areas of applied mathematics, and a few of these
applications are listed:

1. Image and video compression [8]' [11].

2. Speech analysis, audio and ECG compression [4], [11].

3. Medicine and biology [1].

4. Statistics [6],[9].

5. Computational linear algebra and the solution of Poisson's equation [12].

6. The analysis of economic and financial data [7].

7. Image processing [3].

8. Computer graphics [10].

9. Vibrations and acoustics [5].
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