
FLOWS IN GAS PIPELINES

1. Introduction

This problem was brought to the 1989Mathematics in Industry Study Group
by Mr R. Calvert from The Pipeline Authority (TPA). TPA owns and operates a
natural gas pipeline from Moomba to Sydney (with some smaller lateral pipelines
supplying areas of population such as the ACT). Because of increasing demand,
TPA has installed a compressor station at Bulla Park and it is expected that
a further station will be commissioned at Young by the middle of this year.
Safe and efficient use of compressors in a pipeline network is quite complex
since high pressures and pressure fluctuations may damage the pipeline. As
a consequence, the problem posed to the study group was to examine to what
extent mathematical modelling can be used to provide guidance for the operation
of compressor stations.

Gas flows in pipelines have been studied extensively and sophisticated soft-
ware is available for calculating flows. For example, TPA use SIROGAS, a
package developed by CSIRO, which has been extremely useful to TPA in their
simulations of flows. Nevertheless, it was felt by the study group that a worth-
while first step was to examine some flowmodels with a view to gaining insight
about time and length scales involved.

2. Simple Flow Models

Let us examine a pipeline of length L with one inlet and one outlet. This is a
reasonable assumption as the bulk of the flowis between Moomba and Sydney.
We shall denote variables pertaining to the inlet and outlet by subscripts 0 and
1 respectively. The notation is summarized at the end of the report.

Under the assumption that the flow is spatially one dimensional (in the
direction of the pipe) we have by continuity

(1)

Conservation of momentum can be written as (see, for example, Wilkinson, et.
al., 1964)

oU ~ (U2
) op oh f UWI _ 0 (2)Bt + ox p + ox + gp ox + 2Dp -
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while the equation of state is
RT

p=p-z
M

(3)

where Z is a super compressibility factor which is used to account for deviations
from the ideal gas law. In practice, the regression

1
Z = ,w = aT+bl.+wp

(4)

is used where a and b are determined experimentally. A further equation is
required to fully specify the system, namely an equation for conservation of en-
ergy. Unfortunately the coefficients for heat transfer between the pipeline and
its environment might be expected to be poorly determined and a more ap-
pealing approach is to assume that the gas is in thermal equilibrium with its
surroundings - an assumption that is not unreasonable except in a neighbour-
hood of the compressor and possibly the inlet. For simplicity, we made the
further assumption that the gas temperature is constant.

We now make further simplifications to the momentum equation (3). Specif-
ically we neglect the term gph:r;, which is the effect on elevation. Simulations
using SIROGAS prior to the study group showed that variability in elevation
has only a very minor effect on the flow. Thus, (2) becomes

oU + (OP _ V2) op + 2V~+ jV1U1 = 0at ap ox ox 2D

where V = U j p is the gas velocity. Now

is the square of the 'isotropic speed of sound' in the gas and hence wealso neglect
the term V2 p:r;in comparison to p:r;.

To make further progress, we need to address the question of what informa-
tion we wish to obtain from our model. In this instance we are interested in the
transport of gas and the appropriate length scale is L, the length of the pipeline.
However, we expect the term VdUjdx to be important only over a length scale
of

D
It = 7 -e L.

Similarly, the term Ut is important only over a length scale of
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where V is a typical gas velocity. It turns out (see the calculations for steady
state) that h <: h <: L and we therefore neglect these terms. The momentum
equation therefore is simplified to

(5)

which is simply a balance between pressure gradient and frictional losses.

On combining (1) and (5), we obtain

ap fW a (Cp1/2 )at = Y Tox IPx11!2Px .

We now introduce the scaling

P = p* p , c = c* C

t = TS , X = Ly

where p and c are typical values of p and c. Then,

ap* _ -J 2D s. (C*(p*)1/2 *)
as - TC f L3 ay Ip;11/2 Py

and it makes sense to choose the time scale T so that

In this case,
ap* = s. (C*(p*)1/2 *)
as ay IP;P/2 Py

Equation (6) is a nonlinear diffusion equation and some discussion during the
study group focussed on the possibility of linearizing (6) about the steady state
solution. However, no progress was made on this during the time available.
Nevertheless, the form of (6) does allow us to make some qualitative predictions
about the solution. For example, weexpect variations in flux at Sydney to decay
by the time they are felt at Moomba and furthermore expect 'fast' variations
to decay more rapidly than slow variations. This is observed to be the case in
practice.

(6)
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3. Steady State Flow

When the flow is steady and a simple ideal gas law (i.e. equation (4) with
a = b = 0) is used, equation (1), (3) and (5) yield

U = constant
c2fU2X

P2 _ p2
- 0- D

Thus, the flux is constant and the square of the pressure varies linearly with the
distance along the pipeline. To obtain an appreciation of some of the parameters
involved, it is useful to consider the following data supplied by TP A

L = 1300km , Q = 2.5 x 10sm3/hour (at STP)

D = .864m , Po = 6.2 x 106Pa
PI = 4.7 X 106Pa

Taking the density of gas at STP to be .75 Kg/m3 we obtain

f ~ .01
V = 2.4m/sec , c = 365m/sec

It = 86m , 12 = 1.3 X 104m.

The time taken for the gas to travel from the inlet to outlet is

2L(p~ + PlPo + pn
TI = 3U(po + PI)

~ 167 hours

which is the same order of magnitude as the time scale associated with the
diffusion equation

T = LJfL
c 2D

= 86 hours

This last time scale is in quite good agreement with the time lag of 77 hours
obtained by a time series analysis.

4. Similarity Solutions

Some analytical progress can be made with equation (6) by means of sim-
ilarity solutions. While of limited utility for general pipeline operation, these
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solutions do provide some insight to pressure fluctuations in the vicinity of the
compressors. Following Wooding et. al. (1977), let

T} = X/82/3

Then (6) has a solution p* = p(T}) where

- ~T}P' = ( _pp')1/2)' (7)

and p( (0) = Poo. The solution to (7) is shown for various values of P(O)in Figure
1. They correspond to instantaneous changes in density at y = 0 and are valid
only for relatively short time scales when end effects and pressure gradients in
the initial flow can be ignored. Note however that the flux at y = 0 is 0(8-1/3)
and becomes unbounded is 8 - O. This poses a problem when modelling the
start up of a compressor.
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Figure 1: Solution of (7) with Poo = 1.
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5. Boundary Conditions and Compressor Stations

Let us consider the scaled equation (6) and take Z = 1 in (3). Furthermore let
us consider a compressor station at Y = Ye' Since pressure is directly proportional
to density, we may rewrite (6) as

(8)

where p = p. p and p is a typical pressure. In practice, the input pressure at
Moomba (y = 0) is held fixed and it is therefore appropriate to specify

p·(O) = Po (9)

At Sydney (y = 1) we can predict the required output flux

p·p;=F(s)aty=1 (10)

where F( s) is known.

However the presence of a compressor at y = Ye poses some problems. Since
the flux is continuous,

p.p; is continuous at y = Ye (11)

However a further boundary condition is required and a possible candidate is to
specify a relative pressure jump at y = Ye' That is,

lim p. = e(s) lim p.
+ -y •...•yc SI"'" SIc

(12)

where 1 < at. < a < au or a = 1.

We therefore solve equation (8) subject to conditions (9), (10), (11) and (12).
Since it is not possible to do this analytically, a numerical solution is necessary.
However the boundary condition (12) imposes an unsatisfactory feature on the
solution. When the compressor is turned on, the flux will initially be very large.
This is evident from the similarity solution discussed previously. However, large
fluxes violate constraints imposed on compressor operation. This difficulty led
to considerable discussion at the study group although little progress was made
due to inadequate knowledge of compressors and their operation. However, the
consensus of opinion was that the time scale of the transient in question was
small and could be ignored.
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6. Time Series Analysis

An alternative to prediction via modelling is to use time series applied to
pipeline data. Some preliminary analysis applied to two weeks of data when the
compressor at Bulla Park was not operational was performed after the study
group (the computer in Melbourne was down during the study group) and the
results were quite encouraging.

Cross-correlation analysis of the flowat Moomba and the pressure at Sydney
found that the pressure lagged the flowat Moomba by 77 hours. Figure 2 shows
two weeks of flow data adjusted for the time delay. From the plot it can be seen
that the peaks are aligned, though they are sharper in the pressure data than in
the flow data.

o 100 200 300

TIme

Figure 2: Flow and pressure adjusted by time delay

A regression of Pressure on Flow explains about 60% of the variance, though
there remains substantial serial correlation in the residual pressure variation.
This appears to be related to the daily and weekly cycles evident in the data.
There is negligible correlation between the hour to hour fluctuations in the flow
and pressure series. Further analysis suggests that the flow at Sydney is also
correlated with the pressure at Sydney (several days later) and this could also
be used in a better predictor of pressure at Sydney and thus ultimately in a
control system.
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7. Optimization of Compressor Operation

The formulation for optima.lly operating a pipeline is relatively straightfor-
ward although quantifying the costs involved is likely to be difficult.

Let the cost associated with starting the compressor be $W and the cost
associated with running the compressor by $z/hour. These costs should reflect
not only compressor costs but also costs associated with damage due to pressure
transients when starting the compressor. Although we have taken the costs to be
constant, there is no reason in principle why they could not be complex functions
of compressibility factor etc.

Introducing the function

O"(t) = {01 ' a = 1, a> 1

we obtain
W do

m(t) = 2"1 dt 1+ ZO"

as the cost rate of operating the compressor.

We also have some constraints. The pressure at the inlet is held constant and
the flux at the outlet is prescribed. Furthermore the outlet pressure should not
drop below a prescribed minimum and should not exceed a prescribed maximum.
With these constraints we need to choose a(t) to minimize

M(t) = lot m(t)dt.

The algorithmic details of how this optimization could be performed were not
discussed at the study group.

8. Concluding Remarks

The consensus of opinion after the study group meeting was that:

• simple models are useful for modelling flows in gas pipelines when the aim
is to obtain flow estimates for control purposes.

• time series analysis is a potentially useful tool for predicting pressure vari-
ation. Further work is required for this.

• further work is required to more accurately model compressors.
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• the costs associated with the compressor operation and damage to the
pipeline need to be quantified. If for example the cost associated with
turning a compressor on dominated, the control strategy would be simpli-
fied considerably.
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Notation

density
density at inlet and outlet
mass flux of gas
pressure
pressure at inlet and outlet

- length coordinate
time
elevation of pipeline
gravitational acceleration
friction factor
diameter of pipe
length of pipeline
length scales
gas constant
temperature
compressibility factor
molecular weight of gas
experimental constants in Z
gas velocity
isotropic speed of sound
typical value of V
scaled density
typical value of p
scaled speed of sound
typical value of c
scaled time
time scale
scaled length variable
mass flow rate
travel time for gas
similarity variable
scaled position of compressor
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m

scaled flow rate
compressibility factor
upper and lower limits of a
step function
cost of compressor operation
cost rate of compressor operation
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