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Abstract

Electrical power generation is paid for on the basis of the marginal costs of
generation, and supply is paid for at the marginal cost at the supply point. In the
case where power lines form a loop and there is a limit on a line within the loop,
the electrical requirements of providing supply force a reallocation of generation
and a step change in the marginal costs. This is known as the spring washer effect.
In some cases the cost of supply can reach extreme levels. Transpower and its
customers are interested in obtaining a better understanding of these events.

Simplified equations determining power generation and pricing are derived. So-
lutions for the supply costs are obtained for several simple cases. Numerical exam-
ples and a graphical representation demonstrate the spring washer effect and how
a spring washer responds to changes. Several possible changes that reduce the cost
of supply are demonstrated.

When a spring washer comes active the marginal prices make a step change.
This means that power costs can be be highly sensitive to the values of all the
network parameters that affect the power flow in the power loop.

Detecting when a large spring washer is likely to occur is of considerable interest.
Suggestions on how this could be done are made.

1. Introduction

Bulk electrical power is bought and sold at marginal prices, that is
the price for all the power generated is set by the cost of providing ad-
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ditional power. Indicative power costs are calculated every five minutes,
and final power prices are calculated on a half hour basis.

Power generation offers are made at a specified rate ($/MWh) for
up to an upper limit (MW) of supply. A linear programming problem
is solved to determine which power offers are accepted i.e dispatched.
This is known as the scheduling, pricing and dispatch model or SPD. The
power offers can be accepted for the full amount or a partial amount. The
linear programming SPD chooses the lowest total of offer prices subject
to constraints on the delivery of power. However the generated power
is paid for at the marginal price at the generation nodes. For instance
power offers of A: 100MW at $20/MWh and B: 200MW at $40/MWh
would for a demand of 150MW, be dispatched at A: 100MW and B:
50MW and the total 150MW would be paid for at the marginal rate of
$40/MWh. In this case only one power offer is partially dispatched.

The constraints ensure power can be delivered from the generators
to the consumers. The electrical balance of the network provides some
equality constraints, and limits on power line capacity provide inequality
constraints.

A situation of particular interest is when the power lines form a loop.
This then provides two paths from the generators to the power consumers
i.e. the demands. If a limit in power line capacity is reached in one of
the lines in the loop, power transmission needs to be balanced so that
both the required power can be delivered and the limit is not exceeded.
This typically requires the partial dispatch of two offers in a manner
that satisfies both the electrical requirements of power delivery and the
constraint. When this happens there is a step change in the marginal
prices which then increase around the loop from one end of the line
constraint to the other end. This is known as the spring washer.

Step changes in the marginal prices are applied to all the power used
by a consumer, giving sudden changes in the total cost of power as the
spring washer comes into effect. Under some circumstances the change
in power prices around a spring washer becomes extreme. Transpower
wanted information on when this can happen and how sensitive the
resulting prices are to the electrical properties of the network.

The scheduling, pricing and dispatch (SPD) linear program that is
used for calculation has some 600 nodes and 16000 constraints. In this
report we describe a simplified form of the network equations in section
2 and the following section shows how the equations can be converted
to a more convenient matrix form. The linear programming problem
is described in section 4, with both the primal equations and the dual
equations being derived. It is found that the linear programming equa-



OPTIMISING THE RELATIONSHIP OF ELECTRICITY SPOT PRICES TO INPUT DATA 75

tions have a relatively simple form with most elements being zero, and
some analytic solutions are possible.

It is then shown in section 5 that in the absence of constraints only one
generation offer is partially dispatched and the marginal costs through-
out the network is equal to that of the partially dispatched generator.
For the case where the only limiting power lines divide the power network
into independent sections a similar solution can be found.

Section 7 examines the more interesting phenomena of the spring
washer. A new graphical representation of the spring washer as a lever
is given. This representation helps visualise the available data and thus
get a better understanding of the spring washer. Several surprising prop-
erties of the spring washer are investigated, including reducing the cost
to consumers by increasing the cost of generation.

The sensitivity of the marginal prices to the parameters of the network
is discussed in section 8, and possible ways of determining if a serious
spring washer can occur are discussed in the following section.

Symbols are defined as they are introduced and a table of symbols is
given at the end of this report.

2. Basic equations

The generators to be used (generators dispatched) and the costs
of supply are are determined by a large linear programming calculation
which selects the lowest cost from the offers for supply and determines
the marginal costs of supply at each node. Although it is convenient
to use a matrix form for some calculations, the equations are initially
developed for clarity in a scalar with subscripts form. Coding into a con-
venient vector and matrix format requires reordering of the subscripts.

The following subsections divide the equations into groups according
to their origin. Then the next section presents the equivalent matrix
equations.

2.1. Transmission equations

The transmission of power using an alternating current (AC) is
described by an equation using complex numbers, that gives both the
real power and the reactive power (as the complex part). The reactive
power is due to electrical oscillations within the line and their associated
losses. It must be supplied by the generators but is not available for use
by the consumers. Typically the reactive power can be considered a
constant fraction of the real power, that makes only a small adjustment
to the calculations. As we are only interested in the real power the
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reactive power is not considered and a simplified equation written for
the real power.

For alternating current (AC) in the line from node i to node j, the
difference in phase angles (qi−qj) determines the amount of power (pi,j)
transmitted along the power line (this is similar to voltage difference
for a direct current line). The admittance of the line times the phase
difference gives the power transmitted (it is however convenient for the
later developments to use the reciprocal bi,j of the admittance in the
equations) i.e.:

pi,j = b−1
i,j (qi − qj) (1)

There is one degree of freedom in the qi as they only occur as a difference.
So one of the qi can be set to zero, for instance the last value e.g.:

qnnode
= 0 (2)

Alternatively q1 can be set to a large value so that all the qi are positive
to simplify linear programming set up.

The second power equations ensure that power into each node (by
generation or power lines) is equal to the power leaving the node (by
demand or power lines) i.e. for the ith node:

∑

k

gi,k − di −
∑

j

pi,j = 0 (3)

where di is the demand at node i and gi,k is the dispatched power gen-
eration for the kth generation offer at node i. Remembering pj,i = −pi,j

summing equation 3 allows the pi,j terms to cancel leaving the power
generated is equal to the total demand i.e.:

∑

i

∑

k

gi,k −
∑

i

di = 0 (4)

2.2. Offers of supply

The owners of the generating capacity make offers for supply of
certain amounts of power at an offer price. There can be multiple offers
for supply at each node. Some offers may be high due to the cost of
generation, or due to the need for the generating unit to default on a
bulk supply contract and pay a penalty to be able to supply the power.
With no loss of generality it is assumed that the offers for supply are in
increasing order with the lowest prices first. The cost of supply at node
i based on the offer prices is:
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∑

k

si,kgi,k (5)

where si,k is the price for the kth offer at node i, and gi,k is the correspond
amount of power dispatched. The total for all nodes:

coffer =
∑

i

∑

k

si,kgi,k (6)

This cost based on the offer prices is used in a linear programming for-
mulation to determine which offers of generation capacity are accepted.

The total costs of transmission is:

ctrans =
∑

pi,j>0

(ti,jabs(pi,j)) (7)

where pi,j in the power flow in the line from node i to node j, and ti,j
is the cost of transmission in $/MWh. This can be added to the offer
cost to give a more complete cost estimate for minimisation. However
the major features of the SPD calculation can be demonstrated without
the inclusion of this term.

However the generators are not paid according to the offers to sup-
ply, but at the marginal rate for that node (which is the highest offer
accepted at the node with partially dispatched generation offers). The
optimisation is used to select the generators dispatched and determine
the marginal costs at each node.

2.3. Constraints

There are multiple constraints that apply to the scheduling pricing
and dispatch calculation. We now examine these constraints.

The power dispatched from each offer is limited by the by the maxi-
mum available on that offer i.e.:

0 ≤ gi,k ≤ gmax
i,k (8)

The power in the lines is limited to a given maximum value but can
be in either direction i.e.:

−pmax
i,j ≤ pi,j ≤ pmax

i,j (9)

Additional constraints come from security constraints that are applied
to ensure that in the case of a line failure there is always time to correct
line loads before line limits are exceeded (after a power increase there
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is a delay before the line temperature reaches the maximum allowable
value). These have not been considered in the current analysis, but take
the form:

ui,j,s,tpi,j + vi,j,s,tps,t ≤ wi,j,s,t (10)

Where ui,j,s,t, vi,j,s,t & wi,j,s,t are constants determined by removing line
s-t from the dispatch calculation.

3. Matrix notation

Having developed the required equations we now convert them to a
more compact matrix format. However to get a convenient notation the
scalars do not directly form the corresponding matrices. A new coding
into vectors and matrices is needed as described below.

The values gi,k are placed in a column vector g in the order of the
second subscript varying most rapidly (for instance 1,1; 1,2; 2,1; 3,1; 3,2;
3,3; . . .). Similarly si,k and gmax

i,k are placed in the column vectors s
and gmax. The total cost based on the offers (equation 6) is thus:

coffer = s′g (11)

The potentially non zero elements of pi,j in the forward direction (as
per some arbitary convention) are placed in a column vector p in order
of the second subscript varying most rapidly, and the elements qi form
the vector q.

A matrix R describes the connection of power lines to nodes. Each
row of R corresponds to a power line in the same order as in p, while
there is a column for each node in the network. A −1 in position `, i
indicates power line ` starts at node i, and a 1 in position `, j indicates
power line ` ends at node j. Zero values (the rest of the row) indicate the
power line does not connect to the node. Thus a row of R corresponds
to the power line in the same position in p with a one in the position
corresponding to the node at the to end of the line, and minus one in
the position corresponding to the node at the beginning of the line. Line
power flow can be positive or negative, and the columns of R are not
independent as they sum to zero.

Finally define B as the diagonal matrix with bi,j on the diagonal in
the order corresponding to p.

Then equation 1 becomes:

Bp = −Rq (12)
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An equation such as 2 is still needed to resolve the degree of freedom in
q. Equation 2 becomes:

w′q = 0 (13)

where w is a vector containing zeroes except for one in the last element.
The power balance at the nodes (equation 3) becomes:

Fg + R′p = d (14)

Where F and R′ have one row for each node. The ith row of F contains
ones in the position corresponding to the position of values gi,k in g.

The constraints (equations 8 & 9) can also be written as matrix equa-
tions:

0 ≤ g ≤ gmax , −pmax
≤ p ≤ pmax (15)

4. The linear programming problem

Allocation the power dispatch is now a matter of solving the fol-
lowing linear programming problem:

Minimise (equation 11):

coffer = s′g (16)

with respect to g,p and q and subject to the equality constraints (equa-
tions 12, 14 & 13) and inequality constraints (equations 15). Combining
these equations gives:





0 B R
F R′ 0
0 0 w′









g
p
q



 =





0
d
0



 (17)
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(18)

The variables other than g,p & q used in these equation to form the
vectors and matrices (i.e. for nodes: di, lines: bi,j , pmax

i,j , offers: si,k,
gmax
i,k ) have values that are supplied as data to the linear programming

problem.
The marginal prices to the consumer are then obtained as the La-

grange multiplier values, which are the solution to the dual linear pro-
gramming problem. The marginal prices are the derivative of the cost
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being minimised with respect to the constant terms in the constraints.
For the problem: minimise cost c′x wrt x subject to the active con-
straints Ax = b, the Lagrange multipliers λ satisfy λ′A = c′. Now the
derivative of the cost is:

∂c′x

∂bi

=
∂c′A−1b

∂bi

=
∂λ′b

∂bi

= λi (19)

Most linear programming programs will calculate these marginal costs.
Introducing the Lagrange multipliers (as Greek letters) for the con-

straints in the power problem gives the conditions:

diag
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ζ
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−I 0 0
I 0 0
0 −I 0
0 I 0













g
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−gmax

0
−pmax

−pmax

















= 0 (20)

where µ corresponds to power offers at the upper limit, ν to power offers
at zero, ζ to power lines at the upper limit, and ξ to power lines at the
lower limit. Here if the constraint is active its value is zero and the cor-
responding Lagrange element is positive, while inactive constraints have
a positive value and a zero Lagrange element. The non zero Lagrange
multiplier elements are calculated from the following equation (note ψ
is a scalar while the other Lagrange multipliers are vectors):





0 F′ 0 −I I 0 0
B R 0 0 0 −I I
R′ 0 w 0 0 0 0
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 (21)

where τ corresponds to the power lines, δ corresponds to the nodes, and
ψ to the additional condition on q (equation 13. It is the δ that are
of particular interest as they are the marginal power costs at the nodes
used for both paying the generators and for charging the consumers.

The decisions on which elements of the Lagrange multipliers are zero
are made using a linear programming algorithm. The number of zero
elements will be such that there are ntrans + nnode + noffer non zero
elements matching the number of equations for the Lagrange multipliers.
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4.1. About the LP equations

The dispatch of power offers at the nodes will always be such that
at most one offer at each node is not at a limit, and typically most nodes
will have either no power offers or all power offers at a limit. Further at
each node all the lower cost offers will be accepted and the higher cost
offers rejected. This considerably reduces the options that need to be
considered during the linear programming.

There are nnode+ntrans+1 equality equations (17). This is sufficient to
determine the transmission powers p (ntrans elements) and their driving
phase angles q (nnode elements) plus one value of the generation alloca-
tions g. Each active constraint on an element of the power transmission
flows p requires one more of the g to be moved off a constraint (15, 18)
and instead be determined by equations 17.

At each node the constraints on the offer power amounts g are such
that at most one amount can be not be determined by a constraint (15,
18). Once these constraints are determined, the constrained power offers
are fixed amounts of power that can be combined with the demand d
for the solution of the remaining equations.

Once the dispatch has been determined by the LP algorithm, the offers
constrained at the upper limit can (as they are constant) be combined
with the demand terms, and those at zero can be removed from the
calculation. It is then convenient to allocate one offer, that is either zero
or unconstrained, per node (most will be zero), then F reduces to the
unit matrix. This also sets µ to zero, and the values of ν corresponding
to the unconstrained power offers to zeros. Now the top partition of
equation 21 gives:

δk = sk (22)

for the unconstrained offers (where νk = 0) thus giving the marginal
cost at the generating nodes equal to the generation cost as expected.
The remaining equations in the top partition, as ν does not occur in
other equations, determine the remaining values of ν. Thus for both
constrained and unconstrained offers:

νk = sk − δk (23)

The second partition row of equation 21 gives, for an unconstrained
power line from node i to node j, the difference in the marginal costs at
the nodes:

δj − δi = bi,jτi,j (24)
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For a constrained power line from node I to node J , we have either
ζI,J > 0 or ξI,J > 0, assume it is ζI,J > 0. This gives one more unknown
in equation 21 which is allowed by forcing an additional value of ν to
zero. In the primal the corresponding value (to the zero ν element) in
g has to be calculated and pI,J is fixed at its maximum.

The third partition row of equation 21 gives:

ψ = 0 (25)

as the rows of R sum to zero. This corresponds to the equation 2 that
removes the redundancy in q and thus has no effect on the value being
minimised coffer. Further for any node that has only one incoming
power line L1 and one out going power line L2:

τL1 = τL2 (26)

hence the values of τ divide into blocks of equal values for section of the
network where the lines and nodes are in a simple series connection.

The equality constraints which are the power distribution equations
17 can be written, after removing the dependent column of R (giving
R#) and corresponding rows of d and F (giving d@ & F@ as:





B R# 0
(R#)′ 0 0

0 0 1









p
q@

qnnode



 =





0
d@

0



 −





0
F@

0



g (27)

The matrix on the left hand side is now invertible and hence these equa-
tions can be solved for p and q giving:





p
q@

qnnode



 =





B R# 0
(R#)′ 0 0

0 0 1





−1 







0
d@

0



 −





0
F@

0



g



 (28)

The coefficient matrix can be factorised as follows, and thus the solu-
tion to equation 27 or the inverse in equation 28 can be found:

[

B R#

(R#)′ 0

]

=

[

B 0
(R#)′ L

] [

I B−1R#

0 −L′

]

(29)

where:
LL′ = (R#)′B−1R# (30)

and L is the lower triangular Cholesky factor. As R is sparse calculating
L is relatively easy. Note that if pI is determined by a constraint the
corresponding row of equation 28 becomes a constraint on the values on
g.
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5. Case of no power transmission constraints

If none of the constraints on power lines are active, equation 28 is
satisfied by p & q. This leaves one equality to be satisfied. Summing
the rows of equation 14 gives equation 4 which can be rewritten as:

u′g = u′d (31)

where u is a vector of ones with compatible size. This equation needs
to be satisfied while minimising equation 16. The lowest cost sources
are dispatched in order until equation 31 can be satisfied. One supply
offer, a gi,k (the one with the highest accepted offer price) will be used
to satisfy equation 31. Offers with a lower supply offer prices will have
gi,k at its maximum, and those with higher supply prices will have gi,k

at zero.
For notational convenience combine all the offers accepted at max-

imum power with d, and assign one offer to each node, one of which
gI.1 is not zero and corresponds to the supply offer partially accepted as
described above. The offers at other nodes will have offer prices greater
than gI,1 and gi,1 = 0. This makes F = I. The equations for the opti-
mum values are then:









0 B R
F R′ 0
0 0 w′

I − [1I,I ] 0 0













g
p
q



 =









0
d
0
0









(32)

where [1I,I ] is a matrix with one in the I, I position and zeros elsewhere.
The Ith row of the third partition is all zeros making the number of
equations equal to the number of variables, and hence the equations can
be solved.

The Lagrange multipliers µ, ζ and ξ are zero as the corresponding
constraints are not active. The equation (from 21 and 32) for the re-
maining Lagrange multipliers is:





0 F′ 0 I − [1I,I ]
B R 0 0
R′ 0 w 0













τ

δ

ψ
ν









=





s
0
0



 (33)

One column corresponding to zero valued νI is all zeros. The solution
to these equations is:

τ = 0 , δ = sI , ψ = 0 , ν = s − sI (34)
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Hence in the case of no constraints on power transmission, the marginal
node prices δ are equal to the highest accepted offer price.

6. Case of a limiting power line dividing the
network

If the only power line linking two parts of the power network
becomes limiting, the network is effectively divided into two parts, with
the limiting line acting as a fixed demand in one part and a dispatched
offer in the other.

The phase angle values q have a degree of freedom of each side of the
of the constraint. On one side this degree of freedom can be handled,
as before by setting a chosen value to zero. Then on the other side
the degree of freedom is used to get the required power flow in the line
linking the two sides. The marginal cost of power will be constant in
each section that has no constraints, but different between sections.

This analysis can easily be extended to multiple single lines that divide
the network into multiple sections.

7. The spring washer effect

A spring washer occurs when the the power lines form a loop and
there is an active limit on the power flow in one of the power lines.
When this limit becomes active there is a sudden change in the elec-
trical requirements within the loop. The phase angle at the end of the
constrained power line must satisfy the requirements of the constrained
line and also the requirements of power flow around the remainder of
the loop.

The simplest case of a spring washer, which is the one examined here
is where the network is only a closed loop. A closed loop without a
constraint on power flows is the same as treated in section 5.

If a constraint occurs on one of the power lines in a loop this extra
constraint requires another constraint to cease to be active so that a
variable is freed to allow the constraint on power transmission to be sat-
isfied. This is done by moving one more power offer from its constraint.
So for a loop with one power line constraint, two generation amounts
need to be unconstrained in equations 9 (which is part of equation 18)
so that these values can be used to satisfy the equality constraints 17.

For a simple loop the network matrix R is square and both rows and
columns contain only one value of 1 and one value of −1. As above
we allow only one generation offer at each node after combining fully
dispatched offers with the demand and removing those that will never
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be dispatched, so the F = I. Let I and J be the two nodes where power
dispatch needs to be calculated, and L be the line with the constraint,
then equations for the Langrange multipliers are:





0 F′ 0 I − [1I,I ] − [1J,J ] 0
B R 0 0 −[1L,L]
R′ 0 w 0 0

















τ

δ

ψ
ν

ξ













=





s
0
0



 (35)

As the rows of R′ add to zero ψ is equal to zero (equation 25).
As the rows of R′ contain only a 1 and −1, τ is constant (value τ0),

the changes in between adjacent values of δ is proportional to values of
b for the line between the nodes. There are two values of ν that are
zero.

If we number the nodes starting at the low cost end of the line power
constraint (in the constrained line power flows from the low cost end to
the high cost end) going around the loop toward the high cost end of
the constrained line, δ increases by bi,i+1τ0 at each step from node i to
node i+1, and thus:

δi = δ1 + τ0

i−1
∑

j=1

bj,j+1 (36)

This contains two constants δ1 & τ0 that are determined from the two
accepted power offers (pI at cost sI and pJ at cost sJ with I < J) in
the loop. These set δI = sI and δJ = sJ . Hence:

τ0 =
sJ − sI

∑J−1
j=I bj,j+1

(37)

and:

δ1 = sI − τ
I−1
∑

j=1

bj,j+1 (38)

A convenient way to examine this result is a plot of the marginal costs
δi verses the sum

∑i−1
j=1 bj,j+1 (see figure 1). This is a straight line with

its position determined by the two generators that have their power of-
fer partly accepted. This plot makes it clear how the marginal prices
are controlled by the offer prices and the line properties. A large price
difference between the generators, or a high admittance (low bi,j) line
between the generators gives a steep slope to the lever line. Then large
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Figure 1. Representation of a spring washer as a lever

marginal prices are obtained when there is node distant from the gen-
erators on the high side of the lever. Similarly on the low side negative
power prices may be seen.

The property of particular interest regarding the spring washer is the
sensitivity of the conditions under which it comes into effect and the
size of the change as it comes into effect. The following subsections
use a simple loop network to demonstrate some properties of the spring
washer.

7.1. An example of the spring washer

The network used to demonstrate a spring washer is shown in
figure 2. Four nodes connected in loop, with a demand of 400 MW at
node 1 and a limit of 200 MW on the line from node 4 to node 1. A
generator at node 2 offers power of up to 1000MW at $50/MWh, and at
node 3 offers of 200MW at $10/MWh and up to 1000MW at $20/MWh
are made.

Table 1 shows the result of the SPD linear program calculation for
this configuration. Power of 400MW is dispatched from node 3 (see col-
umn Actual under Generation for the two values adding to 400), and
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Table 1. Base case network dispatch and marginal pricing

LP cost = 6000.0

Generation payment = 8000.0

Demand payment = 8000.0

Node Demand $/MWh Generation

Max Cost Actual w

1 400.0 20.00

2 0.0 20.00

1000.0 50 0.0 0.0

3 0.0 20.00

200.0 10 200.0 10.0

1000.0 20 200.0 0.0

4 0.0 20.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -200.0 0.0

2 3 500.0 1.00 0 -200.0 0.0

3 4 500.0 0.40 0 200.0 0.0

4 1 200.0 1.00 0 200.0 0.0

this is paid for at $20/MWh which is the marginal price at that node
($/MWh column). Note that the generation payment of $8000 is higher
than the sum of the offer prices of $6000 which is used in the linear pro-
gramming optimisation. The marginal cost of power at all of the nodes
is $20/MWh. Through the network 200MW flows in both directions
around the loop from node 3 to node 1. This is right on the upper limit
on capacity of the line from node 4 to node 1, however this constraint
is not active in the LP solution as can be seen by the corresponding
Lagrange multiplier w.

As this example is right on the limiting capacity of the line from node
4 to 1, a minor change to the demand or line admittances can make the
constraint active. Table 2 shows the effect of increasing the demand at
mode 1 by 0.1MW. This brings the spring washer into effect with the
constraint on line from node 4 to node 1 becoming active. Due to the
electrical requirements of the loop to deliver power it is necessary to
reduce generation at node 3, and generate at a higher cost at node 2.
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Table 2. Effect of a minor increase in demand - spring washer active

LP cost = 6012.5

Generation payment = 8012.5

Demand payment = 50012.5

Node Demand $/MWh Generation

Max Cost Actual w

1 400.1 125.00

2 0.0 50.00

1000.0 50 0.35 0.0

3 0.0 20.00

200.0 10 200.00 10.0

1000.0 20 199.75 0.0

4 0.0 -55.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -200.10 0.0

2 3 500.0 1.00 0 -199.75 0.0

3 4 500.0 0.40 0 200.00 0.0

4 1 200.0 1.00 0 200.00 210.0

The price difference between the two generators controls the slope
of the line giving the marginal costs as seen in the $/MWh column
of table 2. There is an instantaneous jump from constant marginal
costs (of $20/MWh in table 1) to the varying costs given by equation
36 (-$55/MWh to $125/MWh in table 2). When this jump occurs is
determined by the power demand which sets the line power, and by the
limit of the line capacity. The line admittances (1/bi,j) determine the
marginal prices after the spring washer becomes active, The marginal
prices then vary in a smooth manner with the line properties (bi,j) as
shown in equations 36, 37, & 38. Comparing table 1 with table 2 we see
the LP cost (based on offer prices) and the Generation payment have
risen slightly due to a reduction in the generation at node 3 and an
increase at the more expensive node 2 (cost rise is 0.35 ∗ 50− 0.25 ∗ 20 =
12.5), however there is a jump of $42000 plus the cost of the extra 0.1
MW of demand at $125/MWh in the ”Demand payment”. This jump of
$42000 is due to the increase in demand at node 1 (of 0.1MW), requiring
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Figure 2. Power network used in the numeric examples

the generator at node 2 to be introduced at a higher marginal cost, which
is then applied to all the power supplied at node 1. The consumers at
node 1 may well be upset by this.

Large changes in marginal supply costs can come from a situation
where the generators are (electrically) close together, are offering differ-
ent prices, and the demand is relatively distant. This can be envisaged
as a long lever (of the type in figure 1) with the controlling points close
together.

7.2. Behaviour of the spring washer

A spring washer occurs due to constraints on power delivery and
the cost structure of generation. Changes to these can have a consider-
able and somewhat surprising effects on the spring washer.

The marginal costs at the nodes, for a given dispatch of power gen-
eration, depend on the generation costs. Increasing the marginal cost
of generation (table 3) at node 3 reduces the effect of the spring washer
until the value of $50/MWh is reached, when all nodes have equal (at
$50/MWh) marginal rates. If the offer at node 3 goes above $50/MWh
the linear programming allocates generator 2 as the lowest cost genera-
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Table 3. Effect of increasing the offer price at node 3 - spring washer active

LP cost = 12005.0

Generation payment = 20005.0

Demand payment = 20005.0

Node Demand $/MWh Generation

Max Cost Actual w

1 400.1 50.00

2 0.0 50.00

1000.0 50 0.3 0.0

3 0.0 50.00

200.0 10 200.0 40.0

1000.0 50 199.7 0.0

4 0.0 50.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -200.1 0.0

2 3 500.0 1.00 0 -199.7 0.0

3 4 500.0 0.40 0 200.0 0.0

4 1 200.0 1.00 0 200.0 0.0

tion (as in table 4). In this case the transition to a spring washer (table 4
to table 3) does not create a step change as the spring washer comes into
effect with equal generation costs. However if the generation dispatch of
table 2 is maintained the cost to the users (Demand payment) will con-
tinue to decrease as the offer price at node 3 increases above $50/MWh.
The marginal costs are a linear function of the offer prices, as can be
seen in equation 21. One side of the limiting power line the costs will de-
crease while on the other side the costs increase as the generation prices
are changed.

Table 4 shows the alternative power dispatch for the conditions of
tables 3 & 2. In table 4 the power dispatch is no longer held at the lower
cost node 2 but has moved to node 3 with the result that the line 1 to
4 is no longer limiting and the spring washer is no longer present. This
was done by increasing the cost (by a small amount not vissible in table
4) of the generation offer at node 3, so that the alternative dispatch
at node 2 is accepted by the linear programming algorithm. The same
result can be obtained by removing generation at node 3.
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Table 4. Effect of increasing the offer price at node 3 - spring washer inactive

LP cost = 12005.0

Generation payment = 20005.0

Demand payment = 20005.0

Node Demand $/MWh Generation

Max Cost Actual w

1 400.1 50.00

2 0.0 50.00

1000.0 50 200.1 0.0

3 0.0 50.00

200.0 10 200.0 40.0

1000.0 50 0.0 0.0

4 0.0 50.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -228.6 0.0

2 3 500.0 1.00 0 -28.5 0.0

3 4 500.0 0.40 0 171.5 0.0

4 1 200.0 1.00 0 171.5 0.0

If the power limit on the line from node 4 to node 1 is reduced to
100MW the dispatch of generation becomes infeasible. The generation
required at node 3 needs to be negative (-300MW in fact) to satisfy the
power equations. The addition of a demand at node 3 as shown in table
5 allows the problem to become feasible.

Table 6 shows that a lower demand at node 4 can have the same effect
of making the dispatch of generators feasible.

Removing the constrained power line reduces the node cost back to
$20/MWh at all nodes (table 7). However the power flow in some of
the remaining lines increases, and it is possible that this violates the
constraints on those power lines making this case infeasible. If the power
delivery without the limiting power line is feasible, the consumer at node
1 is much better off with this option than that of table 2.
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Table 5. Increasing power consumption to make feasible - spring washer active

LP cost = 36000.0

Generation payment = 36000.0

Demand payment = 64000.0

Node Demand $/MWh Generation

Max Cost Actual w

1 400.0 150.00

2 0.0 50.00

1000.0 50 700.0 0.0

3 400.0 10.00

200.0 10 100.0 0.0

1000.0 20 0.0 0.0

4 0.0 -90.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -300.0 0.0

2 3 500.0 1.00 0 400.0 0.0

3 4 500.0 0.40 0 100.0 0.0

4 1 100.0 1.00 0 100.0 280.0

7.3. Interconnected spring washers

Certain connections between spring washers have the potential to pro-
vide very large changes in marginal prices at certain nodes. Large step
changes in marginal costs of power can occur if one spring washer sup-
plies power to a second spring washer. Power suppled at the marginal
rate at the high cost end of the first spring washer can replace one gen-
erator in the second spring washer. A large change in the cost of power
entering the second spring washer creates larger changes in marginal
rates within the second spring washer.

Table 8 and figure 3 consist of two spring washers with each being
similar to the previous tables. The high cost side (node 1) of a spring
washer (nodes 1, 2, 3 & 4; with a limit on the line from node 1 to 4) is the
source of power to (node 7) a second similar spring washer (nodes 5, 6, 7
& 8; with a limit on the line from node 5 to 8). The first spring washer
behaves as in the previous examples. The second spring washer requires
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Table 6. Smaller increase of power consumption at node 4 to make feasible - spring
washer active

LP cost = 23900.0

Generation payment = 23900.0

Demand payment = 51900.0

Node Demand $/MWh Generation

Max Cost Actual w

1 400.0 150.00

2 0.0 50.00

1000.0 50 475.0 0.0

3 0.0 10.00

200.0 10 15.0 0.0

1000.0 20 0.0 0.0

4 90.0 -90.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -300.0 0.0

2 3 500.0 1.00 0 175.0 0.0

3 4 500.0 0.40 0 190.0 0.0

4 1 100.0 1.00 0 100.0 280.0

power at node 7 to enable power delivery. This is being supplied from
node 1 where the marginal cost is $125, some what higher than the cost
of $50 at the corresponding node 2 of the first spring washer. The result
is a higher slope in the second spring washer and thus larger changes
in marginal costs giving a cost of $387.5 at node 8. This is now more
than three times higher than the corresponding node (node 1) in the
first spring washer. Changes to parameters in the network can greatly
increase the size of this effect.

This particular configuration and parameter values is close to being in-
feasible and some small changes have been found to make the associated
linear program infeasible. As with the simple spring washer increasing
the power costs at nodes 3 and 6 to $50 levels the spring washers giving
a marginal price at all nodes of $50/MWh.
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Table 7. Effect of removing the constrained line

LP cost = 6000.0

Generation payment = 8000.0

Demand payment = 8000.0

Node Demand $/MWh Generation

Max Cost Actual w

1 400.0 20.00

2 0.0 20.00

1000.0 50 0.0 0.0

3 0.0 20.00

200.0 10 200.0 10.0

1000.0 20 200.0 0.0

4 0.0 20.00

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -400.0 0.0

2 3 500.0 1.00 0 -400.0 0.0

3 4 500.0 0.40 0 -0.0 0.0

8. Effect of network parameters

The network properties are described by the line admittances and
power line capacities. These are not exact values and Transpower is
interested in how changes in these values can effect the marginal prices.

As we have seen above very small changes in the network values, when
a spring washer becomes active, do create large changes in the marginal
costs. This is a step change caused by the linear programming solution
changing from one set of constraints to another slightly different set of
constraints. It needs only a minimal change in in one of the network
values to move from one side of the constraint to the other. As the
marginal costs are used for charging, the effect of such a step change on
consumers can be large as is seen in the change from table 1 to table 2.

If there are no constraints active the network is not sensitive to the
data values. When a spring washer is active, figure 1 indicates when
small changes can have a magnified effect. In particular if the level arm
is long and the distance between the generators is small a change in
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Figure 3. Power network for interconnected spring washers

the line admittance between the generators can change the line slope
significantly, resulting in a large change at the end of the lever.

9. Locating potential spring washers

It is of considerable to Transpower and its customers to determine
when a large spring washer can occur. Several suggestions have been
made on how a potential spring washer can be detected. The following
subsections explain the possibilities proposed.
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9.1. Investigation of near optimal linear
programming vertices

The sensitivity of the linear programming solution can be investi-
gated by examining nodes of the simplex adjacent to the solution. This
done by manipulating the linear programming matrix to exchange an
active constraint with an inactive constraint. The exact calculation de-
pends on the matrix form used by the linear programming program and
is often an option in linear programming computer programs.

As the scheduling, pricing and dispatch problem is in a high dimen-
sional space it is not obvious how many adjacent nodes of the simplex
need to be examined. Only those nodes that are associated with large
changes to the Lagrange multipliers need to be investigated. It is not
clear how many alternatives need to be examined. This needs to be
investigated.

A similar approach is to examine linear programming solutions that
are within a certain percentage of the optimum.

9.2. Random perturbation of linear
programming data

Another possibility is to use random perturbations to the demand
(or other network parameters) to determine the likelihood of a serious
spring washer occurring. A known seed for the pseudo random number
generation would be needed as there is a need for all calculations to be
repeatable for verification purposes.

Records of typical variation in demand can be used to determine the
size of the random variation used.

9.3. Investigation of constraints close to
becoming active

As a spring washer can only occur where the power lines form
a loop and a constraint on power occurs, a first step is to locate lines
within a loop that are close to their limit. Reducing the limit on these
lines so that a spring washer occurs can be used to determine how serious
the effect of the spring washer will be. Similar to that suggested above,
records of the amount of variation of power in the lines can be used to
determine which lines are close to their limit.

Depending on the number of lines close to their limits, testing one line
at a time could be tedious, and certainly there could be a large number
of combinations lines to test. Random variation of the line limits could
be used to test for possible large spring washers. Again the amount of
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variation used can be related to the typical variation seen in the line
power over time periods similar to those of the current situation.

10. Conclusions and recommendations

The simplified formulation presented is considered to include the
main features of the scheduling, pricing and dispatch (SPD) model used
by Transpower. Power line costs are expected to make only relatively
small changes to the cost structure. The security constraints (section
2.3), having two power lines in the constraint equation offer many differ-
ent ways constraints can occur within the power network. These warrant
further investigation. It is expected that if there is only limited interac-
tion between the two lines in the constraint the situation will be similar
to a simple constraint. On the other hand if the two lines do interact as
when they are both in the same power line loop, a larger effect is to be
expected.

The linear programming equations have been derived based on the
simplified formulation, and found to take a relatively simple form. For
certain cases an analytic solution for the marginal costs has been found.

When no constraints are active the solution becomes simple with
one generator balancing generated and demand powers, and a constant
marginal price throughout the network. Constraints that divide the net-
work into sections give separate solutions for each section that are similar
to that for no constraints.

When power lines form a loop a spring washer occurs when one line
reaches a constraint. When this happens there is a step change in the
marginal costs and there is a systematic increase in marginal supply costs
around the spring washer loop. As power is charged at marginal prices
the additional cost, due to this step change, to a consumer can be large.
A method of plotting the spring washer as a lever has been developed,
and this provides a convenient way of understanding the behaviour of
the spring washer.

Increasing the supply cost on the lower power supply, levels the spring
washer and can significantly reduce the costs to a consumer at the high
end of the spring washer. At the same time the marginal costs at the
low end of the spring washer increase. Further increases in the price
without redispatching the supply, can reduce these customer rates to
zero or even negative values.

In some cases the spring washer can vanish if the requirement of min-
imal cost of supply is removed so that more costly generation can be
used, but in spite of this increase, the resulting consumer price decreases.
However node costs on the low side of the spring washer increase.



98

Simply removing the limiting line from the network removes the spring
washer and returns the costs to the values before the spring washer
came into effect. However this could create unacceptable loads in the
remainder of the network.

Step changes in marginal costs occur when a spring washer forms
requiring a change in dispatch. These are true steps that will occur
with a very small change in parameter values. Thus there is always
an extreme sensitivity to the network parameters as the spring washer
forms.

In normal circumstances, other than the step change as spring washer
forms, the network performance is a continuous function of the param-
eters. The lever representation of the spring washer indicates the con-
ditions under which the marginal costs are more sensitive to the line
admittances.

Detecting a potential spring washer is needed by Transpower and their
customers. Three methods have been suggested. The third is probably
the most practical, and involves identifying constraints that are currently
close to limits and then adjusting the limit in the scheduling, pricing and
dispatch calculation to create the spring washer so that the magnitude
of its effect can be determined.

The supply, pricing and dispatch (SPD) model used minimises the cost
of the generation offers. This has been seen to generate some undesirable
effects. Minimising the total cost of supply based on the marginal cost to
consumers, subject to this being greater than the total cost of generation
(and transmission) based on its marginal costs, may be a more rational
approach to the SPD calculations.
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Symbols

The symbols used are described in the following sections according to
the type of symbol.

Subscripts
i Node
I A fixed node
j Node
J A fixed node
k Power offer (upper limit depends on associated node)
` Index for power line from node i to node j when power lines

are ordered with the j subscript varying most rapidly
L A fixed value of the power line index `

L1, L2 Fixed values of `

r Index for kth offer for generation at node i when all the offers
are ordered with the k subscript varying most rapidly

s Node
t Node

Dimensions
noffer Total number of offers for power supply
ngen Number of nodes with a generator not at a limit
nnode Number of nodes
ntrans Number of power transmission lines

Symbols related to a node
di Demand at node i (MW)
qi Voltage phase angle at node i

d Column vector containing di

q Column vector containing qi

δ Column vector length nnode of Lagrange multipliers for node equations.
These are the marginal power costs at the nodes

ψ Langrange multiplier for qnnode
= 0

Symbols related to the power offers

gi,k Power dispatched at node i from the kth power offer note there can be
zero or more offers at each node

gmax
i,k Maximum amount (MW) at node i of kth power offer

si,k Price ($/MWh) at node i for the kth power offer
g Column vector length noffer containing gi,k in the order of k varying

most rapidly
gmax Column vector length noffer containing gmax

i,k (see g)
s Column vector length noffer containing si,k (see g)
µ Column vector of length noffer of Lagrange multipliers for offer upper

limits of gmax

ν Column vector of length noffer of Lagrange multipliers for offer lower
limits of zero
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Symbols related to power lines; note that these are non zero only if a power line connects node
i to node j:
bi,j Reciprocal of the admittance of power line from node i to node j.

For convenience in the equations we have used the reciprocal.
pi,j Actual power transmission in power line from node i to node j note pj,i = −pi,j

pmax
i,j Maximum power capacity (Mw) of power line from node i to j

ti,j Cost ($/Mwh) of transmission from node i to j

B Square matrix of size ntrans with bi,j on the diagonal in the order the order of j

varying most rapidly
p Column vector of length ntrans containing pi,j with j

varying most rapidly
pmax Column vector of length ntrans containing pmax

i,j (see p)
τ Column vector of length ntrans of Lagrange multipliers for

the line equations
ζ Column vector of length ntrans of Lagrange multipliers for

the upper limits of the line power flows
ξ Column vector of length ntrans of Lagrange multipliers for

the lower limits of the line power flows

Other symbols
coffer Total cost of supply based on offer prices
ctrans Total cost of power transmission

F Matrix nnode by noffer where the ith row contains ones corresponding to the
offers for generation in g at that node

L A lower triangular matrix

R Connection matrix ntrans by nnode for the network. The `th row corresponds
to power line from node i to node j and the non-zero elements in that row are
r`,i = −1 & r`,j = 1

u Vector of ones
w Vector of zeros except for one in last element
X′ Matrix or vector X transposed

X@ Matrix or vector X with last row omitted

X# Matrix or vector X with last column omitted
diag(x) A diagonal matrix with the elements of the vector x on the diagonal
[1i,j] A matrix with one in the i,j position and zeros elsewhere
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Table 8. Interconnected spring washers

LP cost = 16099.1

Generation payment = 16099.1

Demand payment = 205101.3

Node Demand $/MWh Generation

Max Cost Actual w

1 400.5 125.00

1000.0 900 0.0 0.0

2 0.0 50.00

1000.0 50 2.9 0.0

3 0.0 20.00

1000.0 20 397.9 0.0

4 0.0 -55.00

5 0.0 -242.50

6 0.0 20.00

1000.0 20 399.8 0.0

7 0.0 125.00

8 400.1 387.50

1000.0 900 0.0 0.0

Lines Power transmission

Start End Max Admit. Cost Actual w

1 2 500.0 0.40 0 -200.8 0.0

2 3 500.0 1.00 0 -197.9 0.0

3 4 500.0 0.40 0 200.0 0.0

4 1 200.0 1.00 0 200.0 210.0

1 7 0.5 1.00 0 0.3 0.0

5 6 500.0 0.40 0 -200.0 0.0

6 7 500.0 1.00 0 199.8 0.0

7 8 500.0 0.40 0 200.1 0.0

8 5 200.0 1.00 0 -200.0 -735.0
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