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Fluid transport equation in porous media
(Fluid compressibility)

Conservation law of mass:

&:t + 'V' . (pi!) = 0

¢ - Poracity(constant, 0 < ¢ < 1)

Darcy's law:

ij = -;'V'p (2-D flow)

=> ¢!Jff + 'V'(-;p'V'p) = 0

State equation(fluid):

c· dp = 7- (c-modulus of elasticity)

=> c¢Pft - V'(;'V'p) - C;/'V'P/2 = 0 (c« 1)

=> c¢!Jff - 'V'(;'V'p) = 0

Initial condition:

plt::o = Po (Po is constant)

Boundary condition :on rw (well)

plrw = Pw (Pw is constant unknown)

fr ij·ii ds = L (ii is outer normal L is volume of product)
w

hfo2
71: -;(-~)r ds) = Q (h is thickness)

(r~)lrw = ~
radius rw « 1

limo (r~)lrw = ~
rw-t

Find p(r, t) s.t.
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{

¢C!!P.. = !..£..(!:E.r(!tl!.»
ot r or JJ or

lim (r!!P..» = ~
r-tO or 21rkh

plt:o = Po

{

!!P.. = !..£..(kl'(!!P..»
ot r or or
lim (r!!P..) = Q
r-tO or

plt:o = Po

!

I___ J

Solution
Q. 00 -~

P(r, t) = Po - 2 J.2.. T d>'
4kt

Permeability k:

k = 1 * = IVpl > Jl

k = 0 * = IVpl < Jl

(Jl > 0)
k=H(*-Jl)

{

!!P.. = !..£..(rH(!!P.. _ II)£!!.)
ot r or or'" or

lim (r ~) = Q (*)r-tO ur

plt:o = Po

In Song Fuquan's paper

permeability .'.\

k=(l-~)+=(l--&)+ .;~'l
Now we consider another ap;~ximation for equag~i( *)
There is a boundary layer near r :{*= Jl} +" ~*: Jl + IS'\, Jl IGi;):.! oJ ';,(,H

k: 1 '\,0 -(1.1)''1

k = k,,(*) =
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k

How to get an approximate solution?

P(r, t) = Po - ~ Je;; e~~d>' (k « 1)
4k'

~ = .9.!:.. 4kt e- ::, = 9..e--5.or 4kt J:2 r
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£1!. 0
8r > ,
£1!.
8r =p"
t - .-.:C.-

- In.£.
r"

1
£1!. - LQ..( £1!.)
8t - ,. 8r r 8r

plt=o = Po
lim (r £1!.) = Q
r-+O 8r

plr=r~(t) = Po



Flows in a Low Permeable and
Compressible Medium

Huaxiong Huang
Department of Mathematics & Statistics, York

University
Toronto, Canada M3J IP3
Email: hhuang@yorku.ca

Two problems on flows in low permeability reservoirs were posed to

the 2nd Shanghai Study Group with Industry, held at Fudan Univer-

sity, November 5-8, 2001. One of the problems is on radial axisym-

metric flows with a threshold pressure gradient and the other is on

radial flows in a compressible medium. The main objective of the

exercise is to obtain exact or approximate solutions.

In the following, we summarize the discussion on one of the two

problems, flows in a slightly compressible medium. The sub-group is

consisted of A. Fitt, Y. He, H. Huang, 1. Jiang, C. Please, F. Song,

X. Ye and J. Vue.
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2 Radial Flows in a Compressible Medium

Consider the radial axisymmetric flow in a compressible porous medium

in a domain r 2': 1 described by the following initial-boundary value

problem:

au u a ( au) t > 0, r> 1 (1)at -;:ar r ar '
au j3 1 au r=l (2)ar + -;;at'
au

0, (3)ar r ~ 00

u 1, t = 0 (4)

where u = exp( -j3p) and p is the pressure. The permeability of

the medium is assumed to be a function of p in the form of J( =
](0 exp( -j3p) with j3 being a (positive) parameter. The initial-boundary

value problem (1)-(4) can be derived from the conservation of mass

and the Darcy's law and the details can be found in [5]. Here we

consider slightly compressible media where j3 is small. We note that

u ~ 1 as j3 ~ O.

Because of the non-linear nature of the equation, the exact solu-

tion may not exist for this problem. So the rest of the discussion is on

approximate solutions. In particular, we focus on the following ques-

tions: Can we obtain a practically useful approximate solution and

how does the approxim~te solution compare to numerical solutions?

It is worth pointing out that the the boundary condition (2) and the

initial condition (4) are incompatible at r = 1 and t = 0, which is

likely to cause the deterioration of accuracy in the numerical solu-

tion for small time t. It was also noted that the original boundary

condition (2) at the well T = 1 may be replaced by the following
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au _ 13 r = 1ar - ,

assuming that the medium inside the well is incompressible.

In order to simplify the computation, we will first study two

model problems in Cartesian coordinates where straightforward com-

parison can be made between numerical and approximate (asymp-

totic) solutions. Discussion on the radial flows will be given after-

wards.

au a2u
t > 0, x>O (6)7ft u ax2'

au
13, x=O (7)

ax
att 0, (8)
ax

x --t 00

u 1, t=O (9)

We look for approximate solution via regular perturbation method,

by expanding the solution into an asymptotic series of 13

u = 1+ f3u(1)+ f32u(2)+ ...
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au(l)

at
au(l)

ax
au(l)

ax
u(1)

(12)

(13)

u(1) = -2 fT..exp (_ X
2

) +xerfc (~).V -; 4t 20
Obviously the solution is smooth for t > O. However, the derivative

a2u(l) /ax2 blows up as 1/0 on the boundary x = 0 as t -t O.
The overall solution up to the first order of f3 is

We apply a standard finite volume method to our model problem.

The semi-discrete equations can be written as

dUi 2Ui (Ui+l - Ui Ui - Ui-l)- - ---- ---- ---- t > 0
dt - Xi+l - Xi-l Xi+l - Xi - xi - Xi-l '

for i = 1, ... , N - 1 on a grid 0 == Xo < Xl < ... < XN-I < XN == Xoo

where the infinity domain is truncated by replacing 00 with Xoo• The

equations for i = 0 and i = N can be derived using fictitious points

X-I and XN+I and a discrete form of the boundary conditions (7)

and (8).
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Figure 1: Solutions at t = 0.1 in Cartesian coordinates using using
boundary condition 8u/8x = j3 at x = O. Solid line is for asymptotic
solution and symbols are for the numerical solution on a uniform grid
grid with Jx = 1.

It was shown in [3] for similar problems that the accuracy of

the semi-discretization is determined by the grid size Jx as well as

the second derivative 82u/ 8x2, which in our case is dominated by

j382u(1) /8x2 when j3 is small. In order to isolate the error due to

spatial discretization, we use ode45, a Matlab [7] code which uses

the Runge-Kutta method of order 4 to solve the system of ordinary

differential equations (14).

In Figure 1, solution u and its derivative Ux are plotted for t = 0.1.

(For the rest of the discussion, we choose j3 = 0.1.) It can be seen

that the numerical solution, obtained on a uniform grid with Jx = 0.1,

is in good agreement with the asymptotic solution. However, for a

smaller time t = 0.001, there exists visible difference between the
SHANGHAI STUDY GROUP WITH INDUSTRY -2001.11-
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Figure 2: Solutions at t = 0.001 in Cartesian coordinates using using
boundary condition au/ax = j3 at x = O. Solid line is for asymptotic
solution and symbols are for the numerical solution on a uniform grid
grid with Jx = 1.
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Figure 3: Solutions at t = 0.001 in Cartesian coordinates using using
boundary condition au/ax = j3 at x = O. Solid line is for asymptotic
solution and symbols are for the numerical solution on a non-uniform
grid Xi = (i/N)2.



two solutions near x = 0 on the same grid, as shown in Figure 2.
This is likely due to the lack of resolution near x = O. To increase

the resolution, one can refine the grid globally by using more grid

points, or locally by using a non-uniform grid without increasing the

number of grid points. It can be seen in Figure 3 that the numerical

solution, obtained on a non-uniform graded mesh, agrees well with

the asymptotic solution. In conclusion, the approximate solution

obtained by regular perturbation is quite accurate even with only

one correction. The numerical solution becomes less reliable for small

time and grid refinement is necessary to maintain accuracy.

We now come back to the original boundary condition, but still in

Cartesian coordinates and consider the following problem

au a2u
t > 0, x>O (15)at u ax2'

au 1 au x=O (16)ax (3 + -;;8t'
au

0, (17)ax
x --+ 00

u 1, t = 0 (18)

We look for the approximate solution via regular perturbation

method in a similar way

u = 1 + (3u(l) + 0((32)
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ou(l) 02y(l)
t > 0, x>O

at fh2 ,
ou(1) OU(l)

x=O
ax

1+-0-,
t

ou(1)
0,

ax
x --+ 00

u(l) 0, t = O.

(21)

(22)

u(l) = -it et-T erfc (Vt=T) erfc (~:r)dr.

In Figure 4, we plotted the asymptotic and numerical solutions at

t = 0.1. The computation was done on a uniform grid with 8x = 0.1.

It can be seen that the biggest error of Ux now occurs at x = O.

This can be seen more clearly from Figure 5 where ux(O, t) is plotted

against t. It can be observed that the error increases as t decrease on

a given grid. To improve accuracy, finer grid is needed near x = 0 as t

becomes smaller. It is worth noting that even though the asymptotic

solution is obtained for this case, it involves integrations which must

be evaluated numerically. In this study, we have used Maple [6], a

symbolic mathematical package and it takes a much longer time to

find the asymptotic solution for a given x and t, compared to solving

the equation numerically. Thus, its usefulness may be limited from

practical point of view.
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Figure 4: Solutions at t 0.1 in Cartesian coordinates using
au/ax = j3 + u-1au/at at x = O. Solid line is for asymptotic so-
lution and symbols are for the numerical solution on a uniform grid
ox = 1.
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Figure 5: Solutions at t = 0.001 m Cartesian coordinates using
au/ax = j3 + u-1au/at at x = O. Solid line is for asymptotic so-
lution and symbols are for the numerical solutions. Cross's are for
numerical solution on a uniform grid. Non-uniform graded mesh
Xi = (i/N)" is used for other computation: squares for If, = 1.5;
diamonds for If, = 2 and circles for If, = 2.5.
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Figure 6: Solutions for radial flows at t = 1: solid line is for asymp-
totic solution; symbols are for the numerical solution on a uniform
grid with ox = 0.1.
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Figure 7: Solutions for radial flows at t = 0.01: solid line is for
asymptotic solution; symbols are for the numerical solution on a non-
uniform grid ri = a + (i/N)1.5(b - a).
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Figure 8: Solutions for radial flows at t = 0.001: solid line is for
asymptotic solution; symbols a're for the numerical solution on a non-
uniform grid ri = a + (i/N)1.5(b - a).

We now briefly discuss our original problem (1)-(4). Using regular

perturbation, we have u = 1+,Bu(1)+O(,B2) where u(1) is the solution

of the following problem

ou(1)
~~ (rOU(1)) t > 0, r> 1 (23)

ot r Or or '
ou(1) ou(1)

(24)
or 1 + fit' 1'=1

ou(1)
0, (25)

or
l' --t 00

u(1) 0, t = O. (26)

The solution of this problem may be obtained using Laplace trans-

form in an integral form, as in the case of the Cartesian coordinates

discussed earlier. However, since it is computation ally expensive to

compute these integrals and our numerical solution is obtained on a
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finite domain, we will restrict our domain to an anulus: 1 = a ~ l' ~ b.

The solution v for the unsteady heat equation on an anulus a ~

l' ~ b with the following boundary conditions

ov OV
k1 - + k2 - + k3vat or

ov OV
k' - + k' - + k'vlot 2 01' 3

ak4[k~ - bk~log(rjb)] - bk~[k2 - ak3Iog(rja)]v=-----------------ak3k~ - bk2k~ - abk3k~ log(ajb)
00

-it L e-(\'~t F(O:n)UO(1', O:n){k4[A;,Jo(bo:n) - k~O:nJl(bO:n)]
n=l

F(O:n) = {A~Jo(bO:n) - k~O:nJl(bO:n)} /

{[A~Jo(bO:n) - k~O:nJl(bO:n)]2(A~ + k2Bo:~)

-[AnJo(ao:n) - k2o:nJt (ao:nW (A;? + k~B'o:~)},

[fo = Jo(mn)[AnYo(aO:n) - k2o:nY1(ao:n)]

-Yo(mn)[AnJo(aO:n) - k2o:nJt(aon)],

Jo, Jt, Yo and Y1 are the Bessel functions of the first and second

kinds, respectively and the eigenvalues O:n are the positive roots of

[(A'3 - k1o:2)Jo(ao:) - k2o:Jdao:)][(k~ - k~o2)Yo(ao:) - k~O:Yl(ao:)]

-[(k~ - k~o:2)Jo(bo:) - k~o:Jt(bo:)][(k3 - k1o:2)Yo(bo:) - k2O:Y1 (bo:)]

=0
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On boundary r = b, we will use u(l) = 0 as the boundary condition

since ou(1) lor = 0 is incompatible with the condition 011(1)101' =
1+011(1) lor on r = a. (Alternatively, we can use 011(1)lor = k~ ::j= 0.)

Therefore, we have k1 = -1, J.~2= k4 = k~ = 1, k3 = k~ = k~ = k~ =
O. And the first ten positive eigenvalues computed using Maple are

an = 1.0274, 3.4231, 6.4302, 9.5236, 12.6407,

15.7675, 18.8992, 22.0337, 25.1700, 28.3075

for a = 1 and b = 2.

In Figures 6-8, we have plotted the asymptotic solution and the

numerical solution at t = 1, 0.01 and 0.001. The numerical solution

(symbol) is obtained using a finite volume discretization in r. The

time integration is again done using the Matlab code ode45. The

uniform grid is used for t = 1 but a graded mesh I'i = 1 + {iIN)1.5

is used for t=O.OI and 0.001. It is clear from the figures that the

asymptotic solution agrees with the numerical solution well for t = 1

and 0.01, with the infinite series is truncated at n = 10. At t =
0.001, the asymptotic solution becomes oscillatory, which indicates

that more eigenvalues need to be included in the expangion. In fact,

it will be more efficient to seek an expansion of the solution valid

for t « 1. However, we will not discuss the issue any further in this

report.

In this report we have investigated radial flows in a low permeable

and slightly compressible medium. Regular perturbation method is

used to obtain approximate solution when the compressibility param-

eter (3 is small. It is shown that in general the asymptotic solution
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with only one correction term agrees well with the numerical solution.

However, approximate solution obtained here becomes less accurate

or more expansive to compute for small time. Thus, it may be desir-

able to expand solution into a form suitable for t « 1 since it will be

computationally more efficient. Such solutions have been obtained

for the heat equations and some of them can be found in [1, 2].

When t -+ 0, numerical solution also becomes less accurate on a

fixed grid due to the incompatibility between the boundary and initial

conditions at t = O. A non-uniform graded mesh produces more

accurate solutions but we have not conducted a systematic study on

the effect of a mesh refinement strategy.
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