Evaluation of Customer Lifetime Value

Issic Leung from PCCW

Consultants: Rebecca Gower, Song-Ping Zhu, Benny Hon .

Suggested Model (Berger \& Nasr)

$$
C L V=C \sum_{i=0}^{n} \frac{r^{i}}{(1+d)^{i}}-M \sum_{i=1}^{n} \frac{r^{i-1}}{(1+d)^{i-0.5}}
$$

* Applicability?
-Not in current form!
* Modified Model?

Yes! For 1 customer in 1 service:

$$
\begin{gathered}
C L V=\sum_{i=1}^{n} \frac{C_{i} \prod_{j=1}^{i} r_{j}}{(1+d)^{i}}-\sum_{i=1}^{n} \frac{M_{i} \prod_{j=1}^{i-1} r_{j}}{(1+d)^{i-0.5}} \\
\operatorname{set}\left[\prod_{j=1}^{m} r_{j}\right]=1 \quad \text { if } \quad m<1
\end{gathered}
$$

$C_{i}=i^{\text {th }}$ month's gross contribution
$M_{i}=i^{\text {th }}$ month's marketing spend
$r_{i}=i^{\text {th }}$ month's retention rate
$n=$ number of months, $d=$ discount rate.
Determining the retention rate, r_{i}.
Proposed method:
use the recursion formula

$$
r_{i+1}=1-\left(1-r_{i}\right) e^{-k M_{i}}
$$

Assumption: Marketing in the current month effects retention this month!

Now we need an initial value, r_{1}.
We have 2 suggestions.
Both base the value for any given customer on a group of "similar" customers. The value is calculated for the group and is applied to each individual with those characteristics.

One is simple but under-estimates retention.

Suppose we have historical data of account closures for up to N months. Let n_{i} be the number of accounts that closed after i months.
eg:

$$
\begin{aligned}
& P(j)=\frac{n_{j}}{\left(\sum_{i=1}^{N} n_{i}\right)-\left(\sum_{i=1}^{j-1} n_{i}\right)} \\
& =\operatorname{prob} \text { (leave in month } \mathrm{k} \mid \text { survived } \mathrm{k}-1 \text { months) } \\
& r_{i}=1-\frac{\sum_{j=1}^{N} P(j) n_{j}}{\sum_{j=1}^{N} n_{j}}
\end{aligned}
$$

weighted average on number of customers.
This should take account of any lock-in period.
The other takes currently active customers into account.
We wish to establish the relationship between the data \& the model.

Model:

$\operatorname{Prob}\left(\right.$ Account lasts through the $1^{\text {st }}$ month $)=r$
Prob(Account lasts through 2 months) $=r^{2}$
!
Hence:
Prob(Account lasts exactly 1 month) $=1-r$
Prob(Account lasts exactly 2 months $)=r(1-r)=r-r^{2}$
Prob(Account lasts exactly 3 months) $=r^{2}(1-r)=r^{2}-r^{3}$
:
This relates to closed accounts.
Whence: Prob (account closes BEFORE reaching p months)

$$
\begin{aligned}
& =\sum_{i=1}^{p-1} r^{i-1}(1-r) \\
& =(1-r)+\left(r-r^{2}\right)+\left(r^{2}-r^{3}\right)+\cdots \\
& =1-r^{p-1}
\end{aligned}
$$

$\Rightarrow \operatorname{Prob}\left(\right.$ Account is still active in $p^{\text {th }}$ month. $)=r^{p-1}$
This relates to active accounts.

What is the overall probability that we see the data we have if it obeys the model we impose?

$$
p=(1-r)^{n_{1}}[r(1-r)]^{n_{2}}\left[r^{2}(1-r)\right]^{n_{3}} \cdots r^{m_{1}}\left(r^{2}\right)^{m_{2}}\left(r^{3}\right)^{m_{3}} \cdots
$$

where
$m_{1}=$ no of accounts still active $\&$ only established for 1 month
$m_{2}=$ no of accounts still active $\&$ only established for 2 months !
We now choose r to maximize P.
This is where the relationship between the data \& the model is strongest. PCCW's next question was about combining CLV's to get the overall CLV.

Assume there are K services:

$$
\begin{gathered}
C L V_{T O T A L}=\sum_{k=1}^{K} C L V_{k}, \quad \text { where } \cdots \\
C L V_{k}=\sum_{i=0}^{n_{k}} \frac{C_{i k} \prod_{j=1}^{i} r_{j k}}{(1+d)^{i}}-\sum_{i=1}^{n_{k}} \frac{M_{i k} \prod_{j=1}^{i} r_{j k}}{(1+d)^{i-0.5}}
\end{gathered}
$$

Where $M_{i k}$ is a function of $r_{i-1 k}$ but this is company Marketing policy. and $C_{i k}=$ Revenue $_{i k}$ - Coot of Sales ${ }_{i k}$
Now Revenue ${ }_{i k}=$ Usage $_{i k} *$ unit price ${ }_{i k}$
Let UP = unit price \& US = usage.
Unit price is determined by company strategy and should be kept separate from other Marketing costs, $M_{i k}$.
We suggest that usage ${ }_{i k}$ is a function of unit price ${ }_{i k}$
$M_{i k}$ and cross-effects of advertising $M_{i j} * M_{i k}, j \neq k, j=1, \cdots, k$.

$$
U S_{i k}=f_{1}\left(M_{i k}\right)+f_{2 j}\left(M_{i j} * M_{i k}\right)+f_{3}\left(U P_{i k}\right)
$$

again $j \neq k, j=1, \cdots, k$. Now

$$
\begin{gathered}
f_{1}=\frac{L}{1-c_{1} e^{-r M_{i k}}} \\
L=m_{k} U S_{\max }
\end{gathered}
$$

where m_{k} needs to be estimated by PCCW \& depends on expandability of service

$$
U S_{i-1 k}=\frac{L}{1-c_{1}}
$$

r is estimated from historical data. f_{3} is the price sensitivity.
PCCW may already know this!
If not, we have a couple of suggestions \cdots.
eg $f_{3}=a U P_{i k}+b$
so $b=$ maximum usage ${ }_{k}-U S_{i-1 k}$
$0=a\left(U P_{i-1 k}\right)+b$

Alternatively ...
price sensitivity is proportional to the slope.
Finally $f_{2 j}$ could be given the form: $f_{2 j}=c_{2}\left(M_{i j} * M_{i k}\right)^{2} \quad \& \quad c_{2}$ is determined from historical data.
The fourth PCCW question was about optimizing the Marketing strategy to improve profits.
Now $C L V_{T O T A L}$ can be optimized with respect to $M_{i k}$ subject to $\sum_{i=1}^{n} \sum_{k=1}^{K} M_{i k}=$ Budget.

SUMMARY.

- Total CLV can be optimized against the promotional costs associated with all PCCW services.
- Price sensitivity is build into the model.
- Retention rates are now a function of the promotional costs.
- Cross-effects of advertising are taken into account through the usage function.
- unit price of each PCCW service is now in the model and is separate from the other promotional costs.
- The impact of unit price on usage is also built into the model.
- The new model can revert to the original model if $M_{i k}, C_{i k}$ and $r_{i k}$ are all set to be constants $M, C \& r$.

