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INJECTION MOULDING OF KEY BLANKS WITH ZINALCO

S.J. Chapman1, A.D. Fitt2,H. Ockendon1 & G. Pulos3

Zinalco is an alloy of Zinc (77%), Aluminium (21%) and Copper (2%) that has
many desirable properties as far as manufacturing is concerned. Products made
with zinalco have excellent strength, and the alloy is particularly easy to work
with as it has a low melting temperature. Professor Torres (Instituto de In-
vestigaciones en Materiales, UNAM) has developed zinalco extensively, and is
now considering manufacturing processes that use the alloy. This study specifi-
cally concerns the manufacture of household key blanks by injection moulding.
In a typical production process, a triangular distribution chamber is connected
to five key-shaped chambers. The distribution chamber is filled, and molten
zinalco is forced into the key moulds by a pressure gradient. (See figure (1)
for a schematic diagram.) The total time of injection (including the filling of
the distribution chamber) is typically 10 seconds. A number of different types
of key may be made in this way, but the dimensions of a typical key may be
thought of as being about 5cmx5cmx2mm, there being little variation in the
vertical dimension. Ideally, the injection moulding process should be capable of
a 'quasi continuous' mode of operation where, when the mould is opened soon
after injection is completed, a solid object is ready for further processing.

The melting temperature of Zinalco may be taken to be about 421-481 C.
The variation is due to the fact that the alloy is a two-phase material, so that it i::.
difficult to identify a unique phase-change temperature. In any case, the alloy is
completely liquid at 481 C. In order that the process may be quasi continuous as
described above, the walls of the mould are water-cooled. Although the amount
of water that is used may be varied for different injection rates, it may be
assumed that the mould walls are maintained at a temperature of between 150
and 200 C. In its liquid state, the density, thermal conductivity and specific heat
of zinalco may be assumed to take the values p = 5000 kg/m3, k = 85W Im/C
and cp = 0.56 kJ Ikgl C respectively.

The main questions that have to be answered before the process can be
considered to be completely reliable include:

• The air that is displaced by the injection moulding process escapes from
the mould via strategically placed 'chimneys'. Where should such chim-
neys be placed in order to ensure that all air is efficiently ejected from the
mould?
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• Can air bubbles arising from the passage of the injection front around
obstacles in the flow (for example, holes moulded in the key to allow the
key to be attached to a ring) be avoided in the final product?

• If the mould walls are cooled, will the alloy freeze before the injection
moulding process is completed?

• What parameter values are likely to lead to 'efficient' freezing where the
key is solid a short time after the injection has been completed ?

• For complicated geometries, are there simple numerical techniques that
will allow the mould filling process to he calculated and optimised ?

It is worth pointing out that it is key blanks that are to be made. The
geometry is therefore relatively simple in most applications and there are few
tortuous parts of the mould into which the molten zinalco must be injected.
Of course from a security point of view it would be pointless to produce large
numbers of completely identical keys; When the key blanks are solid, therefore,
they are sent for further processing where they may be machined into their final
shape.

2 Isothermal Injection Moulding
We begin by considering the simplest injection moulding problem where isother-
mality is assUlllf~d. Although such conditions do not prevail in practice, the



isothermal problem may be posed in such a manner to allow further complica·
tions to be introduced later. We assume that the mould occupies the region
o ::; x ::; L,O ::;y ::; L, -h ::;z ::; h and that the dimensions of the mould are
such that E = h/ L « 1 is a small parameter. Beginning with the Navier-Stokes
equations

1
qt + (q.V')q = -- V'p + 1/V'2q

P
V'.q = 0

where q = (u, v, w) denotes the fluid velocity, p the pressure and 1/ the kinematic
viscosity of molten zinalco (assumed constant) we introduce the standard 'Hele-
Shaw cell' non-dimensionalisation (see, for example Ockendon & Ockendon [1]).
Setting x = Lx, y = LiJ, z = ELi, t = (L/U)i, u = Uil, v = Uv, W = EUW
and p = (JLU / LE2)fJ where JL denotes dynamic viscosity and U is a typical fluid
vclocit,y. and dropping the hats immediately for convenience, we obtain

E
2Re[vt + 'll.Vx + vVy + wvzJ = -Py + E

2 (vxx + Vyy) + vzz
4 2 2

E Re[wt + UWx + vWy + wwzJ = -pz + E (E (wxx + Wyy) t wzz)

Ux + vy + Wz = 0

where Re = UL / II is the usual Reynolds number. To leading order, therefore,
the equations of motion are

this simplification being valid so long as E « 1 and E2Re «1. With the
values given above E = h/ L '" 0.04 and, assuming that U '" 5cm per 10 sec
= 5 x 1O-3m/sec and 1/ '" 1O-5m2/sec, we find that E2 Re '" 4 x 10-2 so that
the Hele-Shaw approximation is a valid one. (The value for viscosity is a guess
based on a value of JL = 5 X 10-2 kg/m/sec, but it seems most unlikely that
molten zinalco will be less viscous than water which at room temperature has
JL -~ llI-:' kg/miset:-o When zinalco was being considered for use in continuous
c2,sting an f'xperiment was carried out where the time taken for molten zinalco
at 500 C to flow out of a 40mm by 75 mm crucible through a Imm hole was
measured. The results indicated that the viscosity was comparable to that of
water.)

Solving the first two equations for u and v now gives (on application of the
no-slip boundary condition at z = ±1)



and an equation for p may speedily be determined by integrating the mass
conservation eql~ation between z = -1 and z = 1. The result is that the
pressure must satisfy the two-dimensional Laplace equation

The variables u and v may also be integrated across the cell, giving average
velocities

1v = --Py
3

and it is usual at this stage to make the observation that the pressure resembles
the velocity potential commonly encountered in inviscid incompressible irrota-
tional two-dimensional flow since it satisfies Laplace's equation and and the
(average) velocities are proportional its gradient.

The whole problem may now be posed in terms of the pressure. At the
mould boundaries the normal derivative of the pressure must be zero, whilst at
the injection boundary the pressure is constant (p = 1, say). At the free bound-
ary where the injection front is situated, the pressure must also be constant
(p = 0, say) and the extra condition that allows the position of the front to be
determined is simply that the normal derivative of the pressure is proportional
to the front speed. This formulation of the problem is particularly convenient
to w(,rk with nUlllf'rically since (i) a three-dimensional problem has been re-
placed by a two-dimensional one and (ii) time does not appear explicitly in the
equation, su that the problem is quasi-steady. The normal strategy is to solve
Laplace's equation at a given time (many methods may be used to do this, but
the boundary element method is particularly efficient and convenient), use the
solution thus computed to to advance the free boundary, and ~olve Laplace's
equation again on the new solution region. For extra convenience the condition
on the free boundary may be expressed solely in terms of the pressme by not-
ing that setting p = 0 on the free boundary means that the boundary itself is
determined by p(x, t) = o. If this is still to be the free boundary after a short
time interval dt, then

Pt
Vn = -I \7p I·

Since the normal velocity is also given by Vn = -(\7p.n)j3, and n = \7pj 1 \7p I,
we fincl that on p = 0 we have

1 \7p 1
2

])t - --- = o.. 3



In very simple cases, explicit solutions are available. For example, if injection
takes place into a straight sided channel so that everything is independent of
y and the injection front is given by x = f(t), it is easy to confirm that the
pressure is given by

P=l-XI"ft
fit

f(t) = V 3'

'jJ = J-LU (L _ x f3L)
h2 V Wi

This result is as might be expected; the injection front slows as it advances and
an increase in pressure at x = 0 would be required if it were to move a constant
speed.

A great deal of work has been carried out on other aspects of isothermal
injection moulding. Richardson [2] considered a range of problems where a
blob of viscous fluid occupied a simply connected domain Do in the narrow gap
between two plates. Additional fluid was assumed to be injected at some fixed
point within Do so that the blob grew in size. His main motivation was to
Jetermine the regions that were filled last, so that the placement of air vents
in thf' "wllld could be optimised. Using complex variable methods, Richardson
was able to reduce the problem for simple initial domains to a finite system of
algeLraic equations. In d later study [3] Richardson was able to analyse flow
in finite regions bounded by walls by using images. In this way some quite
involved and realistic exact solutions could be obtained. For example, in the
case of injection in a half-plane a blob of viscou~ fluid expands rarlially until it
touches a wall. Richardson's methods may then be used to show that, as thp
blob expands along the wall, it takes up the shape of a Lemniscate of Booth [4].
Injection into a quarter-plane may also be examined in this way.

For injection moulding, our interest is solely in the problem where a pressure
gradient forces viscous fluid into the mould. Perhaps the greatest volume of
literature on the subject has concerned itself with the ill-posed problem where
liquid is sucked out of a region. Instabilities that manifest themselves in the form
of 'fingering' and cusp development are all well known and understood (see, for
example Howison et a1. [5]). Although some exact solutions are available here



also, matters are greatly complicated by the topological changes in the evolving
flow.

As well as the literature described above, it is worth pointing out that the
usual assumptions that are made during discussion of the two-dimensional elec-
tromachining problem lead (see, for example Collett et a!. [6] and Fitz-Gerald &:

McGeough [7]) to equations and boundary conditions that are almost identical
to free boundary Rele-Shaw cell problems.

3 Non-isothermal Injection Moulding
Isothermal injection moulding is easy to analyse and involves none of the prob-
lems that are associated with premature freezing of the alloy which might pre-
vent complete filling of the mould. Unfortunately isothermal injection moulding
also takes considerably more time as the molten zinalco must cool before the
key blank can be removed from the mould. In order to achieve a more or less
continuous process, where the key blank may be removed from the mould al-
most immediately after it has been filled, the mould walls may be cooled. In
this C<l,sean energy equation must be added to the equations of motion and
account must be taken of the fact that the viscosity varies with temperature.
Assuming that the thermal properties of the zinalco are constant and ignoring
viscous dissipation, the new governing equations become

1 J ( 8qi)qt+(q."V)q=--vp+ ,-.-. v-.-
pax) 8:I'j

"V.q = a
pCp(Tt + (q."V)T) = k"V2T.

Non dimensionalising in a similar way to the isothermal case by setting x = Lx,
y = Lfj, z = ELi, t = (L/U)i, u = Uil, v = Uv, W = EUW P = (11,U/LE2)p,
J.I = J.Iofl and T = To + T(Ti - To) where To denotes the mould wall temperature
and Ti the temperature at injection from the triangular feeder, we find that to
leading order (dropping the hats)

py = (J.IVz)z

pz = a
ux + vy + Wz = a

Tt + ul',; + vTy + wTz = aTzz

k
a=----

PCpULE2



and the conditions for the approximations to be valid are once again that f and
f2Re are both much less than one. The importance of the parameter a should
be stressed as it measures the relative importance of diffusion and convection.
For a » 1 we have to leading order

and the temperature is therefore given by T = To except in a region of width
order h near to the original injection point. Convection is unimportant and, save
for a small 'entry region' where the flow adjusts from Ti to To the temperature
(and thus the viscosity) is constant. Obviously if To is near to the freezing
temperature of the alloy this is a highly undesirable state of affairs as the zinalco
will be able to penetrate into only a small part of the mould before freezing solid.

Conversely, if the parameter a is small convection is all-important and dif-
fusion plays only a small role. The influence of the cooled mould is felt only in
a small layer near to the boundaries and most of the flow remains at a temper-
ature close to Ti. This essentially reproduces the isothermal case and probably
cannot give a continuous process unless a fairly strong 'skin' was formed at the
mould walls that allowed the key, though molten on its inside, to retain its shape
after ejection from the mould.

Having discussed the two obvious special cases of large and small a, we now
note that in the case currently being considered a takes a value (based on the
parameters given above) of about 76. This is somewhat surprising as it seems
to indicate that the zinalco may freeze before it reaches the end of the mould.
Further estimates of a should probably be made when more of the process
dptails have been confirmed.

In general, the temperature dependent problem requires a numerical solu-
tion. There are various simplifications that occur in particular special cases,
however. For example, if we neglect variations in the y-direction and assume
that, at entry, the flow is steady and of fully-developed Poiseuille type, then on
introducing a non dimensional stream function 'l/J(x, z) with u = 'Ij;z, w = -'l/Jx,
the problem may be written

T = 1, 'l/J = z - z3/3 at x = O.

Considering first the entry region, we note that for x small (but larger than z)
we may expect the velocity profile to be largely unchanged. The boundary layer
at the top of the channel may now be analysed. setting



2 k
'l/J = 3 + x f((),

we find that a similarity solution exists if k = 2/3 and n = 1/3 in which case
we have

z-l
( = (xa3)l/3

JL(g)f" = a2p'(O), 3g" + 2fg' = 0

with boundary conditions

JoC exp(- Joq %f(s)ds)dq
9 = Jo00

exp(- Joq ~f(s)ds)dq

and further progress may be made for particular choices of vis~osity; thp main
conclusion however is that, in the entry region where the pressure gradient is
more or less constant, the wall thermal boundary layer grows like X1/3. (The
behaviour of the bottom boundary layer is, of course, identical.)

A number of other similarity solutions and different parameter regimes may
also be examined, and high activation energy asymptotics are also possible for
viscosities of certain types. For more details the reader is referred to Ockendon
and Ockendon [8] where a similar problem was discussed.

4 Purely Numerical Studies of Injection Moul-
ding

Although the simple models described above should be capable of predicting
the main details of the moulding process, it is likely that, if the process is to
be carefully optimised, detailed numerical calculations will be required. There
is a considerable literature on injection moulding problems, and much of it
concerns numerical attacks on the problem. f'or example, Ladiende and Aka)" [9]
considered mould filling by injection of thermoset polymers, using the equations

'\7.(S'\7p) = 0

pCp(Tt + (q.'\7)T) = kTzz + atQm + rl'l

da
at + (q.'\7)a = dt



~
where Qm denotes the heat gener;;'tion from the exothermic cure reaction, .:y
is the strain rate and a denotes the 'degree of cure' that has taken place in
tte polymer. The 'fluidity'S is related to the viscosity of the polymer and
the term da/dt on the right hand side of the final equation must be specified
through a separate 'curing reaction' model. A number of computational issues
are addressed in this study, but the basic conclusion is that the finite element
method may be used to solve the problem t, \ a satisfactory degree of accuracy.

In Subbiah et al. [10] the Hele-Shaw approximations are USf'J, much as de··
scribed above, to simplify the general flow equations. Numerical grid generation
is then used to map the flow region onto a more regular computational domain.
The equations may then be solved in a straight forward manner using standard
finite difference techniques. It is shown that even highly irregular domain shapes
may be handled in this way, and good agreement with experiment is obtained.
This paper also contains numerous references to which the reader is referred for
further numerical details.

5 Bubble Creation in the Moulding Process
Some discussion is worthwhile concerning the problem of bubble creation during
the injection moulding process. A product with bubbles of any appreciable size
is quitf: useless, a:; both the visual standard and the strength of the key are
c(mpromis~d. In normall1se keys are often subjected to large turning moments
and stresses (especially in 01:1 and ill-fitting locks). As anybody who has had
the experience of seeing a key break off in a lock will appreciate, reductions in
the strength of the final product cannot be tolerated.

Under normal circumstances, (for example, when the shapf Lhat is ~o be
manufactured is simply connected) it may be expected that the la.t areas of
the mould that are filled will be most prone to bubble development, and evi-
dently 'chimneys' should be placed here. Detailed calculations using either the
isothermal theory of section 2 or the more complicated temperature-dependent
model of section 3 may be used to determine which areas of the mould are filled
last, but for most key blanks it is clear that the region at the end of the key
(furthest from the injection point) will almost certainly be the correct area to
site 'chimneys'.

When keys are to be made with holes in them (as is normally the case),
matters become altogether more complicated. The continuous injection bound-
ary must split into two distinct pieces when a hole is encountered, and a danger
:tr~sesthat a bubble may be trapped behind the obstacle as the distinct injection
bound,,'ri2S remerge. Figure (2) shows two possible behaviours for the injection
boundary. Obviously in the first case (i) a bubble will be trapped at the rear
at the circular hole, whilst in (ii) no bubble will be formed. Although in mmit
simple models of the injectioll moulding process the bubble will eventually close
of its own accord, when conservation of mass inside the bubble is included a



permanent bubble will be formed when the internal pressure becomes too high.
Primarily because of the changes in topology, it seems to be very hard to analyse
such bubble trapping; multiply connected shapes are also likely to complicate
any numerical methods that are being used. The only sensible precaution seems
to be to place chimneys at the rear of obstacles so that bubbles that may form
may be removed.

T~le following conclusions may be drawn concerning the injection moulding of
zwalco:

• For isothermal injection moulding a simple mathematical model may be
posed that would allow the mould fiHinf[ to be determined completely
using elementary methods

• Even in the non-isothermal case, the problem is considerably simplified
by using asymptotic analysis; in particular only the temperature equation
contains a time derivative and a quasi-steady approach may thus be taken.

• Mathematical descriptions of most flow regimes existing in water-cooled
moulds may be developed using asymptotic methods

• In the non-isothermal case the parameters indicate that the possibility of
solidification and subsequent mould blockage cannot be discounted.



• The full non-isothermal problem may be analysed using fairly standard
finite difference or finite element methods; a large literature already exists .

• The matter of bubble formation behind obstacles in the flow is a hard oue
to analyse, but it seems that placing chimneys at these pO<iitions would
be a good idea.
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