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Pathologists diagnosing lung cancer in a patient must consider the global architecture of the bronchial
tissue, as well as the local architecture of cells and the appearance of individual cells. In order
to obtain more detailed information on the condition of the bronchial tissue, a bronchoscopy is
performed on the patient and a tissue sample of the lesions is obtained. The pathologist obtains
a two-dimensional (2-D) photograph of the sample extracted from a region of the tissue containing
abnormal cells.

Often an abnormal cell will die naturally without forming a cancer so the pathologists are con-
cerned only with identifying the cells that will eventually develop into a cancer. Since cancer
treatment is very aggressive and traumatic for the patient, pathologists want to be fairly certain
that the abnormal cells present in the sample will lead to cancer before recommending treatment.
When the sample contains large amounts of abnormal cells or none at all the diagnosis is simple;
however, in many cases there are just a few abnormal cells in the sample and diagnosis is difficult.

As part of the PIMSIPS Workshop, two members of the Cancer Imaging Lab of the British
Columbia Cancer Research Centre, Drs. Carole Clem and Martial Guillaud, presented a model of
pre-invasive bronchial epithelial lesions. This model presupposes a large number of parameters
designed to accurately reflect the biological process. The two researchers asked the following ques-



tion: Suppose a 2-D cross-section of tissue from the model is presented. What information can
be determined about the original lesion? In particular, is it possible to predict the structure of
the three-dimensional (3-D) lesion accurately enough to determine whether the lesion will progress
towards cancer? (Figure 1).

The lung tissue can be seen as divided into three layers: the basal layer, where stem cells divide;
an intermediate layer, which thickens as more abnormal cells are present; and the epithelial layer,
which is the top layer where cells flatten and die. The tissue is about 10 cells thick. In a normal
tissue, a stem cell divides and gives birth to two identical cells. One of the new daughter cells stays
in the basal layer and will become a new stem cell, while the other daughter cell differentiates and
will slowly move toward the epithelial layer where it will die. A clone is the set of cells that are
descendants of the same stem cell. On occasion, abnormalities may occur in a cell. Most of the
times, the body has mechanisms that will simply stop the life cycle of such a cell; however, there
are a few cases in which the abnormal cell does not die and the cell and its clone multiply out of
control.

Flexible fiber-optic bronchoscopy is an important diagnostic technique used for lung cancer.
The flexible fiber-optic bronchoscope consists of fiber-optic light bundles for light transmission and
auxiliary channels for passing instruments. The flexible video-chip bronchoscope has a small number
of glass fibers to deliver the light distally, but the image is recorded directly by a video-chip at the
distal end of the bronchoscope [22]. Until recently, the only diagnostic tool available to localize
pre-malignant cellular alterations and early bronchial cancer was conventional white light fiber-optic
bronchoscopy (FOB). Because only the relatively thick or polyploid lesions are visualized by FOB,
only 29% of these lesions were visible to an experienced endoscopist [21], [18]. In an effort to overcome
these problems, the Cancer Imaging Laboratory at the British Columbia Cancer Agency (BCCA),
Vancouver, has developed the Lung Imaging Fluorescence Endoscopic Device (LIFE) which utilizes
differences in tissue autofluorescence to detect precancerous and CIS lesions at a much higher rate



than FOB [15], [16].
The instrument is introduced in the patient's lung orally. To obtain a epithelium biopsy, a 1 cm

needle attached to a catheter is placed through the mucosa using the bronchoscope. Using suction,
cells are collected for cytologic evaluation. The sample will contain a vertical cross-section of the
lung tissue including cells from the three layers. From this sample, 2-D biopsies of the lesion are
obtained from which the pathologists must predict whether the lesion will evolve into a malignant
tumor or if it will at least not evolve towards cancer.

Recently, new technology has allowed the ready detection of pre-invasive neoplastic bronchial
lesions, which are believed to be the possible precursors of malignant tumors. The natural history
of lung cancer development from the initial genetic event through other multiple genetic changes,
cell-cell, cell kinetics, and cell-host interaction is not completely understood. New techniques (mi-
crodissection and peR amplification) and tools (quantitative cytology and quantitative histology)
are elucidating this neoplastic development process. These techniques are generally dealing with
snapshots (biopsies, bronchial fragments) of a continuously evolving (changing) epithelium. Current
understanding suggest that as pre-invasive neoplastic epithelial tissue becomes more likely to develop
into an invasive neoplasia, the amount of genetic changes and genetic heterogeneity in the tissue
also increases. While it is still impossible to measure the complete genetic makeup of individual
cells in a biopsy or tissue section, it is possible to measure a few selected genetic changes. However,
it is still impossible to determine the genetic relationship of all the cells in a pre-invasive neoplastic
lesion during the development into invasive cancer. Unfortunately, this is what would be required to
completely understand the evolution of normal epithelium into invasive neoplasia. The only feasible
alternative is to develop models, which try to simulate the initial stages of the neoplastic process
and most importantly to try to simulate the development pathway from normal tissue to abnormal
lesion. The simulated development of an abnormal lesion (clonal or multiclonal) requires a model,
which takes into account not only the individual cell, but also the whole architecture of the tissue.

A graphical computer model of the 3-D architecture of bronchial epithelial lesions was developed
by Dr. Clem in order to refine hypotheses concerning the progressive spatial disorganization of the
bronchial epithelium during the pre-invasive neoplastic process.

There are two main parts in this model. First, there is a static model which simulates the physical
arrangement of cells in normal and pre-invasive neoplastic tissue of the bronchial epithelium, and,
secondly, a dynamic part which allows the simulation of the continuously interacting nature of living
tissue using the 3-D representation obtained from the static model as a starting point.

In the static part, the positions, sizes, shapes and orientations of the nuclei are used as a basis
for the 3-D modeling of the architecture. The representation also takes into account the spatial
arrangement of the nuclei, with several cell layers modeled. The nuclei are modeled by tri-axial
spheroids. The sizes of the major and minor axes of each nucleus are deduced from cytomorphometric
analysis. A homogeneous three-dimensional Poisson point process is used to simulate the candidate-
positions of nuclei. This point process is layered to take into account the different intensities on
the different layers (basal, intermediate and superficial). In addition, the model generates a random
angle of orientation of each nuclear axis. Each newly generated nucleus is inscribed in a suitable
rectangular parallelepiped with faces parallel to the planes defined by the spheroid axes. If this
parallelepiped has an intersection with a parallelepiped of any earlier generated nucleus, the newly
generated candidate-position with its nucleus is deleted.

In order to determine whether the model's behaviour has an acceptable range of accuracy for its
intended purpose, the system computes the values of 2-D parameters from several computer "sec-



tions" through the simulated 3-D image. An iterative process is used, based on statistical comparison
between the 2-D parameters computed and those used from real (2-D) histological sections. If the
t-test showed a statistically significant difference between the obtained values and the expected ones,
the corresponding values are modified and the process is repeated until no statistically significant
differences are found.

The dynamic part of the model can be seen as a tissue growth process applied to the 3-D
representations obtained from the static model. Before applying this growth process, an initialization
procedure is used in order to define the different cell types that can be found in the tissue (stem
or differentiated cells). The simulated tissue can be considered as a closed volume where no cell,
even if it is submitted to a force which pushes it out of the box, can go out except by passing into
the lumen. Each cell is defined by some internal states which include its capacity of division, its
position in the tissue, its age, its displacement capacity, its lifetime and its cell type. Under normal
conditions, only the stem cells are able to divide and only the differentiated cells can migrate from
basal layer to lumen. At each time step, several events may occur: a stem cell can divide and a new
cell can appear; the volume of a stem cell can increase; a differentiated cell can move towards the
lumen; a collision between two cells can occur; a cell can die; a nucleus can enter into pyknosis. All
these events induce local and global modifications of the tissue architecture and require the model
to check the structural stability of the tissue at each time step. Furthermore, all these processes, in
order to occur, require an analysis of the local environment of the cell which is involved in one of
these events.

The analysis of the local environment of a cell requires the detection of any small changes on
the position of a cell and its neighbours. The Gabriel Graph is one of the most commonly used
distance mathematical methods for cluster detection. It is sensitive enough to noisy conditions
while giving most information necessary for the analysis of the local environment. Simulations of
different diffusion patterns of abnormal cells within the bronchial epithelium during the pre-invasive
neoplastic process have been obtained as well [4]' [5], [6], [7].

As with any tractable mathematical model, there were a number of assumptions made about the
biopsy procedure and cell behaviour:

1. The cross-section consists of a vertical plane of the lung tissue. That is, the cross-section goes
from the basal layer to the epithelial layer.

2. Any given lesion starts with only one abnormal cell, since the probability of an abnormal cell
forming from a normal cell is extremely small.

3. The cross-section is taken in the lesion detected by bronchoscopy and will therefore (with high
probability) be near the site where the lesion began.

4. Normal cells are formed at the basal layer through cell division of stem cells. They then have
a tendency to "drift" towards the epithelial layer. As a simplification to the problem, we will
assume that the stem cells will always remain static at the basal layer and the new cells will
be the ones moving upwards. This assumption is valid since mother and daughter cells are
identical.



Clearly there are a large number of parameters to consider in solving this problem. In particular,
any mathematical system must form a simpler model that accurately describes Clem's model. To
this end, we decided to begin by modeling a 2-D process (that is, we effectively assumed lesions are
formed in a 2-D lung). We then studied the difficulty of taking a I-dimensional cross-section and
determining the structure of the 2-D process. In this report we assume that cells divide with a fixed
probability and that cells cannot move once they are formed (that is, there is no lateral or upward
movement).

We will be working with the integer lattice with all points having non-negative coordinates. There
will be an initial abnormal cell at position (0,0). Given an abnormal cell at position (i,j), an ab-
normal cell will occur at position (i + l,j) with fixed probability p (0 < p < 1) and independently
at position (i,j + 1) with the same fixed probability p (0 < p < 1). Since the total height of a
cross-section in the 3-D case is at most ten, we will only allow cells to occupy lattice positions (i, j)
such that 0 :S (i + j) < 20,0 :S i, j < 10. That is, we restrict to a height of 10 along the diagonal
(i.e. the points (0,0), (1, 1) ... (9,9)).

A configuration for p = 0.6 is illustrated in Figure 2. Notice that since there are only a finite
number of configurations of abnormal cells, it would be possible to enumerate all configurations and
assign each a probability (as a function of p). A cross-section of a configuration (the only information
we assume is available) will be the line of slope 1 passing through the point (0,0). As a practitioner,
the reproduction rate of abnormal cells, p, will be of interest. Therefore, one problem that we wish
to address here is the following:

Given a cross-section of a configuration generated using some probability p, find an interval [PL, pu]
such that 90% of the time, in repeated experiments, similar intervals will contain the true value p;
that is, find an approximate 90% confidence interval for the parameter p.

Notice that we can view a cross-section as a sequence of O's and l's of length 10 where the first
element is always 1 and represents the abnormal cell at (0,0). The sequence for the cross-section
in Figure 2 would be 1101000000 since there are abnormal cells at positions (0,0), (1,1) and (3,3).



Mathematically, a cross section can be denoted by (X 0, Xl, ... ,Xg) where Xi = 0 if a normal cell
is in position i on the cross section and Xi = 1 if an abnormal cell is in position i.

The model described above was developed and run through computer simulations for various values
of p. It is hypothesized (and verified through experimental results) that at p = .64 [13] there is a
threshold effect - any smaller p results in mainly small configurations whereas any larger p results
in most configurations having some cells that reach the last level. Our analysis, described in the
following paragraphs, confirms this conjecture.

Using Monte Carlo simulation methods, generating 1000 2-D lattices for each value of p between .1
and .9, incrementing by .1, we were able to determine the (approximate) probability of an abnormal
cell being at a particular lattice point in the cross-section, for all points in the diagonal slice under
consideration; that is, we were able to find the marginal distributions of the random variables
Xi, i = 0,1, ... ,9. The joint distribution of these indicator random variables would require many
more simulations, as there are 210 sample points to consider in the joint distribution. Therefore, a
suitable test statistic should be sought in order to make inferences about the parameter p.

Our strategy for estimating p was to choose as a test statistic the last grid point along the
cross-section that was occupied (i.e. the position of the right-most 1 in a cross-sectional sequence,
or max (i : Xi = 1)). The rationale for choosing this value as a test statistic was that it was evident
from running simulations and also intuitively that the last g~id point was very sensitive to the true
value of p. Therefore, given this information, estimation of the parameter p may be relatively precise.
Furthermore, this is a single (univariate) random variable, which can be studied thoroughly using
simulation. The choice of a test statistic at this point is highly intuitive, and verification that the
test statistic is "good" (that is, a function of a complete and sufficient statistic, unbiased, optimal
in terms of variance) has not been formally investigated.

Again using Monte Carlo simulation based on 1000 trials, for values of p between .1 and .9,
incrementing by .1, we obtained frequency histograms of the test statistic (comprising the last grid
point along the cross-section) (Figure 3). Table 1 shows the results obtained after running the
simulation 1000 times.

p IvlO lvl 1 lvl 2 lvl 3 lvl 4 lvl 5 lvl 6 lvl 7 lvl 8 lvl 9
0.1 983 16 1 0 0 0 0 0 0 0
0.2 915 79 5 1 0 0 0 0 0 0
0.3 828 126 35 7 3 0 1 0 0 0
0.4 677 190 57 41 15 8 6 3 0 3
0.5 470 189 115 68 37 31 19 27 20 24
0.6 300 102 74 69 43 42 40 47 61 222
0.7 151 47 26 19 8 6 29 36 87 591
0.8 68 1 6 1 2 0 3 10 58 851
0.9 17 0 1 0 0 0 1 2 9 970

Table 1: Table of frequencies of the test statistic (last grid point along the cross-section) after 1000
simulations.

Using these results, we attempted to estimate the value of p used in the sample cross section
(Figure 2). A natural method to use with this amount of information is the method of maximum
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Figure 3: Frequency histograms representing last grid point along the cross-section of 1000 simula-
tions (Table 1). Probability values p between 0.1 and 0.9

likelihood. From the list of frequencies, we found the (approximate) maximum likelihood estimate
of p to be 0.6 (that is, the probability function of the test statistic is maximized at p = 0.6). This
"perfect" estimate is, of course, in light of the fact the we have no histograms for any other values
of p between 0.5 and 0.7. We also found an approximate 90% confidence interval for p using these
histograms: [.4, .8]. Again, the interval would be slightly different (more precise) if simulations for
more values of p were performed.

There are a number of extensions to this model that warrant further investigation. First, we hope
to calculate, for a probability p, the probability of a particular configuration occurring, explicitly.
Using this information, the joint distribution of (Xo, Xl, ... ,Xg) can be obtained, and the entire
sample cross-section may be used to estimate p (we would in this case maximize the joint probability
function of (XO,X1, ... ,Xg)). This may also allow us to arrive, either explicitly or numerically, at
the exact probability distribution of the proposed test statistic (last grid point along the cross-
section), and therefore exact estimates and confidence intervals for given confidence levels. The
rigorous investigation of the proposed test statistic mentioned earlier would also be possible.

If the above explicit solutions are unfeasible to establish, a next step would be to investigate
the distribution of the proposed test statistic for a much finer partition of the interval (0,1) and to
establish much more precise estimates. Next, we will investigate models in which cells are allowed



3 Modelling Lesions as Contact Processes

The model proposed above could be seen as a discrete time Markov chain. Hence, we could modify
this to be defined over continuous time. Markov chains in continuous time are defined by giving the
rates

at which jumps occur from state x to state y, where Q is a constant representing the total jump
rate and p(x, y) the transition probability at each point of a Poisson process with rate Q.

The finite dimensional distributions of the process at statet[x] at time t is described by the
probabilities P(statet[Xl] = il, ... statet[xn] = in), for each choice of a finite number of sites Xl, ... , Xn
and of possible states il, ...,in. The total configuration at time t is described by giving the state
of each site x. An initial distribution for the process which does not change in time is called a
stationary distribution [17].

If there is a stationary distribution which concentrates on configurations that have infinitely many
sites in each possible state then we say that coexistence occurs. In most cases in which coexistence
occurs there will be a translation invariant stationary distribution where P( statet [x] = i) is a
constant u[i] > 0 that we will call the density of type i [17]. Clustering occurs if for each x and y
the probability of seeing one type of particle at x and a different type of particle at y converges to
o as t tends to infinity [17].

The contact process model was first introduced by Harris in 1974. In this model, each site in the
square lattice is either occupied (in state 1) or vacant (in state 0) and follows the conditions:

(i) An occupied site becomes vacant at a rate 8; and

(ii) a vacant site becomes occupied at a rate equal to the fraction of the four nearest neighbours
that are occupied. [14].

Much research has been done on these types of models [[17], [8],[9], [10],[1]], but perhaps the
most important result on contact process is the Complete Convergence Theorem:

When the contact process does not die out then it will converge to the stationary distribution that
is the limit starting from all 1 's [11].

An immediate consequence of this is that the only stationary distributions for the process are:

(i) the limit starting from all l's,

(ii) the trivial stationary distribution which assigns probability one to the all O's configuration, and

(iii) p times (i) plus (1 - p) times (ii) [11].

An interesting modification to this model was presented by Durrett and Levin in 1994 when they
proposed that the behaviour of stochastic spatial models could be determined from the properties
of the mean field ODE [12].

Going back to our model, we will rephrase it in terms of a modification to the contact process
model. We will define our diamond lattice (square lattice rotated 45 degrees) to be at most 10 cells
in the diagonal since that is a characteristic of the lung tissue. Each site in the diamond lattice is
either occupied by an abnormal cell (in state 1) or vacant (in state 0) and follows the conditions:

(i) a vacant site becomes occupied at a rate equal to >. times the fraction of the four nearest
neighbours that are occupied, and



(ii) an occupied site becomes vacant at a rate equal to 8 times the fraction of the four nearest
neighbours that are vacant,

where 8 :S A < 1 is the rate at which abnormal cells split and 0 :S 8 < 1 is the small probability of
an abnormal cell being displaced from the site by a healthy cell. The reason for these constraints
is that we are interested in the problem where both normal and abnormal cells coexist (at least in
the early stages). It is easy to see that if 8 ~ 1 the process would die out, i.e., there would be total
recovery; and if A ~ 1 then the abnormal cells would take over the entire tissue.

In practice, the vacant sites are not actually vacant but occupied by healthy cells that can be
displaced by abnormal ones. However, since we are currently only concerned about the growth of
abnormal cells, considering the healthy sites vacant simplifies the problem considerably. Condition
(ii) is necessary since there is a very small probability that a healthy cell may displace an abnormal
cell. When this occurs, since we are not allowing cells to drift in any direction on the plane, the
new cell will be pushed out of the 2-D plane. Hence, for this simple 2-D model, this situation is
resolved by setting 8 = 0; i.e., once a site is occupied by an abnormal cell, it will never become
vacant. However, the condition 8 > 0 must be considered when introducing drift and when building
the 3-D model.

Let So = {finite subsets of Z2}. If A E So is the original set of abnormal cells, then let f,t be
the set of sites occupied by abnormal cells at time t. We can rewrite the above as Markov processes
(f,t k::o and their jump rates are given by

where Ilxll is the distance from x to 0; i.e., the rate at which a site becomes occupied by an abnormal
cell is dependent on the cardinality of the set of sites occupied by abnormal cells adjacent to the
current site.

Note that if 8 = 0 and A = 1, then our model is a finite version of Richardson's growth model
presented in [19]. There Richardson showed that if B(t) is the set of sites occupied at time t, then
B(t)jt clusters to a limiting shape, which is roughly but not exactly circular. Since we assumed
that the process started with a single abnormal cell at the origin, then we are only interested in the
process f,f.

Hence, we can represent our model using a partial differential equation to describe the stochastic
process. We will consider the following equation:

an an7ft = (}~n + An + p,y ay
where n represents the number of abnormal cells in the region of interest. We quickly summarize
the various parts of the equation.

The term:

an
- = (}~nat

represents the diffusion equation, and models the random movement of the abnormal cells in the
tissue over time, where () is the diffusion constant. The birth rate of the abnormal cells is controlled
by the parameter A. Clearly this term allows the number of abnormal cells spawned at any given
time to grow linearly with the current number of abnormal cells.



to model this phenomenon. Notice that this term depends on the distribution of the cells in the
vertical direction, since we can expect more cells to drift upwards if there are more cells clustered
near the basal layer of the tissue than elsewhere.

To model other aspects of the biological processes occurring in the diseased tissue, additional
terms are required. For example, the term:

an
f-lx ax

can be added to model the lateral drift of the cells; the rate can be controlled through the parameter
f-lx·

Finally, we need to apply suitable boundary conditions. For instance, we could set the Dirichlet
conditions:

at the bottom and top respectively of the cell layer. This makes sense physically since in this simple
model we only allow one abnormal cell at the basal layer, and assume that once cells reach the top
layer they die. The boundary conditions to model the sides of the region are more complicated. A
possible solution would be to use moving boundary conditions at these edges, so that as the lesion
expands the boundaries would also expand.

The growth of cancer cells involves many different processes which can only be captured by a complex
model. However, simplified models provide a great deal of insight into the fundamental processes
involved. In this workshop we proposed two simple models - one discrete stochastic model and one
PDE model- to solve a 2-D simplification of the original problem.

It is worth mentioning that, after the PIMSIPS workshop, we came across a model of skin cancer,
presented for the first time by Williams and Bjerknes, that follows a similar approach to ours. In
their model, each site is either occupied (in state 1) or vacant (in state 0) following the conditions:

(i) an occupied site becomes occupied at a rate {j times the fraction of the four nearest neighbours
that are occupied, and

(ii) a vacant site becomes occupied at a rate equal to the fraction of the four nearest neighbours
that are occupied.

Letting B(O) be a finite set and B(t) be the set of lattice points occupied at time t, if B(t) is ever
the empty set then it will remain so for all time, in which case we say the model dies out [20].
In other papers, Bramson and Griffeath showed that if B(t) does not die out, then B(t)jt has a
limiting shape [2], [3]. The main difference between this model and ours is that, by the nature of the
problem, skin cancer growth was modelled only as sidewise splitting on the basal layer in such a way



that the surface folded onto a torus. On the other hand, our lung cancer model is very constrained
since we are modelling all three layers as cross-sections of the bronchial epithelium, which forces the
model to be restricted to a finite height along the diagonal. However, the model of Williams and
Bjerknes gives veracity to ours since their approach, similar to ours, is plausible and well studied.

Our next step is to add both horizontal and vertical drift to the 2-D discrete model. This will
make it more natural to model as a stochastic process as well as make it closer to the experimental
observations. There is also a natural extension to using a 3-D lattice for the discrete model. In the
partial differential equation model we will require another independent variable to handle movement
of cells in the third dimension. Hence, if Ilx and Ilz are the rates of lateral drift at which cells move
along the x- and z-axis, respectively, then

By combining analytic techniques with computer simulations we hope to produce a model that
is useful in modelling the growth of cancer cells and predicting the existence of lung cancer at an
early stage.
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