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Abstract

The wastewater from greenhouses has a high amount of mineral contamination and
an environmentally-friendly method of removal is to use algae to clean this runoff water.
The algae consume the minerals as part of their growth process. In addition to cleaning
the water, the created algal bio-mass has a variety of applications including production
of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can
even be used as a source of heating or electricity.

The aim of this paper is to develop a model of algae production and use this model
to investigate how best to optimize algae farms to satisfy the dual goals of maximizing
growth and removing mineral contaminants.

With this aim in mind the paper is split into five main sections. In the first a review
of the biological literature is undertaken with the aim of determining what factors effect
the growth of algae. The second section contains a review of exciting mathematical
models from the literature, and for each model a steady-state analysis is performed.
Moreover, for each model the strengths and weaknesses are discussed in detail. In
the third section, a new two-stage model for algae production is proposed, careful
estimation of parameters is undertaken and numerical solutions are presented. In the
next section, a new one-dimensional spatial-temporal model is presented, numerically
solved and optimization strategies are discussed. Finally, these elements are brought
together and recommendations of how to continue are drawn.

4.1 Introduction

Greenhouses produce large amounts of mineral rich runoff water that needs to be
treated to avoid ground-water contamination. The contaminants are mostly fertilisers
such as nitrogen and phosphorus. It is both an environmental challenge and a legal
requirement to avoid such contamination. A simple and efficient treatment to lower
the nutrient concentration is to grow algae in shallow outdoor racetrack ponds, which
are cheap and easy to maintain. This problem was presented by Phytocare who wants
to achieve the following goals: To prove that algae cultures can clean runoff water; to
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obtain experience in growing algae cultures and develop protocols for industrial scale
production; and to work toward producing an economically valuable product from
the runoff water. This could be the start toward a new sustainable economic activity
for greenhouse builders.

To grow algae, one requires not only nutrients but a supply of energy, which
is provided by sunlight. The photosynthesis process converts photonic energy and
carbon dioxide into glucose, or sugar. Thus, the pond requires an inflow of runoff
water from the greenhouses as well as a pump that maintains a specified amount of
carbon dioxide in the pool. The pond is continuously mixed to allow for homogeneous
growth conditions and algae is continuously removed by ‘sieving’ the water, see figures
4.1 and 4.2.
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Figure 4.1: Schematic of a racetrack pond. Photos of the key parts can be seen in
figure 4.2.

Algae not only remove the contaminates from water, but are an extremely im-
portant resource in many fields of industry. On the one hand, they can be employed
for production of bio-diesel and bio-ethanol. On the other hand they form an impor-
tant food source for shellfish or other animals. In addition, they are commercially
cultivated for pharmaceutical and cosmetic purposes as well as to produce biomass,
which is subsequently exploited to create heat and electricity. This wide variety of
applications of algae explains the interest in controlling their growth.

The remainder of this paper is split into four sections. In the second second
an hierarchy of exciting models from the literature is reviewed. For each model a
equilibrium point analysis is undertaken and the limitations are discussed. In the
third section a new two-stage ordinary differential equation model that considers the
evolution of carbon, sugar, nutrients and algae is presented. Careful estimates for
the parameters are obtained using a combination of the literature reviewed above
and temporal averages of the equations. The fourth section presents an alternative
partial differential equations model, which considers the depth and temporal evolu-
tion of two separate nutrients (phosphates and nitrates), carbon dioxide and algae
growth. Numerical solutions are presented and a discussion of how to optimize the
algae growth is undertaken. In the final section all these models and approaches are
compared and contrasted, and then the factors that affect the growth of algae are
discussed.
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Figure 4.2: Images of an algae farm owned by Ingrepro: Top left, overview of the
racetrack pond; top right, close up of the mixing device; bottom left, algae extraction
apparatus; bottom right, bagged dry algae. Images reproduced with permission of
Ingrepro, Borculo, The Netherlands. Website www.ingrepro.nl. Photos taken by V.R.
Ambati.

Brief review of existing literature

Before discussing mathematical models, we will briefly review some of the biological
literature on the growth of algae; including a study of the conditions for optimizing
the growth of algae and the removal of contaminants. We explain this process in
terms of environmental conditions. The most important parameters regulating algal
growth are temperature, nutrient quantity and quality, intensity of light, levels of
CO2 and O2, pH and salinity. Knowledge about the influence and ranges of these
parameters will help us to promote algae growth. The temperature of water as well
as the nutrients content must be on the level that will allow the algae to grow [9].
The optimal temperature for phytoplankton cultures is generally between 20◦C and
30◦C. Ranges for nutrients are presented in [12] and [6], whereas content of specific
elements with focus on nitrogen and phosphorus is described in [15]. Since algae
are photo-synthetic organisms, there is a need to set the cultures in areas of vary-
ing temperatures but with sufficient light to promote photosynthesis. Photosynthesis
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depends also on the light intensity and frequency. The photo-synthetic rate is pro-
portional to irradiance and the higher the irradiance, the longer the dark period that
can be afforded by the system without loss of growth [20]. Optimal light intensity for
algae is 2,500-5,000 lux. According to Vonshak et al. [31], growth of algae becomes
saturated at a range of 150−200µmol photon m−2s−1. For a high photosynthesis
rate balance between CO2 and O2 has to be taken into consideration [27]. In ad-
dition, Pulz in [27] described that species-specific O2 evolution rates were recorded
between 28 and 120 mg O2/(gDWh−1) in high-cell-density micro-algal cultures with
optimum growth; whereas, Cheng et al. [6] studied the CO2 concentration during
algal growth and determined that the proper range is 0.8%-1.0%. Deviations from
the optimum pH and salinity will cause productivity problems. Therefore optimum
conditions should be maintained. The pH value for optimum growth of algae ranges
between 7-12. Every algal species has a different optimum salinity range [4]. Paasche
at al. [24] found a salinity range of 10 to 34 ppt for growth of clones of Emiliania
huxleyi.

4.2 A hierarchy of models and some qualitative analysis

In this section we describe a hierarchy of increasingly complex, minimal models for
light and nutrient limited algae growth which may serve as building blocks for more
detailed models. All model ingredients were taken from the literature. The light-
limitation is a crude model for the influence of photosynthesis on growth, lumped
into a few parameters that would need to be gauged by measurements or extended
by more detailed model components. This holds similarly for other influences, such
as CO2, pH value, etc. In the models presented in this section, we do not specify
values for such parameters but rather investigate the qualitative dynamics of the algae
growth and its interpretation.

We start with the purely light limited scalar model derived by Huisman et al in
[12]. Inspired by the model in [10], see also [9], we extend this model by including two
nutrients and a temperature dependence, but keep a scalar model. We then move
on to a model by Klausmeier ([17, 16]) for nutrient-limited growth where nutrient
densities are variable, and where intra- and extracellular densities are distinguished.
Lastly, we combine this with the light-limitation model by Huisman ([12]).

The Huisman model: light-limited, nutrient surplus

This model has been derived in [12] and gives the density of algae A(t)≥0 through
the scalar ordinary differential equation

d

dt
A=H(A) :=

gain︷ ︸︸ ︷
µmax

zmax
ln

(
HP +Iin
HP +Iout

) A
kA+Kbg

−
loss︷ ︸︸ ︷

hrA−DrA. (4.1)
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The parameters of the model can be roughly grouped into external, somewhat
controllable, and internal, algae dependent parameters. All of these also depend to
varying degrees on CO2, pH value, temperature, nutrients, etc.

External parameters
incoming light: Iin
outgoing light: Iout
background turbidity: Kbg

mixing depth: zmax

dilution / outflow: hr

Internal parameters
maximum specific growth rate: µmax

half saturation of photosynthesis: HP

specific light attenuation: k
specific maintenance (death rate): Dr

One of the main aspects of the model is that, even in the presence of mixing,
the light intensity decays with depth due to ‘shading’ by algae above. For the above
spatial average model this means:

Iout = Iin exp(−(kA+Kbg)zmax).

In [12] the form of the growth rate H is compared with ecological reality. For instance
the inverse proportionality with respect to zmax suggests that shallow tanks are better
for growth, which is well known in practice. Note that here this effect is given by a
quantitative scaling law, and, for instance halving zmax has much greater effect than
doubling Iin. We shall investigate some other qualitative predictions of this model.

Steady state analysis. The qualitative behaviour of a scalar ordinary differential
equation is essentially determined by the location and stability of steady states, where
H(A) = 0: the flow is monotone on intervals between equilibria with direction com-
patible with the (necessarily changing) stability of these equilibria. It is convenient
to rewrite (4.1) in steady-state as

µmax ln

(
HP +Iin

HP +Iout(A)

)
=zmax(kA+Kbg)(hr+Dr), (4.2)

where we divided by A, to remove the trivial steady state A= 0. The relative value
of left and right hand sides (LHS, RHS) of this equation determines growth via

d

dt
A>0⇔ LHS > RHS. (4.3)

We first observe that LHS saturates for growing A to the asymptotic state,

µmax ln
(
HP +Iin
HP

)
, while RHS is growing linearly. This implies that for sufficiently

large A we always have d
dtA<0 which makes intuitive sense as we expect that very

large amounts of algae cannot be maintained.
Since the model is scalar, this decay can only be stopped by a steady state, which,

in absence of positive steady states means A= 0. The left and right hand sides at the
state without algae satisfy:

LHS at A= 0:

Value: µmax ln
(

HP+Iin
HP+Iin exp(−Kbgzmax)

)
Slope: µmaxzmax

Iin exp(−zmaxKbg)

HP+Iin exp(−zmaxKbg)

RHS at A= 0:

Value: zmaxKbg(hr +Dr)

Slope: zmaxkA(hr +Dr)
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Figure 4.3: Configurations without stable steady state (a) and mono-stability (b).
Arrows on the horizontal A-axis indicate the direction of growth. Bullets are steady
states.

We infer that A= 0 is the only steady state if the light intensity Iin is very small or
if the depth zmax is very large. Again, this makes intuitive sense as ‘life need light’ to
overcome depletion and natural death. The algebraic criterion for this is cumbersome
and does not provide much insight. A relatively simple sufficient criterion for the
existence of another steady state above A= 0 is that the value of LHS at A= 0 is
bigger than that of RHS:

µmax ln

(
HP +Iin

HP +Iin exp(−Kbgzmax)

)
>zmaxKbg(hr+Dr). (4.4)

As mentioned, this holds for large Iin, or for small zmax and Kbg i.e. a clean shallow
tank, and can be somewhat controlled by small depletion (harvest) rate hr.

Geometrically, steady states are intersection points of the graphs of LHS and RHS,
see Figure 4.3. Since LHS is concave and RHS linear, under criterion (4.4) there is a
single non-zero positive steady state. Since A larger than this implies decay as noted
above, this steady state is stable, that is, when perturbing the amount of biomass the
growth dynamics will be driven back to this state. This configuration may be called
‘mono-stable’ as the state without algae is unstable, which is ecologically perhaps
unrealistic as it implies that even the smallest initial amount of algae suffices for
stable growth up to a ‘carrying capacity’. Note that the geometry implies that there
is a single point of fastest growth, which means that a slowing of growth implies that
the reactor is roughly halfway to its carrying capacity state.

The other possible configuration with positive carrying capacity is plotted in Fig-
ure 4.4. Here the initial amount of algae concentration has to lie above a threshold
value to trigger growth until the carrying capacity state.

Huisman Model with nutrient limitation

As a first step to incorporate nutrient limitation we include a nutrient concentra-
tion dependent factor in the gain term, similar to the model in [10]. Denoting the
amount of nitrogen and phosphorus as N and P , we assume for this factor the typical
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Figure 4.4: Typical dynamics of the Huisman model.

saturating form
P

(HP +ξPP )

N

(HN +N)

known from generic growth models, whereHN , HP are the half saturation parameters.
To close the system, we assume instantaneous nutrient adaption

P =PTot−αA, N =NTot−βA,

where PTot,NTot is the total influx of nutrients and α,β environmental parameters
measuring the uptake into algae concentration.

It has been reported in the literature [5] that growth is more sensitive to Phos-
phorus, which we crudely model by taking the parameter 0≤ ξP <1. For simplicity,
we initially set ξP = 0, so that the resulting model becomes invalid for large amount
of P .

In addition, and mainly for illustration, we follow [10], see also [9], to include
simple forms of temperature (T ) dependence with respect to a reference temperature
Tref and rates θj , j= 1,2.

d

dt
A =

µmax

zmax
ln

(
HP +Iin
HP +Iout

) A
(kA+Kbg)

×θT−Tref
1

P

(HP +ξPP )

N

(HN +N)

−DA−Drθ
T−Tref
2 A.

Steady state analysis for ξP = 0. As above we pursue a steady state analysis and
divide out A= 0, which now gives

µmaxθ
T−TRef
1

zmax

(
D+Drθ

T−TRef
2

) ln

(
HP +Iin
HP +Iout

)
=

(kA+Kbg)(HN +NTot−βA)

(PTot−αA)(NTot−βA)
.
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Figure 4.5: Sketches of possible configurations for the extended Huisman model with
nutrient limitation. (a) ξP = 0, (b) 0>ξP ≤1.

In essence, the left hand side is the same as in (4.2), but the right hand side is no
longer affine. Instead, it has the shape sketched in Figure 4.5(a), and in particular
has the negative asymptotic value −k/α.

Therefore, large values of A imply d
dtA>0, which would mean unbounded growth.

This is of course unrealistic, but as mentioned, the model becomes invalid for large
values of A. We infer that, within the range of validity, the largest steady state is
always unstable, and may be A= 0 in which case any initial amount of algae will grow
(and eventually lie outside the range of validity).

The most interesting case is when there exists a positive stable ‘low’ steady state,
which (to be consistent) implies the presence of a larger unstable ‘threshold’ steady
state. This would mean that starting with initial algae below this larger unstable
state and above any potential low threshold states, the reactor would always converge
towards the low stable state. It would thus not reach its potential, which is an algae
concentration so large that it is outside the range of this model.

One way to drive the reactor beyond the high threshold value would be control of
the parameters, which is, however, beyond the scope of this article.

We note that it is for instance also possible that, geometrically, RHS lies below
LHS everywhere, which implies unbounded growth for any amount of initial algae.

Steady state analysis for 0<ξP <1. In this case the steady state equation reads

µmaxθ
T−TRef
1

zmax

(
D+Drθ

T−TRef
2

) ln
(
HP +Iin
HP +Iout

)
=

(kA+Kbg)(HN+NTot−βA)(HP +PTot−αA)
(PTot−αA)(NTot−βA) .

The main difference compared to ξP = 0 is that now the RHS asymptotically grows
linearly, so that for large values of A we have the more realistic case d

dtA<0. As in
the original model, this implies that the largest steady state is stable (which may be
A= 0). Qualitatively, and for small ξP >0 also quantitatively, the discussion of ξP = 0
applies when augmented by a stable steady state larger than all others. This can be
viewed as the ‘carrying capacity’ state of the reactor. In particular, the scenario of
a stable low state now implies presence of a high stable state, which may be called
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‘bi-stability’: coexistence of two stable states. Bi-stability is a signature of nonlin-
ear systems and is analogous to a ball rolling in a landscape with two depressions:
depending on the initial conditions, the ball can be caught in either and will remain
there. In order to use the full potential of the reactor it is desirable to drive it always
into the large carrying capacity state, but a discussion of this is beyond the scope of
this short article. We only mention that a simple theoretical control would make the
tank more shallow so that the maximum of RHS will be below the LHS curve.

We emphasize that local considerations near any fixed value ofA cannot determine
whether there exists such a larger stable state: It is an effect of global properties of the
model. One indicator of bi-stability that uses medium-range deviation from a known
potentially low stable state would be that the return towards this state significantly
slows down upon increasing the perturbation in A. This occurs when approaching
the unstable threshold steady state between the low and high states: when the red
and green curves get closer, the rate of decay becomes smaller, see Figure 4.5.

The Klausmeier model: nutrient-limited, light surplus

We describe the model from [17, 16] and summarize some relevant results. The model
considers the biomass growth depending on the inner nutrient resources of the cells,
rather than directly on the nutrient supply in the water. It thus accounts for limited
physical space within the cells, which prevents uptake of arbitrary large quantities of
raw nutrients, and the time it takes the cells to convert the raw nutrients into the
biomass.

The nutrients available from the environment, RN , RP , corresponding to N and
P , respectively, are thus distinguished from nutrients taken up from the water and
stored within the algae cells, i.e., ‘quota’ nutrient: QN , QP . This approach also
allows us to calculate the ratios of raw nutrients left in the water to the cell quota
Qi/Ri (i=P,N).

Biologically meaningful initial conditions in this setting require Qi>Qmin,i, i.e.,
the cell growth starts only after a certain threshold value of stored nutrient has been
surpassed. Furthermore, at the initial time t= 0 a certain amount of the biomass and
nutrients are present in the water A(0)>0, Ri(0)>0.

Klausmeier et al [17, 16] derived a 5-dimensional model, which describes the dy-
namics of the concentrations of two co-limiting nutrients and one algae species in an
ideal chemostat (the nutrient supply rate a matches the algae dilution rate hr).

dRi
dt

= a(Rin,i−Ri)−
vmax,iRi
Ri+Ki

A,

dQi
dt

=
vmax,iRi
Ri+Ki

−µmax min
j=1,2

(
1−Qmin,j

Qj

)
Qi,

d

dt
A = µmax min

j=1,2

(
1−Qmin,j

Qj

)
A−hrA.

The conservation law of this models concerns the total nutrients, which is given
by
∑
j=1,2Rj+QjA; note that Qj is the nutrient concentration within a cell. Indeed,
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the rate of change of nutrients is equal to the nutrients added minus the nutrients
removed from this system:

d

dt

∑
j=1,2

Rj+QjA=
∑
j=1,2

a(Rin,j−Rj)−hrQjA.

This model can easily be extended to the case of multiple species (e.g. [19]),
competing for the shared resources, as well as incorporating the specific maintenance
rate Dr. The latter is set to zero here: Dr = 0; the loss of algae is only due to washout
from the chemostat.

In contrast to the previous scalar model, the dynamics of higher dimensional
models are, in general, no longer determined by the location and stability of steady
states alone. However, in this particular case it is: There is again the trivial steady
state A= 0, but also one nontrivial steady state, and if the latter exists, it is stable
and the ‘global attractor’ [18] (all solutions with positive biomass converge to it).
The nonzero steady state (if it exists) is thus the steady state carrying capacity.

For low initial amounts of nutrients, biomass evolution undergoes a number of
stages. The first one is characterized by an ‘exponential growth’-state, the so-
called quasi-equilibrium state (where only biomass is not in equilibrium), during
which the cellular quota ratio QN/QP matches the so-called optimal N :P ratio
Qmin,N/Qmin,P = 27.7, given in (mol N)/(mol P ), which is also a condition for opti-
mal growth [17, 16].

Thus, if the quota ratio QN/QP changes, it means that the exponential growth
phase has been concluded and biomass has essentially reached equilibrium. If biomass
production is the focus, one may increase depletion and harvest at this point. If the
interest lies in water purification then the second stage is more interesting: the quota
ratio QN/QP swings towards the supply ratio Rin,N/Rin,P while the biomass is in
equilibrium. This is because algae are, just as most living organisms, highly sensitive
to their environment and able to adapt. Interestingly, the model also mirrors this
feature and exhibits the flexibility of the cell quota being able to match the supply
ratio at the optimal dilution rate of hr = 0.59 day−1 [16]. These results have also
independently been obtained in a series of chemostat experiments in [28, 29]. However,
the harvesting of clean water should be done before the third stage starts, which is
when the quota ratio falls back to the optimal ratio Qmin,N/Qmin,P [16], and the
biomass is still at equilibrium. Since the nutrient concentrations, the uptake rates
and the quota are modelled separately, it is possible to determine the remaining
concentrations of the nutrients in the water.

This model provides a fair description of phytoplankton/algae biomass growth
and stoichiometry, which is determined not only by the nutrient supply stoichiometry
in the chemostat, but also takes into account the physiological response of the algae.

Klausmeier-Huisman model: light and nutrient limited growth

The previous model is mainly focused on the chemical resources, however, we know
from the discussion of the scalar models, that light, i.e. energy, may be a limiting
factor for algal biomass growth, so that the next logical step is to incorporate the
light dependence.
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The simplest extension in view of the discussion above would be the inclusion of
the growth function in H, see section 4.2, in the maximum growth rate µmax, which
then becomes

µmax

zmax
ln

(
HP +Iin
HP +Iout

)
/(kA+Kbg).

The extended ‘Klausmeier-Huisman’ model thus reads, i= 1,2,

dRi
dt

= a(Rin,i−Ri)−
vmax,iRi
Ri+Ki

A

dQi
dt

=
vmax,iRi
Ri+Ki

− µmax

zmax(kA+Kbg)
ln

(
HP +Iin
HP +Iout

)
min
j=1,2

(
1−Qmin,j

Qj

)
Qi

d

dt
A =

µmax

zmax(kA+Kbg)
ln

(
HP +Iin
HP +Iout

)
min
j=1,2

(
1−Qmin,j

Qj

)
A−hrA .

This still has the trivial steady state, and, depending on parameter values, possibly
multiple nontrivial steady states. In that case the analysis of [18] fails. The criterion
for stability of the trivial state is readily derived and reads(

1− Q̄lim, min

Q̄lim

) µmax

zmKbg
ln
( HP +Iin
HP +Iout

)
<hr,

where Q̄lim is the equilibrium value of the quota of the limiting nutrient (we omit the
formula). For small dilution rate hr this is violated, which means the trivial state
would be unstable, the expected situation. Note that removing the light dependent
part gives the analogous criterion for the above Klausmeier model, where instability
of the trivial state implies that a non-trivial equilibrium is the global attractor. It
would be interesting to find a natural connection (homotopy) from this to the scalar
nutrient-limited Huisman model from section 4.2, and to analyze this model in more
detail.

Conclusions

We reviewed selected minimal models and model building blocks for algae growth
from the literature with focus on light and nutrient limitation effects. We showed a
simple geometric way to interpret and understand the dynamics of the arising scalar
models, in particular their carrying capacity states and the occurrence of bi-stability.
Strategies for optimization are beyond the scope of this exposition, and would require
better understanding of the actual values of parameters. In a nutshell, we claim that
a qualitative analysis provides: consistency check, criteria for growth, estimates of
growth rates and carrying capacity, and a framework for optimization. The next step
would be to find realistic parameter values and to compare the result with real data.

In the final sections we briefly discussed a more realistic five dimensional model
that includes nutrients as dynamic variables and distinguishes intra- and extracellular
nutrient concentrations. We proposed an extension by the light-limitation building
block of the previous models. Any satisfying mathematical analysis would require
much more mathematical formalism and analysis. We refer to [18, 19] for studies in
that direction.
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4.3 An ODE model for algae growth

Mathematical model

In the previous section a hierarchical series of one-stage models was presented and
a steady-state analysis undertaken, which revealed understanding of the long-term
behaviour of the pond. In this section a new two-stage model is presented and an
attempted to obtain ‘real’ values for all the parameters that appear in the models
is made. Due to the more complicated two-stage model a steady-state analysis is
not performed, but the Huisman model (see section 2.1) can be obtained from a
certain limit; therefore, the steady-state analysis could be used as test cases for the
numerical solution presented at the end of this section. The derivation of this limit
and numerical confirmation will not be covered in this publication.

Algae growth is a simple two-stage process, illustrated in Figure 4.6: carbon
dioxide is pumped into the water and transformed into glucose by photosynthesis;
then, nutrients provided by the drain water from the greenhouses and glucose combine
to form new algae. Further, the algae, and the sugar stored in them, are assumed
to be reduced by starving and harvesting. To keep the model simple, the nutrient
composition is neglected, as well as the fact that energy can not only be stored in
glucose, but also as more complex sugars and oils.

S

M

C
synthesis

AAlgae

growth

Drain water
inflow

natural death

Harvest &Photo-Ic

Im

CO2

pump

Figure 4.6: Production of algae from nutrients and carbon dioxide.

The algae production is modelled by the concentrations of dry algae A, nutrients
M , sugar S and carbon dioxide C in the pond. Assuming that the pond is well-mixed
and algae growth is very slow, the above mentioned concentrations are independent
of all spatial variables and only depend on time t; The inflow of nutrients and carbon
dioxide into the pond is denoted by Im and Ic, respectively. The algae are starving
at a ‘death rate’ Dr and harvested at a rate hr, both of which decrease the amount
of algae and the sugar stored inside the algae. Further, sugar is produced at a rate
αsC from carbon dioxide, where αs is the rate constant. This decreases the amount
of carbon dioxide by a rate of −k1αsC. From the oxygenic photo-synthetic process,

6CO2 +6H2O→ (CH2O)6 +6O2,

we know that 44 g of carbon dioxide is needed to produce 30 g of sugar, yielding the
conversion rate

k1 = 44/30 g[CO2] g[(CH2O)6]−1.

New algae are produced inside the existing algae at a rate αANfm(M) from
nutrients and sugar, where αA is the rate constant and fm(M) denotes the concen-
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tration of nutrients inside the cells. This depletes nutrients and sugar by a rate of
−k2αANfm(M) and −k3αANfm(M), respectively. Since mass has to be conserved,
k2 +k3 = 1. Based on an estimate in [2] on the composition of algae,

k2 = 0.1
g[M ]

g[A]
, and k3 = 0.9

g[(CH2O)6]

g[A]
.

Units and a short description of all model parameters can be found in Table 4.1.
Combining the effects of algae growth, photosynthesis, inflow of carbon dioxide

and minerals and starving and harvesting of algae, the following system of ODEs is
obtained,

Ȧ=αAfm(M)S−(Dr+h0)A, (4.5a)

Ṁ =−k2αAfm(M)S+Im(t), (4.5b)

Ṡ=αsC−k3αAfm(M)S−(Dr+h0)S, (4.5c)

Ċ=−k1αsC+Ic(t). (4.5d)

where the rate constants αA=αA(A) and αs=αs(A,C,λ,θ) are explained in section
4.3.

It should be noted, that in the current model we assumed the total amount of water
is constant. We do not explicitly model the inflow/outflow of water or evaporation
from the top of the pond . To fully treat the situation were the primary aim is
to clean large volumes of run-off water an extra equation for the evolution of the
total water volume is required. In the numerical examples presented below no clean
water is removed from the system; therefore, this model is valid but additionally
considerations are required to model the full decontamination problem.

Proper flux balance is obtained as the model obeys the following conservation law,

d

dt
(A+S+M+C/k1) =−(Dr+hr)(A+S)+Im+Ic/k1. (4.6)

One sees that the total mass involved is balanced by the nutrient and carbon dioxide
input and the material lost by natural death and harvest.

Parameter values and functional dependencies

In the following section, we define the nutrient concentration inside the cell, fm(M),
and the rate constants αA and αS . All parameters used below are summarized in
Table 4.2.

We assume that the nutrient concentration inside the cell is saturated at pmax=
0.4 g[M ]m−3 and that half-saturation is achieved when the outside nutrient concen-
tration is Mturn= 4 g[M ]m−3; thus,

fm(M) =pmax
M

M+Mturn
. (4.7)

The rate constants αs, αA depend on various physical parameters. From [2], is it
known that αA saturates with a increasing amount of algae and is half-saturated for
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Par. Unit Description

A g[A]m−3 Concentration of dry algae
M g[M ]m−3 Concentration of nutrients

fm(M) g[M ]m−3 Concentration of nutrients inside algae cells
S g[(CH2O)6]m−3 Concentration of glucose
C g[CO2]m−3 Concentration of carbon dioxide

Ic g[CO2]m−3day−1 inflow of carbon dioxide

Im g[M ]m−3day−1 inflow of nutrients

Dr day−1 (relative) algae death rate

h0 day−1 (relative) algae harvest rate
αA g[A]g[M ]−1. . .

g[(CH2O)6]−1day−1
rate constant for biomass growth

αs g[(CH2O)6]. . .
g[CO2]−1day−1

rate constant for photosynthesis

k1 44/30 g[CO2]. . .
g[(CH2O)6]−1

conversion rate of CO2 into (CH2O)6

k2 0.1 g[M ] g[A]−1 conversion rate of nutrients into dry algae
k3 0.9 g[(CH2O)6]. . .

g[A]−1
conversion rate of (CH2O)6 into dry algae

Table 4.1: Model parameters

Amax= 30g[A]m−3, yielding

αA=αA(A) = α̂AfA(A), where fA(A) =
A

1+A/Amax
. (4.8)

Further, the growth rate of algae is assumed to be proportional to the light inten-
sity and further depends on the temperature and pH of the mixture. Therefore, αs
is proposed to have the following dependencies,

αs=αs(A,C,λ,θ) = α̂sfλ(λ,A)fθ(θ)fpH(C), (4.9a)

where fλ, fθ and fpH model the dependence of the algae growth rate on light intensity,
temperature and pH, respectively.

The photo-synthetic process in the algae depends on the light intensity and is
therefore depth-dependent. However, since the pool is well mixed, the percentage
of light absorbed at any given depth is constant and the light intensity decreases
exponentially. In [12], a depth-averaged light intensity is given by

fλ(λ,A) =
aA

aA+abg
ln

(
H+λ

H+λe−(aA+abg)d

)
, (4.9b)

with λ the light intensity at the pond surface, pond depth d= 30 cm, half-saturation
constant H, light absorption constants of algae a= 0.00455 m2g[A]−1 and background
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abg = 7.2 m−1 given in [12]. 1

From [30], the photo synthesis rate is optimal at a temperature of θopt= 297 K
and vanishes at temperatures below θmin= 269 K. This is modelled by a simple
quadratic dependence,

fθ(θ) = max

(
0,1−

(
θ−θopt

θmin−θopt

)2
)
. (4.9c)

We also know from the literature, see section 1.1 for a full discussion, that the
photo-synthesis rate has an optimal pH level and does not grow in alkaline solutions.
This optimum pH varies massively for different types of algae, here we take an optimal
value of 7.4 (which is a little of the low side of the average, see section 1.1) and assume
growth vanishes at at pH below 6.9. As shown in [22], pH does mainly depend on
the amount of potassium and carbon dioxide. A typical potassium content was given
in [3] to be 8 g[KH]m−3. Thus, by [22], the minimal and optimal pH corresponds
to a carbon dioxide content of Cmax= 24.9 g[CO2]m−3 and Copt= 7 g[CO2]m−3,
respectively. This behaviour is modelled by a quadratic dependence,

fpH(C) = max

(
0,1−

(
C−Copt

Cmax−Copt

)2
)
. (4.9d)

It remains to estimate the constants ᾱs, ᾱA. Therefore we assume that the algae,
nutrient, sugar and carbon dioxide concentrations are bounded; therefore, average

values Ā, M̄ , S̄, C̄ exist, with ·̄= limT→∞
1
T

∫ T
0
·dt.

To estimate α̂A, we average equation (4.5b) over time [0,T ] and take the limit
T→∞ to obtain

lim
T→∞

M(T )−M(0)

T
=−k2α̂AfA(A)fm(M)S+ Īm, (4.10)

Since the nutrient concentration is bounded,

lim
M(T )−M(0)

T
= 0;

therefore, we approximate α̂A by

α̂A≈
Īm

k2fM (M̄)S̄fA(Ā)
, (4.11)

where we assumed fM (M)SfA(A)≈fM (M)S̄fA(A)≈fM (M̄)S̄fA(Ā), i.e., the av-
erage of the total product equals the product of the average of each factor and the
typical function value can be estimated by the function value at the typical parameter.

1We note that the value given in [12] is a= 0.7 ·10−6 cm2cell−1. From [21], we know that the
maximal algae density is 5.6−7.5 ·106 cells ml−1 and 0.1 g[A] ml−1, from which we deduce that
algae weigh about 1.5 ·10−8g cell−1.
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To estimate α̂S , we average equations (4.5a)+(4.5b)+(4.5c) over time [0,T ] and
take the limit T→∞ to obtain

lim
T→∞

(A+M+S)|T0
T

= α̂Sfλ(λ,A)fθ(θ)fpH(C)C+ Īm−(Dr+hr)(Ā+ S̄). (4.12)

Assuming that the algae, mineral and sugar concentration is bounded, the left hand
side of (4.12) vanishes; combining this with the fact that C̄≈Copt and θ̄≈θopt, we
estimate α̂S by

α̂S≈
(Dr+hr)(Ā+ S̄)− Īm

fλ(λ̄,Ā)C̄
, (4.13)

where we assumed as in (4.11) that

fλ(λ,A)fθ(θ)fpH(C)C≈fλ(λ,A) fθ(θ) fpH(C)C≈fλ(λ̄,Ā)fθ(θ̄)fpH(C̄).

We estimate Ā, C̄, M̄ , S̄, Īm, λ̄, Dr and hr by typical values from the literature:

• From [2], p. 36, a typical input rate of waste water is 7 to 20 l m−3 day−1.
Assuming an average input of drain water of 20 l m−3 day−1, given a nitro-
gen concentration of 15 mmol[N ]l−1 and a molecular weight of 14gmol−1, we
estimate Īm= 4.2 g[M ]m−3day−1.

• The input rate yields further that 2% of the water in the pool is changed per
day, thus an order of magnitude estimate is given by M̄ = 2%∗ Īm.

• The typical sugar content S̄= 10 g[(CH2O)6]m−3 is an estimate from [3].

• Since the carbon dioxide input can be controlled, we assume C̄=Copt.

• A typical algae concentration was provided by [1] to be Ā= 6 g[A]m−3.

• The typical light intensity on the surface is

λ̄=λmax/2,

where the maximum light intensity λmax= 2000 µmol photons m−2 is given by
[23].

• The typical harvest rate is

hr =hrA/(Ā+ S̄),

where a typical harvest of hrA= 12g[A]m−3day−1 was given in [2].

• Finally, we use an estimate of the death rate Dr = 0.46 day−1 derived from [12].

Substituting these values into (4.13) and (4.11) we obtain

α̂A ≈ 102 g[A]g[M ]−1g[(CH2O)6]−1day−1 and

α̂S ≈ 676 g[(CH2O)6]g[CO2]−1day−1.
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Param. Value, Source Description

pmax 0.4 g[M ]m−3 maximal nutrient concentration
inside algae

Mturn 4 g[M ]m−3 half-saturation constant for nutri-
ent
concentration inside algae

Amax 30 g[A]m−3, [2] maximal algae concentration be-
fore growth shuts down

H 30 µmol photons m−2, [12] half-saturation constant
a 0.00455 m2g[A]−1, [12, 21] light absorption constant
abg 7.2 m−1, [12] background light absorption con-

stant
d 0.3 m pond depth
Cmax 24.9 g[CO2]m−3, [22, 3] maximal CO2 concentration for

photosynthesis
Copt 7 g[CO2]m−3, [22, 3] optimal CO2 concentration for

photosynthesis
θmin 269 K, [30] minimal temperature for algae

growth
θopt 297 K, [30] optimal temperature for algae

growth

Dr 0.46 day−1, [12] algae death rate

hr 2 day−1, [2] typical harvest rate
λ̄ 1000 µmol photons m−2, [23] average light intensity

Īm 4.2 g[M ]m−3day−1, [2] typical nutrient inflow
M̄ 0.084 g[M ]m−3, Īm typical nutrient concentration
C̄ 7 g[CO2]m−3, Copt typical carbon dioxide concentra-

tion
S̄ 10 g[(CH2O)6]m−3, [3] typical sugar concentration
Ā 6 g[A]m−3, [1] typical dry algae concentration

Table 4.2: Coefficients and typical values.
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Limiting Behaviour and Threshold

The most well-known model for population growth is the logistic growth model. It
appears naturally in models with one limiting resource. We describe in which way the
system of ordinary differential equations (4.5) is related to a logistic growth model.

It is most natural to assume that the amount of minerals M is the limiting factor.
We assume that the influx Ic is such that the CO2-concentration is optimal, i.e. Ċ= 0.
Since we only want the amount of minerals M to be a limiting factor, we should make
differential equations (4.5a) for A and (4.5b) for M independent of S. We assume
CO2 is transformed into sugar very fast, i.e. αs is very large. Now depending on the
parameters in the model two things can happen: either αs saturates at a large value
of S, i.e. the photosynthesis will not become infinitely fast, or S itself saturates at
a large value, i.e. the sugar reserve cannot become infinite. Both of these processes
are not captured in the current model, since in the current model we assume S to be
not too large. The second effect for example can be built in by replacing S in (4.5a),
(4.5b) and the first S in (4.5c) by

fS(S) :=
S

1+(1/Smax)S
.

Furthermore, we assume Dr =hr = Im= 0, i.e. no natural death, harvest or inflow of
minerals, and M and A are not too large. For M and A not too large αA behaves at
leading order linear in A: αA∼ α̂AA; similarly, fm is at leading order given by

fm∼
pmax
Mturn

M.

Equations (4.5a) and (4.5b)reduce to

Ȧ= α̂A
pmax
Mturn

S̄AM, (4.14a)

Ṁ =−k2α̂A
pmax
Mturn

S̄AM, (4.14b)

for some constant value S̄. From these two equations it follows Ṁ =−k2Ȧ, thus
M(t) =M(0)+k2A(0)−k2A(t). Upon substitution in (4.14a) we obtain the logistic
equation

Ȧ= α̂A
pmax
Mturn

S̄A(M(0)+k2A(0)−k2A(t)).

For certain parameter values a threshold for the growth process can emerge. The
threshold manifests itself as an equilibrium in the (A,M,S,C) phase plane. Depending
on the parameter values, this equilibrium can be stable. Acting as an attractor,
this would limit the growth of A to this equilibrium value. Taking the CO2-input
as the relevant bifurcation parameter, application of linear stability analysis at the
equilibrium yields the result that for low Ic values, the equilibrium can indeed be
stable.
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Numerical Results

To investigate the behaviour of equations (4.5), the model was implemented in MAT-
LAB. We first test the numerical model for the case of nutrient limited growth,
as discussed in section 4.3. Thus, death rate, harvest rate and nutrient inflow is
set to zero, Ic is chosen such that Ċ= 0 and temperature and CO2 concentration
is chosen to be at its optimal values θopt, Copt, resp.. As initial values we choose
A(0) = 3 g[A]m−3�Amax, M(0) = .4 g[M ]m−3�Mturn, and S(0) = 10 g[S]m−3. The
results of this simulation compares favorably with the analytic solution to the logistic
limit equations (4.14), cf. Figure 4.7.
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Figure 4.7: Comparison between results from the numerical model (black) and the
logistic limit equations (red).

In the following we test the model for different parameter settings.
To optimize the photosynthesis process, the carbon dioxide inflow is controlled

such that C≈Copt by setting

Ic(t) =βmax(0 g[C]m−3, Copt−C), β= 4 day−1. (4.15)

The ambient temperature was taken to be θ(t) = 293K. To show that algae-growth
can be nutrient-limited, we use a low nutrient influx of Im(t) = 0.2 g[M ]m−3day−1.
The simulation is started with a low algae concentration A(0) = 3g[A]m−3 and zero
sugar, while we chose typical mineral and carbon dioxide concentrations M(0) =M̄
and C(0) = C̄. We evaluate on the time interval 0≤ t≤20. We simulate three cases
for different harvest and light intensity values, producing the results shown in Figure
4.8.

The red line shows the behaviour, when no harvesting is done and light intensity
is constant,

h0(t) = 0 day−1, λ(t) = λ̄. (4.16)

The algae grow rapidly until the nutrients are depleted. It then decreases towards a
stable equilibrium, while the amount of sugar is increasing. Thus, the algae growth
is nutrient-limited.

Next, a day-night cycle is modelled (blue line) by setting

h0(t) = 0 day−1, λ(t) = λ̄(1+sign(sin(2πt))). (4.17)
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Figure 4.8: Concentrations for t∈ [0,20]. Red: hr = 0 day−1, λ(t) = λ̄, blue: hr = 0,
λ(t) =λ0(1+sign(sin(2πt))), black: hr = 0.4 day−1, λ(t) =λ0(1+sign(sin(2πt))).

This decreases the amount of sugar, since the photosynthesis rate is non-linear w.r.t.
the light intensity. Otherwise, this has only little effect on the algae growth, since it
is nutrient- and not sugar-limited.

Finally, harvesting is turned on (black line),

h0(t) = 0.4 day−1, λ(t) = λ̄(1+sign(sin(2πt))). (4.18)

This significantly decreases the algae concentration. The mineral and sugar concen-
tration now varies around a constant value with the day-night cycle. The mineral
concentration initially decays in line with no harvest, but does not fall below a value
of 0.2 [grams/m3]. This would indicate that growing algae for harvest and removing
most of the minerals from the water may be difficult in the same pond; therefore, a
two coupled pond configuration, with one used to grow algae and the other to remove
nutrients, maybe the only way to achieve the joint goal of nutrient removed and algae
cultivation.
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Conclusions

In this section a new two-stage model is presented: photo-synthesis converts the CO2

to sugars and then minerals and sugar are combined to create new algal mass. If
you take the limit of a quick photo-synthesis rate and a large bath of nutrients the
original Huisman model §4.2 can be obtained. Additional in §3.4 it is shown that
this two stage model can additionally be reduced to the logistic equation, when the
only limiting factor is the supply of a single nutrient. Separating the minerals and
modeling both phosphorus and nitrogen individually results in a system similar to
the model studied in §4.2. In this fashion all the extra factors added in §4.2 can be
added to this model and vice-versa.

Using parameter values from the literature and temporally averaged estimates,
the equations were solved numerically. The effect of harvesting was studied and
preliminary study seemed to suggest that two ponds would be best way to satisfy the
dual goal of nutrient removal and algae growth.

In various sensible limits, this model can be reduced to the one-stage model pre-
sented in §4.2, which can be used to verify the numerical model and give insight into
its behaviour in these limiting scenarios.

4.4 An alternative PDE Model

Mathematical Model

All the models considered in the previous sections are temporal models, they inves-
tigate the time-evolution of the total mass of algae in a given pond. In this section
a spatial-temporal model is presented that takes in account spatial depth variation
within the ponds. Additionally, at the end of this section optimization of the model
is discussed.

We study the growth of the algae (biomass) in the water body (described by the
domain Ω⊂R3). The biomass growth rate is related to the process of photosynthesis,
the process of mixing and the death rate. The process of photosynthesis depends
upon the concentration of the nutrients, the availability of CO2 and the availability
of light. The death rate includes both the harvesting rate as well as the natural death
rate of the algae. Since the light intensity is uneven at different depth of the water
body, it is important to stir the water to mix the algae. Advection is assumed to be
absent which corresponds to the still water body. In the horizontal plane, we consider
no variation and hence, the growth rate is independent of x and y coordinates. The
depth in the water body is denoted by z.

The growth rate of the algae biomass is given by

∂tA=g(Iin)f1(P )f2(N)f3(C)A+DM∂zzA−Ha(A). (4.19)

The mixing is modeled by a diffusion term with a constant coefficientDM . Inclusion of
the mixing term helps to understand the effect of mixing on the overall production rate
of the algae. The functions g(Iin), f1(P ),f2(N) and f3(C) define the dependence of the
biomass growth rate on the light intensity, the concentration of nutrients (phosphates
and the nitrates), and the carbon dioxide. Function Ha= (hr+Dr)A describes the
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death rate of the algae biomass including both the harvesting term as well as the
natural decay rate. A similar model was used in [13, 25]. For the light intensity, we
take the Monod form of dependence [11]

g(Iin) =
µ0Iin

HL+Iin
, (4.20)

where Iin is the effective light intensity received by the algae and HL is the half
saturation intensity. The Monod form ensures that the growth rate is almost linear
when the light intensity is very small, and the growth rate remains bounded by µ0

when Iin becomes very large. The light intensity received by the algae is not uniform
throughout the water body. The light intensity is attenuated by two factors: the
presence of algae and the water mass. The presence of the algae in the top layers
causes reduction in the available light for the algae in the deeper layers. This describes
the non-transparency of the water body due to the presence of algae. Moreover, the
water layers themselves cause attenuation in the available light intensity for the deeper
layers. In the light of the above discussion, the light intensity can be modeled by

Iin(z,t) = I0(t)e−kzeK(z) (4.21)

where

K(z) =−rs
∫ z

0

Adz

where I0(t) is the incident light intensity which changes in time (for instance during
the day and night cycle). The constant k is the specific light attenuation coefficient
due to the water layer and rs is the specific light attenuation coefficient due to the
presence of algae.

For the nutrients, the phosphates and the nitrates, we once again take the Monod
type rates

f1(P ) =
kP [P −Pc]+

HP +[P −Pc]+
, (4.22)

f2(N) =
kN [N−Nc]+

HN +[N−Nc]+
. (4.23)

Again, HP and HN are the half saturation concentrations of phosphorus and ni-
trates respectively. The [·]+ denotes the positive cut-off function [x]+ = max(0,x).
Parameters Pc and Nc are the critical concentration of the nitrates and phosphates,
respectively, below which the growth becomes zero. To model the effect of CO2 we
note that the presence of carbon dioxide affects the pH value of the water. We assume
for simplicity that pH value is solely determined by the presence of the CO2. The
growth rate of the algae is influenced by the pH value apart from the other factors
that we discussed above. The consumption of CO2 leads to the reduction in the CO2

concentration and hence, leads to the increase in pH value. It is known that there is
a certain range of pH value where the algae growth is optimal. Hence, if the source
of CO2 provides more than required, the pH value of the water body will decrease.
This decrease can lead to the enhancement of the death rate of the algae. The growth
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Figure 4.9: Monod type function for different half-saturation constants.

rate dependence is modeled by the functional form that monotonically decreases with
pH (and hence monotonically increasing with the concentration of CO2) however, at
higher concentrations of CO2 the growth rate becomes constant and bounded. We
consider the following functional form

f3(C) =
1

1+eλ(pH(C)−pHopt)
, (4.24)

where λ is a parameter that describes the sharpness of the profile and pHopt describes
the ‘switching’ value of pH at which the growth increases if all other factors are kept
unchanged. The relation between the pH and CO2 is given as

pH(C) = (6.35− log10C)/2.

This relation is obtained using the chemical equilibrium constant of the hydrolysis of
the carboxylic acid. The modeling of the harvesting term includes the specific death
rate having pH dependence so that at small pH the death rate enhances. We propose
the following functional dependence for this term similar to the f3(pH)

Ha(w) =Drf4(C)A, (4.25)

with

f4(C) =
1

1+eλ(pH(C)−pHdopt)
, (4.26)

where pHdopt is again the ‘switching’ value of the pH at which the death rate increases.
In Figure 4.9 and Figure 4.10 we illustrate the nature of Monod- and f3 functions.

We complete the system with the following ordinary differential equations describ-
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ing the evolution of the nutrients and the CO2

dN

dt
=− 1

zmax

(∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)Adz
)
N+SN ,

dP

dt
=− 1

zmax

(∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)Adz
)
P +SP , (4.27)

dC

dt
=− 1

zmax

(∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)Adz
)
C+SC ,

where zmax is the maximum depth of the water body.2

We use homogeneous Neumann boundary conditions for (4.19) and we require the
following initial conditions

N(0) =N0, P (0) =P0, C(0) =C0, w(z,0) =w0(z). (4.28)

Equations (4.19), (4.27) together with initial conditions (4.28) constitute the system
of equations under study. We use the following values of the parameters for the
numerical computations taken from [8, 11, 10].

µ0kpkN [1/s] HL[W/(m2 ·day)] HN [g/l] HP [g/l]
0.0886 70 14.5 ·10−6 10.4 ·10−6

rs[l ·m/g] k[1/m] DM [m2/s] Dr[g/(l ·day)]
10 0.2 5 ·10−4 0

The values of the parameters chosen are realistic, however, not all the parameters are
exactly known and approximate values are taken for those parameters. The model
is generic and for a given type of algae these parameters need to be determined
experimentally. Here, we need the parameters to see whether the obtained results are
realistic.

2It should be noted that it is unclear if nutrient and algae mass are conserved in this model.
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Numerical experiment

In this section we test our model for the set of parameters presented in the previous
section. We solve the system (4.19),(4.27)-(4.28) using the method of lines (MOL)
approach which consists of two stages. The first stage is the spatial discretization
in which the spatial derivatives of the PDE are discretized, for example with finite
differences, finite volumes or finite element schemes. By discretizing the spatial op-
erators, the PDE with its boundary conditions is converted into a system of ODEs in
Rm

W ′(t) =F (t,W (t)) , W (0) =W 0 , (4.29)

called the semi-discrete system. This ODE system is still continuous in time and needs
to be integrated. So, the second stage in the numerical solution is the numerical time
integration of system (4.29).

We discretize the diffusion operator in (4.19) by standard second-order central
differences on a fixed uniform grid 0 =z1<z2<...<zm=zmax. The integral term
within the light function (4.21) is approximated by∫ zk

0

Adzk≈
zk
k

k∑
i=1

zi .

The other integral term used in (4.27) is approximated by∫ zmax

0

g(Iin)f1(P )f2(N)f3(C)Adz≈ zmax

m
f1(P )f2(N)f3(C)

m∑
i=1

g(Iin(zi,t))zi .

The obtained system (4.29) is stiff due to the diffusion term, therefore, an implicit
numerical integration method must be used. We use the two-stage second-order
Rosenbrock ROS2 method [14]. The method is linearly implicit: to compute the
internal stages a system of linear algebraic equations is to be solved.

An illustration of the algae concentration in time is given in Figure 4.11. The
behaviour in time of P , N , C and pH is presented in Figure 4.12 and Figure 4.13.

Figure 4.11: Concentration of algae.

The model equations (4.19),(4.27)-(4.28) are discretized and solved in the domain
z∈ [0,zmax] on the interval t∈ [0,T ], where T = 96 [hours], which corresponds to 4
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Figure 4.12: Concentration of P and N.
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Figure 4.13: Concentration of C and pH.

days. Minerals are being added with a constant rate of 3.64 ·10−10 [mol/(l ·s)] and
2.78 ·10−10 [mol/(l ·s)] for N and P respectively. No carbon dioxide is added. In
Figure 4.11 we notice the periodic nature of the algae concentration. This is due
to the day-night cycle of the external illumination modeled by I0(t). The decay of
light intensity with depth makes the solution z-dependent. As expected, the algae
concentration is lower at the bottom. However, the mixing included in the model
diminishes this difference. Due to a large initial concentration of algae, the rate of
consumption of minerals is larger than their inflow rate. There is no inflow of carbon
dioxide. Thus, the concentration of minerals and of carbon dioxide in the water
decreases monotonically as seen from Figure 4.12 and Figure 4.13. During one day,
the maximum algae concentration is attained in the noon when the light intensity
on the surface is the largest. In this particular simulation the value of the maximal
concentration increases from day to day at a rate which is comparable with literature
data.

Optimization

We define the average concentration of algae

V =
1

zmaxT

∫ zmax

0

∫ T

0

A(z,t)dtdz,
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Figure 4.14: Nelder-Mead simplex optimization.

Table 4.3: Optimization parameters.

SC [mol/(l-s)] SN [mol/(l-s)] SP [mol/(l-s)] V [g/l]
Initial 10−10 10−10 10−10 0.946

Optimized 5.309×10−14 1.886×10−11 2.129×10−10 1.0125

or in discrete form

V ≈ 1

nm

n∑
j=1

m∑
i=1

A(zi,tj),

where ti are the time points in which the numerical solution is computed. The average
concentration computed by means of the model described above can be optimized as
a function of three design variables: carbon dioxide, nitrate and phosphate inflow
rates, i.e.

maximize V (SC ,SN ,SP ),

subject to SC ≥0,SN ≥0,SP ≥0.

For this purpose we apply the Nelder-Mead simplex method [7, 26]. The Nelder-
Mead simplex method is designed to find a local optimum of a function. It makes no
assumptions about the shape of the function and does not use derivative information.
At each iteration the Nelder-Mead simplex method evaluates the function in a finite
number of points. In our case one function evaluation corresponds to computing the
average concentration of algae.

Figure 4.14 shows an example of the Nelder-Mead optimization. In this case the
optimization required 55 function evaluations. The values of the design variables
and correspondingly obtained concentration are plotted for each function evaluation.
Table 4.3 shows the values of the initial guess and the values after optimization.
For the optimized values of the design variables the average algae concentration has
increased by 7.03%.

Further, the result of the optimization could be improved by assuming SC ,SN ,SP
to be functions of time. Thus, we assume that sC ={SC,i}Li=1, where SC,i is the
carbon dioxide inflow rate at time ti. For fixed SN and SP we obtain an optimization
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Figure 4.15: Input of CO2 as a function of time.

problem of L design variables

maximize V (sC),

subject to SC,i≥0.

This could result in further improvement of the average algae concentration. As an
initial guess for optimization, instead of applying constant carbon dioxide inflow rate,
we could use a periodic function with the same period as of the incident light function,
with different amplitude and vertical and horizontal shift (see Figure 4.15).

It is important to note that the average algae concentration function may have
multiple maxima. However, the Nelder-Mead simplex method is designed to find a
local optimum of a function. It means that initial parameter guess should be close
enough to the desirable optimum. For a global optimum other optimization methods
(for example, simulated annealing optimization [26]) could be used.

Conclusions

We proposed a model for the growth of algae in a mineral solution. The model
consists of a partial differential equation for the algae concentration coupled to three
ordinary differential equations for the phosphate, the nitrate and the carbon dioxide
concentrations. The minerals and the carbon dioxide are assumed to have a constant
concentration throughout the volume, while the algae concentration is modeled as
a z-dependent quantity. This choice is explained by the strong dependence of light
intensity on depth. Moreover, the z-dependency allows us to study the effect of mixing
on the algae population. Numerical simulations were performed with the model.
To this end, the continuous equations are discretized in space by a finite difference
scheme, and the resulting system of ordinary differential equations is integrated in
time by a two-stage second-order Rosenbrock method. The simulations have shown
a good qualitative prediction for the concentration of algae, minerals and carbon
dioxide. In order to achieve also a good quantitative prediction, the parameters of
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the model have to be adjusted to the experiment. Based on the proposed model,
the average concentration of the algae can be optimized by means of derivative-free
optimization.

4.5 Recommendations

In summary, this paper contains the following eight main themes:

1. A review of biological literature, to determine the key factors that effect the
growth rate of algae (§4.1).

2. A hierarchical review of existing mathematical models in the literature (§2).

3. Steady-state analysis of one-stage models (§4.2).

4. A new two-stage model (§4.3).

5. Parameter estimation (§4.3).

6. A new spatial-temporal model of algae growth (§4.4).

7. Numerical solutions of the new models (§4.3 and §4.4).

8. A discussion of how to optimize (§4.4).

Each of these themes represents a step forward in understanding the factors that effect
algae growth. All the model extensions proposed (theme 2,3 and 6) can be reduced
back to the original model of Huisman et al [12] in the correct limit. For example the
additional spatial terms introduced in theme 6 can be neglected if the re-mixing rate
is small. There will be situations where each, or maybe even all, of these additional
effects are important and studying these effects both in isolation and combination will
be very enlightening. For the simple models (or the limits of the more complicated
models) the steady-state analysis (theme 3) is very powerful and highlights when
these limits are not valid and additional factors need to be included. Estimating
the parameters from either the literature (theme 1,5) or by temporal averaging the
equations (theme 5) is a challenge that does need more attention; hopefully, new
experimental work specifically aimed at determining the control parameters will take
place in the next few years. The numerical investigation (theme 7) of the new models
is very limited and there is much more scope for numerical studies that allow the
simulation of a full algae pond (or maybe even a coupled series of ponds) in the
future. Finally, there is room for more work on optimization of the model (theme 8),
but early results and a derivative-free method for optimization have been presented.

We have the following recommendations: Construction of a master model includ-
ing all the effects discussed in §4.2, §4.3 and §4.4; a detailed analysis on the mathe-
matical limits of this model using the steady-state analysis presented in (§4.2); further
controlled experiment to determine the key parameters; an more detailed investiga-
tion of optimisation. The steady-state analysis is useful for two reasons: firstly, it
reveals the effect individual factors have on the model; secondly, it gives a very useful
test case for any numerical solution of the full system. One of the major problems is a
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lack of numbers for key parameters in the model §4.1 and §4.3. Therefore a new series
of experiments designed to better determine these unknowns would be highly benefi-
cial. Finally, once a good set of parameters is determined, optimization of the model
can be undertaken (§4.4) and a detailed investigation (hopefully in collaboration with
the industry) of the optimal pond(s) design can be performed.
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