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Abstract

A mathematical model for optimal control of the water levels in a chain of
reservoirs is studied. Some remarks regarding sensitivity with respect to the time
horizon, terminal cost and forecast of inflow are made.

1 Introduction
For the Study Week Mathematics and Industry a problem was proposed by Deltares
concerning the computation of optimal controls for the settings of hydraulics. The
long term goal that Deltares has is to provide methods for optimal control of the set-
tings of the hydraulics in the Dutch river system as a whole. At present each of the
hydraulics is treated separately and not in combination. A “toy problem” was pro-
vided by Deltares to use in the study week. See [32]. This simple problem consists of
a chain of four reservoirs, with an inflow into the first reservoir which is predictable
on a reasonable time-scale. The model will be explained in the first section of this
paper.

At present there is a method to compute the optimal control in use at Deltares.
The questions posed by Deltares were two-fold: is this a good method, and are there
ways to improve on it? In addition, it would be very nice if there was an efficient way
to adjust optimal control to changing forecasts of inflow. During the study week the
team also discussed issues connected to the modeling of the system.

2 The model
In this section, the problem will be modeled and formulated as an optimal control
problem.

The water levels in a chain of reservoirs can be represented by a vector x =
(x1, . . . , xm). A differential equation for x can be derived by studying the flow
of water through the chain of reservoirs. The water flowing out of a certain reser-
voir can be partially controlled by a hydraulic structure, corresponding to a control
u = (u1, . . . , um). If the water level rises above a certain critical level xjcr, extra
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water will flow out of the reservoir through a so-called spillway. Hence, the volume
of water flowing out of a reservoir is given by

uj − gj(x− hcr)

where gj is a function satisfying g(y) = 0 for y < 0. The water flowing into a
reservoir is simply the flow out of the previous reservoir. The flow of water into the
first reservoir is denoted by p, which is, for the time being, assumed to be given.
Taking the surface area of the reservoirs, which is assumed to be independent of the
water level, into account, this results in the following differential equation for x.{

ẋ = f(x,u, p)

x(0) = x0,
(1)

where x0 is a given initial condition, and f is given by

f j(x,u, p) ={
1
A1

(
p− u1 − g1

(
x1 − h1

cr

))
, if j = 1,

1
Aj

(
uj−1 + gj−1

(
xj−1 − hj−1

cr

)
− uj − gj

(
xj − hjcr

))
, otherwise.

(2)

Here, the numbers Aj indicate the surface area of the reservoirs, which are assumed
to be independent of the water levels for simplicity.

There are certain restrictions to the controlled outflow. Each hydraulic structure
has a maximum flow of ujmax, and the setting of the structures can only be changed at
certain predetermined moments. More precisely, u(t) = ui for t ∈ ( i−1

n , in ].
The objective is to keep the water levels as close as possible to a given set point

level hjsp < hjcr, minimizing the spillover, while adjusting the hydraulic structures a
little as possible. More precisely, the objective function

J(u,x) = φ(x(T )) +

∫ T

0

L(x(t),u(t)) dt +
1

2

n∑
i=1

‖ui − ui−1‖2 (3)

is minimized, where u0 is the (given) initial setting of the hydraulic structures, and L
represents the penalty for deviation from the set point level and use of the spillway.
The function φ indicates terminal costs and is not specified here.

In this particular model, specific choices for L and g will be used:

L(x,u) :=

m∑
j=1

wjsp(x− xsp)2 + wjcr

(
(x− xcr)

+
)2
, (4)

gj(y) := Cj
(
(x− xcr)

+
) 3

2 . (5)

Putting all equations together, the optimal control problem is
minimize J(u,x)

under ẋ = f(x,u, p)

x(0) = x0

0 ≤ uji ≤ u
j
max (j = 1, . . .m)

(6)

The problem as outlined above may be found in [32], where also a case study was
undertaken for the case of a chain of four reservoirs.
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3 Lagrange multipliers

3.1 Optimality conditions
Ignoring the range constraint on u(t) for the time being, optimality conditions for (6)
can be derived by studying the critical points of the extended Lagrange functional

L(x,u,λ, p) = φ(x(T )) +

∫ T

0

L(x,u) + λ(f − ẋ) dt +
1

2

n∑
i=1

‖ui − ui−1‖2, (7)

where λ is interpreted as a row vector. For notational convenience, introduce H :=
L+ λf .

Choosing a smooth variation ξ for x,〈
∂L
∂x

, ξ

〉
=
dφ

dx
(x(T ))ξ(T ) +

∫ T

0

∂H

∂x
ξ − λξ̇ dt

=

(
dφ

dx
(x(T ))− λ

)
ξ(T ) +

∫ T

0

(
∂H

∂x
+ λ̇

)
ξ dt + λ(0)ξ(0),

(8)

where derivatives with respect to vectors are interpreted as row vectors. Note that the
last term vanishes because there is an initial condition for x. Hence, requiring that the
variation of L with respect to x is zero results in a terminal value problem for λ:

λ̇ = −∂H
∂x

λ(T ) =
dφ

dx
(x(T ))

(9)

Since u is required to be piecewise constant, the variation with respect to u is
actually a partial derivative:

∂L
∂ui

=

∫ i
n

i−1
n

∂H

∂ui
dt − ui+1 + 2ui − ui−1, (10)

if i < n. In case i = n, the last three terms become ui − ui−1. Equivalently, one
could introduce an artificial variable un+1 and require that un+1 = un.

As expected, since ∂H
∂λ = f , setting the variation of L with respect to λ equal to

zero gives back (1).
All variations together result in the optimality conditions

ẋ = f

λ̇ = −∂H
∂x

ui+1 − 2ui + ui−1 =

∫ i
n

i−1
n

∂H

∂ui
dt

x(0) = x0

λ(T ) =
dφ

dx
(x(T ))

un+1 − un = 0

(11)
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Note that this is almost a coupled system of ordinary differential equations: only the
equation for u is discretized. The artificial condition un+1−un = 0 can be considered
to be the discretized analog of the terminal condition u̇(T ) = 0.

3.2 Deltares’s approach
A very intuitive strategy for solving (6) is to first solve the initial value problem for x
in terms of the control u, substituting the solution into the criterion J , and minimizing
the resulting function of u. More precisely, the dependence of x on u can be written
and used to study the optimum, at least formally:

Φ(u) := φ(x(T ;u)) +

∫ T

0

L(x(t;u),u(t)) dt +
1

2

n∑
i=1

‖ui − ui−1‖2 (12)

where x(.;u) is the solution of the initial value problem (1).
The partial derivatives of Φ with respect to the ui’s now involve an extra term

representing the u-dependence.

∂Φ

∂ui
=

dφ

dx
(x(T ;u))

∂x(T ;u)

∂ui
+

∫ T

0

∂L

∂x

∂x(t;u)

∂ui
dt

+

∫ i
n

i−1
n

∂L

∂ui
dt − ui+1 + 2ui − ui−1, (13)

Assuming some smoothness, ∂x(t;u)
∂ui

satisfies the following initial value problem
∂

∂t

∂x(t;u)

∂ui
=
∂f

∂x

∂x(t;u)

∂ui
+
∂f

∂u
χ( i−1

n , in ](t),

∂x(0;u)

∂ui
= 0.

(14)

Introducing λ as the solution of the terminal value problem (9), the first integral in
(13) can be simplified:∫ T

0

∂L

∂x
(x(t;u),u(t))

∂x(t;u)

∂ui
dt =

∫ T

0

(
∂H

∂x
− λ

∂f

∂x

)
∂x(t;u)

∂ui
dt

= −
∫ T

0

(
λ̇ + λ

∂f

∂x

)
∂x(t;u)

∂ui
dt

= −
∫ T

0

(
λ̇ + λ

∂f

∂x

)
∂x(t;u)

∂ui
dt

(15)

Integrating by parts, the term involving ∂f
∂x drops out, leaving only a term involving

∂f
∂u and initial and terminal values:∫ T

0

∂L

∂x
(x(t;u),u(t))

∂x(t;u)

∂ui
dt = −dφ

dx
(x(T ;u))

∂x(T ;u)

∂ui
+

∫ i
n

i−1
n

λ
∂f

∂u
dt

(16)
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Substituting this back into (13), it follows that

∂Φ

∂ui
=

∫ i
n

i−1
n

∂H

∂ui
dt − ui+1 + 2ui − ui−1 =

∂L
∂ui

(x(, ;u),u,λ(.;u), p) (17)

where x and λ solve (1) and (9), respectively. Apparently, the derivative of Φ can be
computed using the Lagrange multipliers.

This can be exploited when numerically solving the optimal control problem:
given an initial guess for u, one can find the derivative of Φ, which can, of course,
be used to improve the guess, by computing the Lagrange multipliers. The efficiency
of this method obviously also depends on the quality of the initial guess for u. An-
other appealing property of this approach is that it is easy to add the bounds on u.
Indeed, at each step of the algorithm one checks to see whether the newly computed
u satisfies the bounds. If not, u is at either its maximum or its minimum, and one
follows the boundary of the feasible set until the gradient is pointing into the feasible
set again.

The method explained above is to some extent classical in optimal control theory,
see, e.g., [3, 9, 16].

3.3 Summary of the algorithm

Starting from an initial guess of u one solves the system of equations forward in time
for x and determines x(T ) this way. Then, one solves for λ(t) backwards in time.
Using these, one finds ∂Φ

∂ui
, and adjust u using this. Then one repeats the cycle, until

convergence is reached.
Obviously, the selection of an initial guess of u is important in case the algorithm

converges slowly, or takes a lot of time to execute. One may use the fact that for
the case of no disturbance the system is linear and the cost function quadratic, in
which case direct application of standard optimal LQ control (see e.g. [9]) gives us
an initial guess. However, as it turns out, this initial guess may not be feasible in the
sense that it violates 0 ≤ uji ≤ ujmax. In the application to the toy problem this was
observed in practice. Just taking the optimal LQ-control input and multiplying it with
the characteristic function of [0, umax] gives an initial guess that may be better than
just taking the zero input as initial guess.

4 Some remarks
Implementing the method above for the extremely simple case of one reservoir was
carried out as a bachelor thesis project by one of the students (Hidde Kok) at VU
University. The case considered was that of one reservoir with area A = 60000, with
critical level hcr = 0.2, and set-point water level at hsp = 0. The weights in the
cost function were set to wsp = 1 and wcr = 10. The final state was penalized with
2(x(T )− hsp) + 2 max(0, x(T )− hcr). The perturbation p was set at p = 50 for the
duration of the period of 20 to 50 minutes from the start. The program did not pose
any restriction on the values of the input. We compared with the maximum level of u
set to umax = 20, and with the minimum level umin = 0.



40 Proceedings of the 79th European Study Group Mathematics with Industry

The student’s program was run for two cases: one with time horizion two hours,
one with time horizon ten hours. The two graphs below show the results.

Figure 1: Two hour time horizon, no bounds on the input.

Figure 2: Ten hour time horizon, no bounds on the input.
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It is obvious from figure 1 and 2 that the time horizon has a serious effect on the
optimal input. This is caused by the fact that the influence of the cost on the final state
is spread over a larger period. Also note that the two hour time horizon is not enough
to restore the water level to the set point, and that for the two hour time horizon the
inputs are above the maximum level, whereas for the ten hour time horizon this never
occurs. However, for the ten hour time horizon, the input is (slightly) below zero for a
considerable amount of the time. In addition, in the ten hour case we see that the peak
of the water level is higher. This is caused by the fact that the cost puts more weight
(due to the larger time period) on the deviation from the set point level.

In figures 3 and 4 the same settings are considered, however, now with bounds
on the input taken into account. Observe that again we see that there is a substantial
difference between time horizon two hours and time horizon ten hours. Comparing to
the case without bounds on the input we see that even with a large time horizon the
set point level is not reached. This is due to the fact that both the minimal value of the
control and the reference level of the forecasted inflow are zero. In practice, however,
this will not be the case: the forecasted inflow will always be positive, whereas the
minimal value of the control remains zero. This difference might have been taken into
account in the model by taking a negative minimal value for the control, or, alterna-
tively, taking a positive reference level for the forecasted inflow. It can be seen from
figure 2 that a small negative control is needed to return to the set point level if the
water level drops below hsp after the disturbance in the inflow has passed. We did not
take this into account in our example in order to stay close to the model in [32].

Figure 3: Two hour time horizon taking into account the bounds on the input.
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Figure 4: Ten hour time horizon taking into account the bounds on the input.

5 NLP formulation

In order to solve (6), there are some numerical methods using nonlinear programming
techniques, see [10, 11, 9, 7]. These methods use a suitable discretization of the con-
trol problem by which it is transcribed into a parametric NLP problem [4, 8, 18]. The
discretization methods can be divided in two general categories: Full-discretization
and Partial-discretization. In the first method, all state and control variables are dis-
cretized, but in the second method, only control variables are discretized. Indeed,
the states will be determined by integration. The nature of the problem suggests that
partial discretization should be used, as demonstrated in section 2. The state approx-
imations xi ∈ Rn of the values x(ti) can be achieved recursively as functions of
the control variables by an integration scheme such as forward Euler or Runge-Kutta
approximation.

The problem (6) defines an NLP of the general form
minimize F (z, p)

under Gi(z, p) = 0 (i = 1, . . . Ne)

Gj(z, p) ≤ 0 (j = 1, . . . , Ni)

(18)

where F : RNz × P → R, Gi, Gj : RNz × P → R, Ne and Ni are the numbers
of equality and inequality constraints, respectively. Note that the number of decision
variables in this NLP(p) equals Nz = mn. We shall study the differential properties
of optimal solutions to the perturbed problem NLP(p) and the related optimal values
of the objective function with respect to p in a neighborhood of nominal parameter p0.
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5.1 Parameter Sensitivity Analysis of NLP(p)
Since perturbations are unavoidable, only having knowledge about the nominal opti-
mal solution is not enough and analysis of the effects of perturbations is necessary. So
far we have transformed the optimal control problem with parameter p into the NLP(p)
problem (18). After solving (6), independent of the discretization technique, we know
the set and the number of active constraints Na. Assume that Ga(z∗, p0) denotes the
collection of the active constraints at point (z∗, p0). Similar to the sections above, the
Lagrangian function is defined by

L(z, λ, p) = F (z, p) + λTGa(z, p). (19)

The sufficient conditions for the differentiability of the optimal solution (z∗, p0) with
respect to p ∈ P ⊆ RNp are given in the next theorem, [8, 18].

Theorem 5.1. Suppose F (z, p) andGa(z, p) are twice differentiable with respect to z
and p. And assume z∗ be a strong regular local solution of (18) for a fixed parameter
p0 with Lagrange multipliers λ0, i.e. Ga(z0, p0) = 0 and

1. ∇zGa(z0, p0) is full rank (z0 is regular),

2. ∇zL(z0, λ0, p0) = 0, λT0 G
a(z0, p0) = 0 (necessary optimality conditions),

3. λia > 0 for ia = 1, . . . , Na (strict complementarity),

4. vT∇2
zzL(z0, λ0, p0)v > 0, ∀v ∈ ker(∇zGa(z0, p0)), v 6= 0 (second order

sufficient conditions),

then there exists a neighborhood P of p0 such that the problem (18) has a unique
strong regular local solution z(p) and λ(p). Furthermore, z(p) and λ(p) are continu-
ously differentiable functions of p ∈ P(p0) and(
∇2
zzL(z0, λ0, p0) ∇zGa(z0, p0)T

∇zGa(z0, p0) 0

)( dz
dp (p0)
dλ
dp (p0)

)
= −

(
∇2
zpL(z0, λ0, p0)
∇2
pG

a(z0, p0)

)
(20)

where ∇2
zzL denotes the Hessian of the Lagrangian.

The proof of the theorem is given in [11] and [17]. Since the coefficient matrix
in (20) is non-singular by the assumption of Theorem 5.1, dzdp (p0) and dλ

dp (p0) can be
calculated explicitly by solving the linear equation system (20). In [11], it is explained
how one can check the assumptions of Theorem 5.1 numerically by using the projected
or reduced Hessian.

5.2 Real-Time Mission Correction
In this section, a mathematical method to correct the violations of the space mission
trajectory is presented. This method is based on the discussion from last section about
sensitivity analysis of an NLP(p), and linear approximation

z(p) = z(p0 + ∆p)

≈ z̃(p) = z(p0) +
dz

dp
(p0)∆p,

(21)
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which uses the explicit sensitivity differentials achieved by solving linear system (20)
for perturbations ∆p to modify the control signals.

To deal with the linear approximation (21), one has to consider the changes of
the active constraints, see [10, 11, 6]. Although (21) results in acceptable real-time
approximations for small ∆p, it can cause larger deviations from the active constraints
for larger ∆p and leads to a non-admissible solution as

ε1 := Ga(z̃(p), p) 6= 0. (22)

Introducing an auxiliary parameter q ∈ RNa for every active constraint in (18), one
deals with the following problem{

minimize F (z, p)

under Ga(z, p)− q = 0
(23)

Choosing the nominal value of q which is q0 = 0, the problem (23) is equivalent to
the problem (18). Actually, the parameters can be considered as (p, q) ∈ RNp+Na .
Since one of the problems (18) or (23) satisfies the conditions of Theorem 5.1 if the
other one does, therefore one can compute the sensitivity differentials dz

dq (q0) and
dλ
dq (q0) in the same way as (20). By using the new sensitivity differentials, we can
hope that a better approximation of the form of (21) can be found to improve the
optimality and admissibility of the real-time approximation. Considering (21) and
(22), this approximation is given by

z(p) ≈ z̃2(p) = z̃(p)− dz

dq
(q0)ε1

= z̃(p) +
dz

dq
(0)Ga(z̃(p), p).

(24)

Let z̃1(p) denote the same z̃(p), then the improving steps (22) and (24) can be consid-
ered as an iterative process to construct sequences (εk)k and (z̃k)k for k = 1, 2, . . . as
the parameter and solution sequences, respectively. Since the nominal solution z(p0)
as well as the sensitivity differentials dz

dp (p0) and dz
dq (q0) can be computed off-line,

steps like (24) do not need any derivative computational cost. Moreover, the terms of
form dz

dq (0)Ga(z̃i(p), p), can be considered as a correcting feedback step for εi-error
correction. In the following, the feedback closed loop is briefly presented. The loop
continues until a prescribed accuracy ε∞ is achieved.

1. Initialize z̃1(p) = z(p0) + dz
dp (p0)∆p, k = 1 and choose the desirable accuracy

ε∞.

2. While ‖Ga(z̃k(p), p)‖2 > ε∞ do the following

• z̃k+1(p) := z̃k(p)− dz
dq (0)Ga(z̃(p), p),

• k := k + 1.

For more details about the feedback rule and the convergence rate of z̃k(p), see [12].



Optimal Flood Control 45

References
[1] C.J. Alpert, T.C. Hu, J.H. Huang, A.B. Kahng, and D. Karger. Prim-Dijkstra

tradeoffs for improved performance-driven routing tree design. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 14(7):890–
896, 1995.

[2] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In Proceedings of the 37th IEEE Symposium on Founda-
tions of Computer Science, pages 2–11, 1996.

[3] M. Athans and P. L. Falb. Optimal Control. McGraw-Hill, New York, 1966.

[4] A. Barclay, P. E. Gill, and Rosen J. B. SQP methods and their application to nu-
merical optimal control. In W.H. Schmidt, K. Heier, L. Bittner, and R. Bulirsch,
editors, Variational Calculus, Optimal Control and Applications, Basel, 1998.
Birkhäuser.
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