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Abstract

Recent articles on the broad range of computational and analytic
techniques currently used to investigate excavation collapse are re-
ported. Advances in physical models are also described. Simple models
for determining fault slip due to underground and surface excavations
and structures are investigated.

1 Introduction

Fault line slip can result in excavation collapse and so is a major safety con-
cern for miners. Such slip can be brought about by seismic activity remote
from the mining site or can be locally generated by the mining activity it-
self; the latter is of primary concern here. Underground excavations may
cause a reduction in the normal force acting on a nearby fault or increase
the shearing force acting along the fault and thus result in fault line slip.
Furthermore the effect of slip along fault will cause a redistribution of stress
throughout the mining site so that other faults may slip or may be further
loaded; subsequent mining activity may trigger such faults. The failure may
be static in character in the sense that a quasi-steady description of the
stress field can be used to identify unsafe faults, or dynamic in the sense
that elastic wave propagation issues need to be taken into account. Further
complications arise in that very little relevant information is available about
the geology and stress state of the mining area, and it is unlikely that such
information will ever be practicably available. The problem is very difficult
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both because the physics is not well understood and because of the absence
of data.

One might well argue that the objective of collecting sufficient data to
allow rigorous modelling is futile given the complex nature and large vari-
ability of materials and site conditions. Generally, however, it is agreed that
models should be seen as a numerical laboratory where the engineer experi-
ments with the main variables and parameters, learning about their mutual
relations and their influence on global behaviour; this approach has been
adopted by the Division of Mining Technology, CSIR, South Africa. Many
person years have been invested in trying to understand how to deal with the
physics and numerics of this problem. Recent articles on the broad range of
computational and analytic techniques currently used in the area, and ad-
vances in physical models and hazard assessment have been presented here.
These results are taken primarily from review articles presented in Advances
in Geophysics in the seismic and mining context, see Panza, Romanelli and
Vaccari (2000), King and Cocco (2000), and Gibowicz and Lasocki (2000).
As indicated we are primarily concerned with the effect of mining activities
on the structural integrity of excavations. Mines are normally built in loca-
tions containing faults and the effect of removing rock from the mining site is
to change the loading on nearby faults, possibly causing slip. Also vibrations
induced by mining operations generate elastic waves that can cause slip on
faults or movement of excavation walls, resulting in collapse. Generally it is
assumed that failure initiates and spreads on the fault plane if the Coulomb
Failure Function Cf exceeds a specific (experimentally determined) value:

Cf = |τβ| + µσβ, (1.1)

where τβ, σβ are the shear stress and normal stress (positive for extension)
acting on the fault orientated at angle β and µ is the coefficient of friction.
This result can be expressed in terms of the principal stresses and, using
this, optimal slip planes simultaneously favoured by initial loading and ori-
entation, can easily be identified, see King and Cocco (2000). This greatly
simplifies the task of predicting slip. When used in combination with the
momentum balance equation for elastic media,

ρui,tt = ρFi + τij,j,

where Fi is the body force per unit mass, τij is the Cauchy stress tensor, ui

the displacement vector, and the constitutive relation

τij = fij(ur,s),
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for the material, and appropriate boundary and initiating conditions, one
can, in theory, determine slip under prescribed forcing. Note that:

• The constitutive law is problematic. The elastic behaviour is likely
to be determined primarily by micro and macro cracks (rather than
by the intact rock) and is likely to vary with location especially close
to fault zones. Furthermore the effect of previous seismic events is to
change shear stress levels in the neighbourhood of faults, see later.

• The failure condition is simplistic, see later.

• Elastic waves are complex in their own right and their interaction
with structures adds further complications. Both shear and pressure
waves are generated by disturbances with the energy apportionment
dependent on the source characteristics and the presence of bound-
aries. Whether or not a fault slips depends on the nature and strength
of the stress wave, its direction of propagation, and the orientation and
state of loading of the fault.

We shall now describe some of the approaches used to better understand
these issues.

1.1 More complex failure models: memory

Both rate and state dependent failure laws have been proposed to explain
the occurrence and timing of aftershocks. Such models may be thought
to be associated with a slip-stick phenomena or some types of viscoelastic
relaxation process, although it is perhaps best to just think of such models
as being purely empirical and requiring laboratory fitting. In the context of
fault failure it is necessary to take into account changes in the status of the
fault brought about by previous seismic activity, and the introduction of a
memory (hysteresis) state variable θ, dependent on the past history of the
slip velocity V , represents a simple fix. Generally two coupled equations are
introduced; the governing equation, which determines the sliding resistance
τ to the slip velocity V . A typical form used is

τ = µσn + A ln
V

V ∗
+ B ln

θ

θ∗
,

and a second equation

θt = F (θ, L, V ),
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which determines the change in the memory variable θ, see Dieterich (1996).
Apart from the normal Coulomb terms there are slip velocity and state de-
pendent terms with cut off values (V ∗, θ∗) included; all introduced param-
eters (A,B, θ∗, V ∗) would need to be measured or fitted. Additionally F
needs to be modelled. Such equations have been used to model earthquake
after-effects including stress triggering. It should be pointed out, however,
that in the fault context simple laws of the above type are far from satis-
factory and models taking into account crack opening have been suggested,
see Napier and Malan (1997), and Dyskin and Galybin (2004).

1.2 Other Features

Numerical simulations suggest that seismic ground motion is greatly ampli-
fied on mountain tops and strongly dependent on the incidence angle and
sharpness of the topography. Also the trapping of energy due to soft surface
layering above underlying rock plays an important role in many situations
as well as resonances associated with the topology. Apart from fault zone
relaxation effects there are long term stress redistribution (aseismic creep or
flow) effects that change the loading on faults.

1.3 Self organised criticality

It would appear that very small changes in the Coulomb stress levels (0.1
-1 bar) can influence the occurrence of future earthquakes which have as-
sociated stress drops of the order of several bars to hundreds of bars, see
King and Cocco (2000). It has been suggested that faults behave as a
self-organised critical system; under such circumstances even small stress
changes can produce an instability. Furthermore some researchers believe
that much of the earth’s crust is not far from instability and provide data to
support this view. Some non-linear elastic models, see Muhlhaus (1999) pre-
dict ‘give’ in layers sandwiched between intact layers in response to shear;
essentially strain concentrations tend to be concentrated in zones. Such
models perhaps might be used to explain fault behaviour and in particular
the observed self criticality in stressed areas. These models are chaotic in
behaviour; small changes in the initial or boundary conditions can strongly
affect the location of the layers of give.

A surprisingly strong seismic response to small changes in the Coulomb
stress levels is also observed in the mining context where almost all the
seismic activity is induced by mining excavations, see Gibowicz and Lasocki
(2000). Many small scale seismic events (up to order of 100 per year) are
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recorded with a very small proportion causing rock failures. Comprehensive
studies of such events have been carried out in South Africa, Poland, Canada
and the United States

Based on these observations we will suggest another way forward, see
Section 3.

2 Summary of mathematical techniques

2.1 Numerical techniques

Useful analytic results (ray tracing and mode coupling) are available in cases
in which the wavelength of the seismic signal (typically 100m) greatly ex-
ceeds the dimensions of lateral heterogeneities; evidently not the case in the
mining context. Crude analytic approaches may well be useful for identify-
ing critical parameter combinations but to date researchers have relied on
numerical procedures. Of the standard techniques finite difference and finite
element techniques require huge amounts of memory and CPU time, pseudo-
spectral methods require rather less. Setting up an accurate finite difference
scheme on other than a Cartesian grid can be achieved using a local map-
ping function but this quickly becomes unmanageable for even simple fault
arrangements. The finite element technique better handles the awkward
geometries associated with the fault configuration and mine geometry. For
the linear constitutive model standard boundary integral techniques can be
used, greatly reducing the memory requirements and CPU time, providing
the material parameters are uniform. Awkward geometries can be handled
with care.

More promising perhaps than the above are fault interaction models,
see King and Cocco (2000). The approach, a boundary integral approach,
makes use of the static Green’s function solution for the displacement in an
infinite elastic isotropic and homogeneous half space due to a volume point
force of prescribed orientation. Excavations and faults are represented as
slip planes with prescribed displacements determined so that a consistent
picture results; simultaneous solutions of the governing boundary integral
equations for the fault displacements are sought. Evidently the problem of
discretization of the complete space is avoided and the technique focuses on
the most important issues (assuming the elastic field is essentially homoge-
neous except near faults).

Another procedure that has been successfully used for extremely complex
problems of an industrial origin is the particle interaction model, see Cleary
and Ha (2001). The technique was originally used by Monaghan (1992) in
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an astrophysics context. The continuum is viewed as a collection of moving
discrete particles interacting across their boundaries. Either the interaction
is described in terms of simple, often empirical (hard particle) models of a
dash-pot spring type, or the continuum equations are averaged to determine
the interaction (smooth particle models). It is a simple matter with the
hard particle models to account for state changes of individual particles so
that in the present context memory effects would be easily handled. Also
the hard particle models do not make any great distinction between liquids
and solids (except through the interaction) so that interfaces of all types are
easily handled. These methods are basically ‘zero order’ methods and so
are not efficient in a technical sense, although one has to add that conven-
tional techniques are not easily able to handle complex situations and lose
accuracy1 in circumstances in which the techniques have been successfully
applied (eg. free surface problems).

2.2 Statistical and semi-statistical techniques

The ideas presented above represent attempts to use our understanding of
the physics to predict behaviour. Given the complexity a pessimist might
conclude that all such attempts are likely to fail and that a statistical ap-
proach is the way to go, and of course all manner of deterministic/statistical
combinations have been used. Seismic zoning using scientific data banks in-
tegrated in an expert system have been used to identify suitable areas for
urban development as well as to mark out regional hazard zones, see Panza,
Romanelli and Vaccari (2000). Such models have used data concerning the
area, combined with synthetic seismograms, to estimate ground accelera-
tions resulting from events. Also of course in the mining context a great
deal of information2 is readily collected at a mine site so that a temporal
and spatial pattern of activity and its relation to the source can be estab-
lished. The available results are often sufficient to determine variations of
wave speed so that parameter maps can be constructed. A variety of source
parameters (seismic moment, corner frequency, energy flux) are extracted
from spectral data collected from carefully designed seismic networks record-
ing hundreds of events per day. In order to collapse data into a useful form
various scaling relations connecting the above parameters have been used,
and also fractal relations connecting the observed size and spatial and tem-
poral patterns of seismic events have been suggested. The indications are
that a fractal description (of small dimension) works, which suggests that

1as seen in a reduction in order
2many events per day is not unusual
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rock fracturing may be governed by a simple deterministic but chaotic set of
equations. Linear and non-linear statistical extrapolation models have been
suggested. The above description is brief, for more information see Gibowicz
and Lasocki (2000).

3 Simple 2D fault slip models

If the observed seismic events are a direct consequence of the critically
stressed state of a mining site before the events, then it seems sensible to
primarily focus one’s attention on the pre-event state, appending perhaps a
stability analysis. The determination of the change in the static field brought
about by the mining works is thus seen to be the essence of the problem. The
actual stress state corresponding to a specific mining configuration at the
present time would be independent of previous history providing there has
been no slipage3. Once slip has occurred, however, a historic record needs
to be kept and a simple fault slip model would be necessary to determine
future developments.

The vertical component of the ambient stress is primarily due to the over-
burden, whereas tectonic forces can affect the horizontal ambient stresses.
A small redistribution of such large loading, brought about by rock removal,
could well lead to catastrophic collapse. (A heavy beam supported by ver-
tical struts subject to movement comes to mind). If the above image is
correct then one should focus ones attention on build up of stress away from
ambient brought about by the removal of rock in the presence of known
faults; a perturbation approach is indicated.

Simple exact solutions are available in the plane stress case; we will use
these results to illustrate the envisaged procedure. Following Timoshenko
and Goodier (1970): in regions excluding excavations and faults the equa-
tions of static equilibrium and the compatibility equation are

τxx,x + τxy,y = 0, (3.1)

τyy,y + τxy,x − ρg = 0, (3.2)

52(τxx + τyy) = 0. (3.3)

The x axis is horizontal, the y axis vertically upwards, and the origin a point
on the surface, as in Figure 1.

3assuming a linear model
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Consider first the ambient stress state, τ0
ik, before excavations have been

initiated. The surface y = 0 is traction-free. Equations (3.1) to (3.3) and
the traction-free boundary condition are satisfied by

τ0
xx = τ0

xx(y) , τ0
yy = ρgy , τ0

xy = 0 ,

provided
d2

dy2
τ0
xx = 0 .

The theory of elasticity gives no clear indication as to what the horizontal
stress τ0

xx should be (Jaeger and Cook, 1969). Many authors take

τ0
xx = k τ0

yy = k ρgy , 0 < k < 1 ,

where k is a constant. The case k = 0 corresponds to no lateral constraint
(τ0

xx = 0). If there is no horizontal displacement anywhere (ux = 0) then it
follows from the generalised Hooke’s law that

τ0
xx =

ν

1 − ν
τ0
yy ,

where ν is the Poisson ratio. For a Poisson material, for instance, ν = 1
4 .

Then

τ0
xx =

1

3
τ0
yy

and k = 1
3 . When k = 1,

τxx = τ0
yy = ρgy , τ0

xy = 0 .

The stresses are then described as lithostatic. The assumption that the
stresses at depth are lithostatic is referred to as Heim’s rule (Jaeger and
Cook, 1969). Heim stated that stresses in rock tend to become lithostatic
due to creep. Because stresses in sediments are lithostatic throughout the
process of rock formation it can be argued that the final state of stress in
the rock should also be lithostatic.

In order to gain insight into the fault slip behaviour we will take a sim-
plified approach and choose k = 0:

τ0
xx = 0 , τ0

yy = ρgy , τ0
xy = 0 .

An extension of this work would be to consider the case 0 < k ≤ 1.
Changes in stress τ ′

ij away from from ambient thus satisfy

τ ′
xx,x + τ ′

xy,y = 0, (3.4)
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τ ′
yy,y + τ ′

xy,x = 0, (3.5)

52(τ ′
xx + τ ′

yy) = 0. (3.6)

Such changes are brought about by forces effectively applied around ex-
posed surfaces; faults, excavations and the free surface. The solutions of the
equations (3.4, 3.5) can be developed in terms of the Airy stress function φ
with

τ ′
xx = φyy, τ ′

yy = φxx, τ ′
xy = −φxy, (3.7)

and the compatibility equation (3.6) then yields

∇4φ = 0. (3.8)

In the present context we need solutions of the biharmonic equation
suitable for representing faults and excavations. Relevant singular solutions
for φ in local cylindrical co-ordinates (r, θ) are the point source solution
rθ cos θ and the edge dislocation solution θ. Other biharmonic solutions
may need to be appended to generate the required exact solutions.

A number of excavation and fault arrangements have been examined, a
few of which will be reported here.

3.1 Fault slip due to a excavation above a fault

We determine the effect of drilling an excavation of radius a above (and
parallel to) a fault orientated at an angle β to the Earth’s surface. It is
convenient to prescribe the excavation’s location using the distances (d,H),
see Figure 1; d is the perpendicular distance of the excavation from the fault
and H provides a measure for the depth of the excavation4. Locations along
the fault are conveniently measured using the angular displacement α as
measured away from the normal to the fault from the excavation, see Figure
1. The primary effect of the excavation is to introduce a point force

P = P j = πa2ρgj (3.9)

per unit length acting vertically upwards on the surrounding material. For
simplicity we will use the expression for a point force in an infinite medium;
we should use the expression for a point force in a half plane. Our solution
will give rise to nonzero normal and shear stresses at the surface, which how-
ever will be small for deep excavations; explicitly d/H � 1 is required for

4the excavation depth is H − d cos β



10 N.D. Fowkes, D.P. Mason and J.A.L. Napier

these stresses to be negligible.5 An explicit, though complicated, exact so-
lution is available for the semi-infinite domain problem, see King and Cocco
(2001); we side-step the complications. We also ignore localised stresses
around the excavation that might be introduced by excavation supports6.

surface
y x

d

S

N

H

r
j

(πa2ρg)j

α

θ i

β

slip zone

fault

r

Figure 1: Tunnel geometry

The relevant result for the stress due to the concentrated point force
P as in (3.9) in an infinite elastic medium with Poisson ratio ν is given
in Timoshenko and Goodier (1970), page 129. With respect to polar co-
ordinates (r, θ) centred on the excavation with θ = 0 in the i direction as
shown in Figure 1

τ ′
rr =

P

4π
(3 + ν)

sin θ

r
,

τ ′
θθ = −

P

4π
(1 − ν)

sin θ

r
,

τ ′
rθ =

P

4π
(1 − ν)

cos θ

r
.

5The normal and tangental stresses at the surface are of order (a/H)2 = ε(d/H). We
keep terms of order ε but neglect terms of order ε(d/H).

6The effect of such supports may be studied by appending appropriate potential solu-
tions
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Our concern is with stress levels along the fault along which

θ = 3π/2 + β + α, −π/2 < α < arctan(H/(d sin β)), r = d/ cos α.

Also, expressed in polar co-ordinates, the stress distribution due to gravity
at a point at depth h below the surface is

τ0
rr = −ρgh sin2 θ, τ0

θθ = −ρgh cos2 θ, τ0
θθ = −ρgh sin θ cos θ.

Using the above point force solution the shear stress S and normal force N
acting on the fault as a function of position along the fault can be deter-
mined. We obtain

S

|N |
=

U

V
tan β, (3.10)

where

U

V
= 1 −

ε cos α[(1 + ν) cos α sin 2(α + β) + (1 − ν) sin α]

2(1 − d
H

tan α sin β) cos β sin 2β
+ O(ε2), (3.11)

and the dimensionless groups are

ε =
a2

Hd
� 1,

d

H
.

The angles (β, α) specify the orientation of the fault and locations along the
fault. Slip will occur along the fault if

S/|N | > µ = tan β0,

where µ, β0 are the coefficient of friction and angle of friction associated with
the rock. Thus we have:

the slip condition,
U

V
>

tan β0

tan β
. (3.12)

In the absence of the excavation (ε = 0) this gives β > β0. Our concern is
with situations in which the fault angle is (marginally) sub-critical before
the excavation is dug (so β < β0) but the fault may be triggered by the
presence of the excavation. The slip condition is plotted as a function of
location α along the fault in Figure 2. It can be seen that slip occurs over
the range α1 < α < α2, where −β0 < α1 < 0 i.e. the slip occurs in a zone
further down the fault than the point nearest to the excavation, but above
the location vertically below the excavation on the fault, see Figure 2. We
will refer to this as the deep fault zone.



12 N.D. Fowkes, D.P. Mason and J.A.L. Napier

β

α2

α1
α2 α1

U
V

= tan β0

tan β

α = −β α = 0

Figure 2: Fault slip due to a excavation above a fault. Slip occurs between
α2 < α < α1 where tan β0

tan β
= U(α)

V (α) . The parameters are β = π/6, ν =

0.25, d/H = 0.01, ε = 0.1. Note that α1 > −π/6 in this case.

α2

β

α1
α2α1

−π
6

U
V

= tan β0

tan β

α = −β α = 0

Figure 3: Fill in effects with ρ1 > ρ. Slip occurs between α1 and α2 where
tan β0

tan β
= U(α)

V (α) . The parameters are β = π/6, ν = 0.25, d/H = 0.01, ε̄ = 0.1.
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3.1.1 Fill in effects

One might well wonder if the filling in of the excavation with heavy material,
with density ρ1 > ρ, could stabilise a fault. The point force in this case is
of strength

P = −ρgπa2(
ρ1

ρ
− 1)j = P j,

so that the results (3.11, 3.12) go through with ε replaced by −ε̄ where
ε̄ = ε(ρ1

ρ
−1). Although the slip is stabilised in the deep fault zone, slip now

occurs in the shallow fault zone, see Figure 3.

3.2 Fault slip due to a surface excavation or structure above

a fault

r

r

-π
6

 

-π
6

 

θ   

θ   

β

U
V

= tan β0

tan β

Figure 4: Upper Figures: a surface excavation. The parameters are β =
π/6, ν = 0.25, εs = 0.2. Lower Figures: an erected building. The parameters
are β = π/6, ν = 0.25, ε̄s = 0.2.
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We will apply the result for the stress due to a concentrated point force
magnitude P in the j direction acting on a horizontal straight boundary of a
semi-infinite plate. Adapted to the co-ordinate system used here, see Figure
4, the result of Timoshinko and Goodier (1970) p 98 is

τ ′
rr = −

2P

πr
sin θ, τ ′

θθ = 0, τ ′
rθ = 0.

The surface is traction free except at r = 0 where the point force acts.
Interestingly the stress distribution is independent of the Poisson ratio ν. It
can be derived from the potential

φ =
P

π
rθ cos θ.

In this application

θ =
3π

2
+ β + α, −

π

2
< α <

π

2
− β.

For an excavation on the surface,

P = P j =
πa2

2
ρgj.

The force P acts vertically upwards on the surface of the domain, see Figure
4. The shear and normal forces acting on the fault are straightforwardly
calculated to again give the form

S

|N |
=

(

U

V

)

tan β, (3.13)

where in this case

U

V
= 1 +

εs cos3 α sin(α + β)

cos2 β sinβ
+ O(ε2

s), εs =
(a

d

)2
. (3.14)

Thus again the fault slips at locations α determined by the fault slip
condition (3.12) (but of course with altered values of U/V ), which is plotted
in Figure 4. Slip now occurs in the shallow fault zone. On the same figure
we also observe the effect of surface loading; a fill in using material of density
ρ1, where ρ1 > ρ, or by a building of average density ρ1. Then

P = −
πa2

2
g(

ρ1

ρ
− 1) (fill in),



Fault Slip in a Mining Context 15

P = −
πa2

2
gρ1, (building),

and εs is replaced by −ε̄s where ε̄s = εs(ρ1/ρ − 1) and ε̄s = εsρ1/ρ respec-
tively. In this case slip can occur in the deep fault zone.

It is interesting to compare the effects of excavations deep within the
Earth with surface excavations as seen in Figures 2 and 4. In the deep
excavation case slip occurs in the deep fault zone, whereas in the surface
excavation case the slip zone is shallow. Evidently surface effects play an
increasingly important role as d/H → 0 and this displays itself in the loca-
tion of the slip zone. To explore the transition we would need to use the
point force solution on the half plane which is available, see King and Cocco
(2000), but is complex. This issue could be examined in subsequent work.

3.3 Fault slip due to an excavation below a fault

The above results carry across to the situations corresponding to excavations
and fill ins below the fault. These results are displayed in Figure 5. Note
that an excavation below the fault can result in slippage deep down, whereas
a fill in with density ρ1 > ρ is likely to cause slippage in the shallow fault
zone. An excavation on the surface can induce shallow slip whereas a fill in
on the surface can help stabilise the fault. The relevant equations are:

excavation below the fault :

U

V
= 1 +

ε cos α[(1 + ν) cos α sin 2(β − α) − (1 − ν) sin α]

2(1 − d
H

tan α sin β) cos β sin 2β
,

fill in below the fault :

U

V
= 1 −

ε̄ cos α[(1 + ν) cos α sin 2(β − α) − (1 − ν) sin α]

2(1 − d
H

tan α sin β) cos β sin 2β
,

surface excavation :

U

V
= 1 +

εs cos3 α sin(β − α)

cos2 β sin β
,

surface structure :

U

V
= 1 −

ε̄ cos3 α sin(β − α)

cos2 β sin β
.
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d
α

d
α

β 

β 

β 

α
d

α
d

β 

π
6

 

π
6

 

Figure 5: Upper Figures: deep excavations and fill ins under a fault. Lower
Figures: excavations and a fill ins on the surface. In all cases U

V
> tan β0

tan β
is the

slip condition. The dimensionless parameters are β = π/6, ν = 0.25, ε = a2

Hd

and ε̄ = ε(ρ1

ρ
− 1) or ε̄ = ερ1

ρ
with ε = ε̄ = 0.2. Note that the portion of the

U/V curves to the right of α = β − π/2 correspond to locations outside the
physical domain and so are not relevant.
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In comparison with an excavation above a fault as described in Figure 2, for
a excavation below a fault slip occurs in a zone further up the fault than the
point of nearest approach (α = 0) but below the location vertically above
the excavation on the fault (α = β).

3.4 Follow-up work

The above represents an attempt to understand the fault slip problem in
simple circumstances.

Evidently solutions can be combined so that a complex (but strictly
two-dimensional) arrangement of excavations can be examined, providing
due care is taken with the interactions.

In the ambient stress, only the solution for k = 0 was considered. It
would be important in follow-up work to consider the effect of k in the
range 0 < k ≤ 1 on fault slip.

The solution for a point force in an infinite plane was used to investigate
the effect of an excavation for deep excavations because surface effects can
then be neglected. For excavations near the surface the point force solution
in a half-plane would have to be used which is more complex (King and
Cocco, 2000). This solution would also allow us to explore the transition
from a deep excavation to a surface excavation.

The effect on the fault of localised stresses around the excavation (Jaeger
and Cook, 1969) was neglected. These effects may be larger than the ”buoy-
ancy” effects due to the excavation of rock, especially for excavations close
to the fault, and should be included in follow-up work. The relative im-
portance of the localised stress effects and the buoyancy effects should be
investigated.

The extension to three dimensions is also straightforward in theory but
the Green’s functions required are not so easy to work with and useful
analytic results are unlikely.

Of course once slip occurs, cuts need to be introduced with the dis-
placements across the cut prescribed by some theory/empirical result. The
resulting slip may stabilise the fault or leave the fault in a critical state
(most likely). In any case, in theory at least the determination of the stress
field is straightforward providing the slip model can be trusted; the present
models do not seem adequate.
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4 Numerical and analytic solutions available for

mining problems

This section provides a very brief survey of some representative techniques
that have been applied to the analysis of stress changes induced by mining
excavations. These include the use of analytical solutions, generally bor-
rowed from mechanical engineering problems, of holes in elastic plates or
other simple structures. In the important case of so-called tabular mining
problems, where a thin seam or reef deposit is extracted, the excavation
shape can be approximated as a crack with an irregular outline and with
the crack faces allowed to interpenetrate one another to accommodate the
effect of the compressive stress environment in which the excavation is cre-
ated. An early example of this form of approximation is given by Hackett
(1959) for the analysis of coal mining problems. A number of additional
two-dimensional problems were analysed by Salamon (1968), using complex
variable solution techniques based on the work of Muskhelishvili, 1963.

Although the available analytical methods provide great insight into the
canonical nature of some basic problems of stress concentration near the
edges of mine openings, it is apparent that for engineering design purposes,
it is generally necessary to obtain more detailed insights into the effects
of particular excavation configurations on surrounding fault structures or
other excavations. In this respect, traditional techniques such as the Fi-
nite Element Method (FEM) are somewhat cumbersome due to the infinite
or semi-infinite nature of the mining region and the need to cover the en-
tire volume with a computational mesh unless special infinite elements are
used. This has given some impetus to the use of boundary integral tech-
niques where only the significant excavation surfaces need to be defined in
the problem specification. The major disadvantage of the boundary integral
approach is the need to have a closed form fundamental solution (Greens
function) that is usually only available for a simple elastic material model.
A particular version of this approach was proposed by Salamon (1963) for
the analysis of stress concentrations arising from tabular mining operations
in an elastic host material. Salamon initially termed the method the Face
Element Principle but this has subsequently become known as the Displace-
ment Discontinuity Method (DDM). An exposition of the basic method is
given by Crouch and Starfield (1983) and has found specialised application
in the routine solution of tabular gold, coal and platinum mining problems
(Salamon et al., 1964, Plewman et al., 1969), particularly in South Africa.
The DDM has also found applications in attempts to model earthquake slip
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processes (see, for example, Ben-Zion and Rice, 1993). Further extensions
to the method can be developed to model inelastic fracture initiation near
the highly stressed edges of tabular mine excavations (Napier and Malan,
1997).

It is important to note that the displacement discontinuity method (DDM)
can be extended to analyse problems of dynamic fault slip that are of great
interest in the fields of earthquake engineering and seismology (see, for ex-
ample, Aki and Richards, 1980, Scholz, 2002). However, a number of difficult
numerical challenges arise in applying the DDM to elastodynamic fault slip
problems that require attention to the treatment of multiple time and length
scales and to issues of numerical stability. This suggests that it may be fruit-
ful to consider ”hybrid” models that embrace both discontinuity structures
and particle model concepts such as the so-called smoothed particle hydro-
dynamics (SPH) technique.

5 Conclusions and recommendations

In the above we have attempted to provide a considered, but necessarily
brief, survey of relevant physical models and numerical approaches that
have been used, or may be used, to shed light on this very difficult problem.
We have also attempted to give a carefull treatment of one small aspect of
the problem; the effect of excavations and possible structures on an existing
fault. The approach employed may provide useful practical information for
slip management and may be usefully extended. The work is continuing.

A very profitable route for dynamic fracture modelling might be the
development of hybrid models that embrace both the boundary integral
ideas and the particle model concepts of smoothed particle hydrodynamics.
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