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Executive Summary. We report progress on mathematical modelling of coffee grounds in a drip filter coffee
machine. The report focuses on the evolution of the shape of the bed of coffee grounds during extraction
with some work also carried out on the chemistry of extraction. This work was sponsored by Philips who are
interested in understanding an observed correlation between the final shape of the coffee grounds and the quality
of the coffee. We used experimental data gathered by Philips and ourselves to identify regimes in the coffee
brewing process and relevant regions of parameter space. Our work makes it clear that a number of separate
processes define the shape of the coffee bed depending on the values of the parameters involved e.g. the size of
the grains and the speed of fluid flow during extraction. We began work on constructing mathematical models
of the redistribution of the coffee grounds specialised to each region and on a model of extraction. A variety of
analytic and numerical tools were used. Furthermore our research has progressed far enough to allow us to begin
to exploit connections between this problem and other areas of science, in particular the areas of sedimentology
and geomorphology, where the processes we have observed in coffee brewing have been studied.

I. INTRODUCTION

Coffee is a popular beverage made from the roasted seeds
(beans) of the coffee plant. The beans are ground and part of
their soluble content is extracted by hot water. The resulting
solution is called coffee. One way of making coffee is to use a
drip filter coffee machine. In this arrangement ground coffee
is placed within a filter which is in turn within a conical funnel
as seen in Fig. 1. Hot water is poured on the coffee either from
a single point or from multiple points.

Philips manufacture coffee machines and are interested in
understanding the science of the brewing process with a view
to ensuring their products reproducibly create good coffee. As
with wines, the chemicals responsible for the smell and taste
of coffee are too complex for any scientific instrument to di-
rectly measure the quality of coffee. Therefore coffee qual-
ity is measured by professional tasters. While carrying out
tasting experiments Philips researchers noted a correlation be-
tween the final shape of the bed of coffee and the quality of
the coffee. The final results of one set of experiments involv-
ing a range of grain sizes and brewing conditions are shown
in Fig. 2. As can be seen the final shape of the bed depends
on whether coarse or fine grains are used, and the way the wa-

ter is added to the coffee, as a single jet or multiple jets from
a shower head. The grain size distributions corresponding to
fine and coarse ground coffee are illustrated in Fig. 3.

Fig. 4 shows a preliminary attempt to understand these re-
sults in the context of a coffee control chart [1]. The control
chart classifies coffees by the percentage of coffee solids ex-
tracted and the concentration of those solids in the final brew.
The line on the figure corresponds to the ratio of liquid to cof-
fee grounds used by Philips in experiments shown in Fig. 2.
(Note that the concentrations shown by the line have been cor-
rected for the remaining water left in the filter.) It is interesting
to note that the ratio of coffee grounds to liquid used makes
it very hard to achieve good coffee, by European standards.
Since Philips’ tasters said that cases ‘b’ and ‘c’ from Fig. 2
were good quality we suggest they lie in the ideal region. Pre-
sumably coffee from case ‘d’ was overextracted placing it in
the bitter region. We will discuss case ‘a’ in more detail be-
low, see section III A.

Fig. 5 shows the (cumulative) volumes of water entering
the filter, leaving the filter and held within the filter. As can be
seen from the figure there are three separate regimes:

1. Filling. Water fills the filter but does not leave.

2. Steady State. Water enters the filter and leaves at the
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FIG. 1. Arrangement in drip filter coffee. Coffee grounds are placed
in filter paper which is in turn placed within a funnel.

same rate.

3. Draining. No more water is added to the filter, but water
already held within it drains out.

The report is organised as follows. In Section II we focus
on the filling stage, asking the question, “what happens when
the water jet or jets hit the grounds?” Here there are two in-
teresting limiting cases, either the jet can punch through the
grounds or the water from the jet pools on the surface of the
coffee grounds. In Section III we consider how the coffee
grounds will distribute themselves in the steady state regime.
We identify three cases of interest: (1) the grains are fluidised
by the jet which drives a localised circulatory motion, (2) the
grains are undisturbed by fluid flow and float on the surface
or settle depending on their buoyancy, (3) the grains follow
the streamlines of the flow out through the filter which forces
them onto the filter. The implications for each of these cases
for the final distribution of grains is also discussed. Section IV
describes how a model of coffee extraction could be formu-
lated and show a simplified implementation in one dimension.
The correct flow equation needed for a range of grain sizes is
discussed in Appendix A.

II. INITIAL TRANSIENT

In the very first stages of extraction one or more jets of wa-
ter strike a dry bed of coffee grains. In our experimental work
we observed two different responses to this impact. The first,
shown in Fig. 6, is that the jet punches through the fluid. The
second is illustrated in Fig. 7 where the water from the jet
forms a pool on top of the coffee grounds.

A computational model of the grains using particle dynam-
ics was developed which shows punch through behaviour, this
is described in section II A. A model of the deformation of

(a) Coarse grind, single jet.

(b) Coarse grind, shower head.

(c) Fine grind, single jet.

(d) Fine grind, shower head.

FIG. 2. Final shapes of the coffee beds. Strategies (b) and (c) re-
sulted in good coffee, while strategies (a) and (d) resulted in poor
tasting coffee.

the coffee bed using thin film flow appropriate for the initial
stages of pooling is discussed in section II B.
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FIG. 3. Grain size distribution in fine (black line) and coarse coffee
(blue line). Also shown is the grain size distribution of espresso cof-
fee (red). The smaller peak at ≈ 30µm corresponds to single coffee
cells.
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FIG. 4. European coffee control chart [1]. The x-axis shows the
percentage of the mass of the coffee grounds extracted. The y-axis
shows the (mass) concentration of coffee solids in the resulting so-
lution. The grey dashed line shows the ideal region for American
coffee drinkers. The red solid line corresponds to the Philips data.
Letters ‘a’ to ‘d’ are our guesses of the locations on the diagram cor-
responding to the experiments shown in Fig 2.

FIG. 5. Cumulative distributions of water entering (black triangles)
leaving (red triangles) the filter. Black squares and line show the
difference beween the two: the amount of water held in the filter.

FIG. 6. If the coffee grounds are weakly held together then a jet of
water can punch through the grains as shown here using a half funnel
constructed for this purpose.

FIG. 7. If jet does not punch through the coffee grounds it instead
forms a pool above them.

A. Particle dynamics

A model of the motion of the grains for a strong jet was de-
veloped using computational particle dynamics. The simula-
tion, carried out in two dimensions here, proceeds as follows.
1000 grains are placed in a grid pattern over the filter, with
their radii distributed around 1 mm. From this initial position
the grains are allowed to fall under gravity while interacting
with each other to obtain a starting position. Once the grains
have reached a stationary position, the effect of turning on the
water jet is simulated. To implement the jet a certain region
where the water jet hits the grains is identified, and the grains
that are at the highest position in this region, i.e. the grains
which get a direct impact from the water jet get an additional
downwards force applied on them.

During the simulations the state of each particle, dry or wet-
ted, is tracked. Particles are initially dry, and become wet-
ted by either coming into direct contact with the water jet or
by prolonged contact with a wetted particle. The motions of
the grains are calculated by integrating Newton’s equations
F = ma for each grain. The forces included within the simu-
lation include: gravity, a repelling force (damped spring) that
is activated if two grains overlap, an attracting force between
the wet grains of coffee, water impact. Frames from two sep-
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FIG. 8. Frames from two particle dynamics simulations. The inter-
face between wetted and dry particles is shown in blue.

arate simulations are shown in Fig. 8

B. Thin Film model

Here we consider what happens when a droplet of water hits
a layer of coffee. In order to model this situation we initially
performed some experiments. We filled a filter funnel with
coffee, levelled off the coffee surface so that it was roughly
flat, and used a pipette to slowly add one drop of water at a
time onto the coffee surface. As the droplet hit the coffee, we
saw the droplet pick up coffee particles from the coffee bed;
the coffee particles then floated to the surface of the droplet;
the droplet spread; and finally the droplet was absorbed into
the coffee bed, which resulted in the surface of the coffee bed
being altered to a “crater-like” shape, the result of one such
experiment is shown in Fig. 9. We believe this crater shape
is due to the spreading of the droplet before it is absorbed
into the coffee bed. This spreading leads to more coffee being
taken up by the droplet than deposited at the centre of the drop,
whereas more coffee is deposited than taken up at the edge of
the spread droplet (as no coffee was initially taken up from
that part of the coffee bed surface). We repeated the process
of adding one droplet of water at a time onto the coffee, which
led to the crater getting deeper and more pronounced.

From the experiments it appears that the droplet spreads on
a much faster timescale than the timescale for absorption into
the coffee bed. Thus in our model we treat these two pro-
cesses as completely separate. Our mathematical model is di-
vided into several sections (as depicted in figure 10). Initially
we model the droplet hitting the surface of the coffee and tak-
ing up coffee particles from the coffee bed, then we model the
spreading of the droplet, finally, we model the deposition of
the coffee particles onto the surface of the coffee bed, as the

FIG. 9. End result of droplets of water landing on a bed of dried
coffee.

droplet is absorbed into the coffee. We present the results ob-
tained from solving our model numerically for repeated drops
on to the coffee bed.

FIG. 10. The distinct stages of our model: initially the droplet of
water hits the coffee bed and picks up coffee particles; these particles
move to the surface of the droplet; the droplet spreads; finally the
droplet is absorbed into the coffee, depositing the coffee that was in
the droplet back onto the surface of the coffee bed, and so altering
the surface of the coffee bed.

1. Mathematical Model

We consider how a two-dimensional bed of coffee with a
surface given by z = η(x) evolves when a sequence of wa-
ter droplets impact the surface, spread out to their equilibrium
profile z = h(x), and then sink into the underlying bed, de-
positing coffee grains as they do so. The contact point, which
denotes the point where the surface of the water droplet comes
into contact with the coffee, is given by x = s. The equilib-
rium contact angle is denoted by θ. We further suppose that
the droplet surface and the coffee surface are symmetric about
the z-axis. A schematic diagram with these details is shown
in Figure 11.

We decompose the evolution of the surface into two discrete
stages. If ηi(x) denotes the surface of the coffee bed after the
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z = η(x)

z = h(x)

s
x

θ

FIG. 11. A droplet of water with equilibrium shape z = h(x) resting
on a bed of coffee with a surface z = η(x). The contact point and
the contact angle are denoted by s and θ, respectively.

i-th droplet has sunk into it, then we first consider the stage
where a drop of water impacts this surface and ejects coffee
from it, thus creating a new surface ηi+1/2(x). The droplet
spreads over this surface and then sinks into it, depositing cof-
fee grains and creating a new coffee profile given by ηi+1(x).
This simple process can be repeated to determine the overall
shape of the coffee bed after multiple drops of hot water have
been deposited onto it.

a. Droplet impact and coffee uptake The mathematical
details of a droplet impacting a porous substrate are quite
complicated and therefore, the first phase that we consider in
our model is actually a post-impact stage, where we suppose
that the drop of water has already hit the surface and formed
a parabolic droplet. This initial droplet will then spread to
its equilibrium profile under the action of surface tension and
gravity; a process that will be explained below. We work in
non-dimensional variables and assume that each initial droplet
has a radius of unity and an area of A. If the initial droplet
profile is given by hinitial(x), then the first assumption implies
hinitial(1) = ηi(1), whereas the second assumption implies∫ 1

0

[hinitial(x)− ηi(x)] dx = A/2. (1)

We then take the initial profile to be parabolic and of the form

hinitial = B(1− x2) + ηi(1), (2)

where the constant B is given by

B =
3

2

[
A

2
− ηi(1) +

∫ 1

0

ηi(x) dx

]
, (3)

which is a consequence of imposing the condition in (1).
Experiments have shown that when the water drop impacts

the surface, coffee grains are ejected from the bed and sent to
the surface of the drop. We assume that the amount of coffee
that is removed from the bed at a point x is proportional to the
height of the initial droplet at that point. This implies the first
stage in the coffee bed evolution can be written as

ηi+1/2(x) = ηi(x)− ψ[hinitial(x)− ηi(x)], (4)

where ψ is a constant of proportionality. The total mass that

is removed from the bed is given by

mi = 2ψ

∫ 1

0

[hinitial(x)− ηi(x)]
(
1 + η2i,x

)1/2
dx (5)

and we assume that this mass is uniformly distributed over the
surface of the droplet.

b. Drop spreading After the uptake of coffee from the
bed, the drop spreads out. We calculate the final shape the
fixed volume droplet makes on our curved substrate. We will
take the drop to have a small height to length ratio and hence
use lubrication theory with the Navier-Stokes equations. We
use Tanner’s Law as a boundary condition.

We model the droplet to be two dimensional in the (x, z)-
plane and to be a homogeneous, incompressible, Newtonian
fluid of density ρ and viscosity µ. The unit vectors in the x and
z-directions are ex and ez respectively. The droplet lies on the
substrate, experiencing a gravitational force g in the negative
z-direction. The droplet will spread from its initial shape to
a steady state with experimentally determined contact angle θ
at the contact point x = s, which we will determine in our
calculations. The substrate is given by the equation z = η(x),
and the free surface of the droplet is given by the equation
z = h(x, t) (as shown in figure 11.)

The fluid within the droplet is governed by the Navier-
Stokes equations with incompressibility equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u− ρgez, (6)

∇ · u = 0, (7)

where u = (u, v) is the fluid velocity, p is the fluid pressure, t
denotes time and subscripts represent differentiation with re-
spect to that parameter. In 2D and in component form, these
equations become

ρ(ut + uux + wuz) = −px + µ(uxx + uzz), (8)
ρ(wt + uwx + wwz) = −pz + µ(wxx + wzz)− ρg, (9)

ux + wz = 0. (10)

On the substrate z = η(x) we impose zero slip and flux,
on the free boundary z = h(x, t) we impose the kinematic
boundary condition, normal stress balancing with surface ten-
sion and tangential stress being zero. Hence, on z = η(x), we
have

(u,w) = (0, 0), (11)

and on z = h(x, t) we have

−uhx + w − ht = 0, (12)
n · T · n = σκ, (13)
n · T · t = 0, (14)

where T is the stress tensor, n is the outward pointing unit
normal to the surface, t is the positive orientated unit tangent
of the surface, σ is the surface tension acting on the fluid sur-
face and κ = −∇·n is the curvature of the surface. T = (T )ij
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is given by

T = −Ip+ µ(∇u + (∇u)T ), (15)

where I is the identity matrix.
We will also have boundary conditions due to symmetry.

These are

hx(0, t) = 0, (16)
hxxx(0, t) = 0. (17)

The point at which the drop leaves the substrate is denoted
by x = s(t). The boundary conditions that relate to this are
the contact boundary condition and Tanner’s Law

h(s, t) = η(s), (18)

st = −(hx(s, t)− ηx(s))3 − θ3. (19)

In the steady state, the last boundary condition becomes

hx(s∗) = ηx(s∗)− θ, (20)

where s∗ is the steady position of s.
Our final boundary condition is a a constant volume bound-

ary condition. Since we are working in two dimensions we
take the volume of the initial drop to be denoted by A. There-
fore we have ∫ s(t)

0

[h(x, t)− η(x)]dx = A/2. (21)

In the steady state, this becomes∫ s∗

0

[h(x)− η(x)]dx = A/2, (22)

We non-dimensionalise as follows

x = Lx′,

z = Hz′,

(u,w) = U(u′, εw′),

t =
L

U
t′,

(p,T ) =
µU

εH
(p′,T ′),


(23)

where L is the typical length of the drop, H is the typical
height of the drop, U is the typical velocity scale of the drop
(and U = (ε3σ)/µ but this will be determined later) and ε =
H/L� 1 is the small ratio between typical height and length.
Substituting into our governing equations (8) - (10), we find
(dropping the ′)

ε2Re(ut + uux + wuz) = −px + ε2uxx + uzz, (24)

ε4Re(wt + uwx + wwz) = −pz + ε4wxx + ε2wzz − B,
(25)

ux + wz = 0, (26)

where Re = (ρUL)/µ is the Reynolds number, a ratio of iner-
tial to viscous forces, and B = (ε3L2ρg)/(µU) = (L2ρg)/σ
is the Bond number, a ratio of gravitational to surface tension
forces. Physically, we have B = O(1). We will also assume
that the reduced Reynolds number, ε2Re � 1. At leading
order in ε2 and ε2Re, this becomes

0 = −px + uzz, (27)
0 = −pz − B, (28)

ux + wz = 0, (29)

At leading order, the boundary conditions on the free sur-
face z = h(x, t) become

−uhx + w − ht = 0, (30)
−p = hxx, (31)
uz = 0, (32)

and the other all stay the same.
Our goal is to find a governing equation for the droplet’s

surface, h. To proceed, we use a standard averaging proce-
dure and integrate with respect to z from η to h, hence equa-
tion (29) becomes

∂

∂x

∫ h

η

udz − hxu(h, t) + ηxu(η, t) + w
∣∣h
z=η

= 0. (33)

Using boundary conditions (11) and (30), this becomes

∂h

∂t
+

∂

∂x

∫ h

η

udz = 0. (34)

We now need to solve (27) and (28) for u so we can substitute
this into equation (34).

We can solve (28) with boundary condition (31) to find

p(x, z, t) = B(h− z)− hxx. (35)

Substituting this into equation (27), we find

Bhx − hxxx = uzz, (36)

which is easily solved for u, using boundary conditions (11)
and (32) to find

u =
1

2
(Bhx − hxxx)

(
z2 − 2hz + 2ηh− η2

)
. (37)

We now substitute this into equation (34) to find our governing
equation for the surface

∂h

∂t
− 1

3

∂

∂x

(
(h− η)3(Bhx − hxxx)

)
= 0. (38)

We now assume that the drop has a steady state solution
governed by the steady form of equation (38), and the bound-
ary conditions (16) - (18), (20) and (22).

The steady state form of (38) and symmetry boundary con-
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ditions (16) and (17) yield

Bhx − hxxx = 0, (39)

which can be solved using the symmetry boundary conditions
again to give

h = A+
C√

B
cosh(

√
Bx), (40)

where A and C are constants of integration. We will drop the
asterisks from s∗ for convenience as we are working in the
steady state. The boundary condition (18) gives

A = η(s)− C√
B

cosh(
√

Bs), (41)

and using this in boundary condition (20) gives

C =
ηx(s)− θ
sinh(

√
Bs)

. (42)

We have a final boundary condition to use so we can find s,
the x-value at which the steady state drop first comes off the
substrate η. We use boundary condition (22) to deduce that s
satisfies the implicit equation

A/2− sη(s) +

∫ s

0

η(x) dx

=
ηx(s)− θ

B
×
[
1− s

√
B coth(

√
Bs)
]

(43)

Hence, our final drop shape is given by

h(x) = η(s) +
ηx(s)− θ√
B sinh(

√
Bs)
×[

cosh(
√

Bx)− cosh(
√

Bs)
]
, (44)

where s is defined implicitly by equation (43).
c. Coffee deposition After the droplet has spread to its

equilibrium profile, it will begin to seep into the porous bed
of coffee below. The precise details of the seepage process are
beyond the scope of this study and hence they are neglected.
Instead, we suppose that the seepage process merely deposits
the coffee grains on the surface of droplet directly to the un-
derlying surface of the coffee bed. By maintaining the as-
sumption that the coffee grains are uniformly distributed over
the surface of the droplet, the surface density of coffee is given
by

λi =
mi

2

∫ s

0

(1 + h2i,x)1/2 dx

, (45)

where mi is the mass of coffee that is ejected during the im-
pact stage (see (5)). The incremental amount of coffee con-
tained within a droplet surface element dsd is then dm =
λi dsd. If this mass of coffee is deposited directly onto the

bed surface element below, denoted as dsb, then the change
in bed height, ∆η, is given by ∆η dsb = dm = λi dsd. It
should be noted that if dimensional quantities were used, the
left-hand side of this expression would be multiplied by the
(area) density of coffee. By rewriting the surface elements of
the bed and the droplet in terms of the element dx, the final
shape of the coffee bed can be written as

ηi+1(x) = ηi+1/2(x) + λi
(1 + h2i,x)1/2

(1 + η2i+1/2,x)1/2
. (46)

2. Results

(a) (b)

(c) (d)

(e) (f)

FIG. 12. Results are shown for the droplets 1, 4, 8, 15, 30 and 50.
The shape of the droplet before it sinks into the coffee bed is shown
in blue, and the final shape of the coffee bed after that droplet has
taken up coffee, spread out, and redeposited the coffee is in brown.
Note that results are shown on just one side of the axis of symmetry.

We developed a simple Matlab script to solve (43) for s
and (44) for the final drop shape h(x). The coffee uptake is
governed by defined by (4) and the deposition by (46). The
contact angle θ is taken to be 50◦.

Figure 12 illustrates the solutions after various number of
droplets have fallen. The final shape, h(x), of the droplet pre-
absorption is shown in blue and the resulting shape of the cof-
fee bed due to the coffee being redeposited in brown. The
coffee bed is initially flat. Figure 12(a) shows that after the
first drop lands, spreads, and deposits the coffee it had taken
up as it landed, a slight crater immediately forms. This is due
to the fact that more coffee was taken up from part of the bed
where the drop landed than was re-deposited there. As more
drops then land the crater-like structure with a raised rim be-
comes more emphasised due to the cumulative effect of all of



8

the droplets spreading and redepositing the coffee. Eventually
a steady state is reached. Droplets land in the crater that has
formed, and cannot spread out due to the bed shape. This re-
sults in deposition of the coffee entrained as the droplet lands
in the same place, and so no change of shape of the coffee bed.

We use a very simplified model for this work. We chose
to work with a series of distinct droplets which spread due to
gravity and capillary effects. This still tells us useful informa-
tion about how the coffee bed might deform, as seen above.
Some things to think about for future work, however, include

• The contact angle of 50◦ is somewhat arbitrary. It
would therefore be useful to carry out a set of experi-
ments to determine what the contact angle for hot water
on coffee is.

• Can we compute the steady state crater shape more ex-
plicitly? In our simulations we tend towards a steady
state but it would be useful to find an explicit equation
to solve for the steady state.

III. STEADY STATE

According to Fig. 5 the majority time the coffee is brewing
occurs in a steady state regime. It seems likely that the be-
haviour of the coffee grounds and water during this period has
the largest effect on the quality of the coffee produced.

In our experiments we identified three types of behaviour
which could occur in the steady state regime, depending on the
dominant velocity scale of the system. These velocity scales
are:

1. Jet velocity ≈ 1 m s−1 for a single jet.

2. Stokes velocity, mm s−1 to cm s−1, the velocity with
which a particle moves relative to the fluid because of
its weight or buoyancy.

3. Filtration velocity, mm s−1

A. Jet dominated flow

If the most important velocity scale in the system is the ve-
locity of the jet then the grains will follow the flow pattern set
up by the jet. Fig. 13 shows an experimental realisation of this
case. The system initially consisted of layers of couscous and
coffee, to which a jet of cold water was applied. As the fig-
ure shows there is a localised region of circulation (which can
be seen by coffee grounds brought to the surface) surrounded
by a quiescent region. We suggest that overextraction occurs
within the region of circulation while underextraction occurs
within the quiescent region, the upper parts of which may not
even be wetted in practice. We therefore expect—in the ter-
minology of Fig. 4—a weak, overextracted coffee in the case
of jet dominated flow (case ‘a’ in Fig. 2). The final shape
adopted by the coffee bed will be determined by the configu-
ration adopted by the grains in the absence of the jet.

FIG. 13. Jet dominated flow. There is a local region of circulation
driven by the jet with stagnant edges.

FIG. 14. Coffee grains initially float on water and then sink. The
process can be accelerated by using soapy water containing washing
up liquid and retarded by using cold water.

B. Stokes velocity dominated flow

Since the coffee grounds do not have the same density as
water they will tend to move either upwards or downwards
relative to the streamlines. If the velocity associated with this
motion is larger than the other velocity scales in the system
then this will determine their distribution. This is what is ob-
served for instance in a cafetiere. Our experiments suggest
that coffee grains can be both less dense and denser than wa-
ter, see Fig. 14.

While it is obvious that part of the buoyancy of coffee
grains comes from the release of CO2 which occurs when they
are wetted it is not obvious whether this is the only factor re-
sponsible for their change in buoyancy. The transfer of solu-
ble compounds from the grains to the liquid may also result
in a change in buoyancy. The role the washing up liquid plays
in accelerating the decrease in the buoyancy of the grains is
also unclear. It may increase the solubility of the water to hy-
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FIG. 15. If the dominant velocity scale of the system is the filtration
velocity then coffee grains will follow streamlines until the intersect
the filter.

drophobic coffee compounds or it may allow escaping gas to
form smaller bubbles which more easily detach from grains.

If grains float on the surface during the steady state regime
then their final distribution will be determined by slumping as
the layer of water supporting them drains away.

C. Filtration velocity

A final possibility is that the largest velocity scale in the
steady state regime is the filtration velocity. In this case coffee
grains follow streamlines until they intersect with either the
filter paper or coffee grounds overlaying the paper. Fig. 15
illustrates this case.

We developed an analytic model and a numerical procedure
for modelling this case.

1. Analytic Model

We seek to predict the shape of the coffee ground wall dis-
tribution in a conical paper filter after a measured quantity of
hot water is poured into the filter and allowed to drain through
the grounds and the filter into a carafe. Graphs, parameter
values, and movies were provided. A particular set of graphs
showed the weight of the cone versus time as a total of one
litre of water was poured, at a steady rate, into 50 grams of
dry ground coffee. The pour time varied from 4 to 8 min-
utes. After all the liquid was poured, the weight data was
continued until the weight was again equal to about 50 grams,
indicating that all the water had been drained. Each curve
had three distinct phases: (i) weight increasing monotonically
until it reaches a value of about 200 grams, (ii) a steady-state
region where the weight stays approximately constant until all
the water has been poured. This indicates the rate of outflow
through the filter is equal to the inflow rate, and (iii) the final
time interval, after pouring has stopped, when the weight falls,
asymptotically approaching the original 50 grams.

y

H

θC

FIG. 16. The filter is a vertical cone of half-angle θc.

In order to arrive at a prediction, we need to know the time
dependent flow field. This is a difficult problem because we
need to consider the rheology of a slurry whose composition
varies in space and time as well as the details of the pouring.

It would seem clear however that the flow is driven, at least
to some extent, by hydrostatic pressure. This could corre-
spond to a limiting case where the filling flow is uniform over
the free liquid surface and the fall height of the inflow is made
as small as possible to minimise kinetic energy input. In such
a limit the liquid free surface would be horizontal in the cone.
(a) Thus we will assume quasi-static flow. This would not
seem unreasonable since the order-of-magnitude of the free
surface height movement is about 1 cm/minute. This suggests
a Reynolds number

Re =
ρV D

µ
(47)

between 1 and 10 for a diameter D = 5 cm and a viscosity
between one and 10 cp. A representative Froude number

Fr =
V 2

gD
= O

(
10−7

)
(48)

suggesting that dynamic pressures are very much smaller than
hydrostatic for most of the flow.
(b) We will assume that the slurry is uniformly mixed and that
the specific gravity of the coffee grains is one. Thus, if small
enough, they can be expected to act as passive tracers in the
flow. Apparently the grains are buoyant when dry but become
heavier as they soak, suggesting that neutral buoyancy is not
an unreasonable assumption.
(c) The flow through the filter paper is simply proportional to
the pressure difference across the paper which is ρgy, where
y is measured downward from the instantaneous liquid free
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surface.
(d) particles are trapped and remain attached to the inside of
the filter. Successive particles attach to earlier ones, thereby
building up the particle “cake” at any given location. While
it is likely that the cake buildup reduces the permeability over
time, we ignore that effect here.

We will not treat phase (i) above which is the filling phase.
Clearly it is the most difficult of the three sub-problems since
it involves fluidising the initial dry power. We do feel that it
also can be simplified somewhat in the slow flow limit.

The contribution from steady-state phase (ii) is most easily
seen if we were to continue this phase indefinitely until all
the particles are deposited and the exiting water runs clear.
(This would of course lead to a large quantity of very weak
coffee.) The final dry slurry profile would be a simple linear
increase from zero thickness at the level of highest rise in the
cone,H0 say, which is perhaps twice the level of the initial dry
powder using the numbers given above. The thickness profile
is simply

δ(y) = K1y (49)

where y is measured downward from H0. The linear curve
needs to be terminated at the cone centre line. The value of
K1 is found by requiring the volume enclosed between the
two cones (i.e. the filter cone and the slurry surface) to be
equal to the known volume of wet grounds, say 50 cm3 here.

The draining phase (iii) is a bit more complicated. At a
particular time when the liquid level is atH < H0, we balance
the rate of volume change in the cup to the volumetric outflow
rate, driven hydrostatically, through the filter cone below H .
Thus

Q = −πR2 dH

dt
(50)

= −π tan2 θcH
2 dH

dt
(51)

=

∫ H

0

dQ (52)

= K2
tan θc
cos θc

∫ H

0

(H − y)y dy (53)

leading to

dH

dt
= −K2H

sin θc
. (54)

Since H(0) = H0, the level falls as

H

H0
= exp

(
− t

t∗

)
(55)

where t∗ is a characteristic time. But H = H0 − y, and using
equation 54, we obtain

δ3(y) ∼
∫
ydt = −K3 [log(1− z) + z] (56)

where z ≡ y/H0. Note that the quantity in brackets behaves
like 1

2z
2 for small z and becomes positive infinite as z → 1.

Thus finally the predicted profile of dried coating on the
filter, due to phases (ii) and (iii), will be

δ(z)

H0
= Az +B [log(1− z) + z] (57)

where the new constants A and B will be determined by the
volume constraint and a measure of the relative time spent in
the two phases which probably can be determined most easily
from experiment.

A schematic diagram showing the contributions of the two
phases is in Fig. 17. A frame from a Philips movie during
drainage, in Fig. 2(d), seems to be in qualitative agreement
with the hydrostatic theory developed here.

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0
δ
(z

)/
H

0

z

FIG. 17. Diagram showing the final fully-drained shape of the slurry,
from equation 57.

2. Numerical Approach

An alternative numerical treatment of the same problem is
possible, presented here for a simplified geometry and flow
field. The advantages of this approach are: it allows for a
more general initial distribution of grain locations; the effects
of grain motion relative to the streamlines can be included via
the stokes velocity; inclusion of the stokes velocity also allows
the effect of a range of grain sizes to be included.

The geometry used in this approach is a two dimensional
version of the cone, illustrated in Fig. 18. The velocity field of
the water is taken to be: vx = ax, vz = −az where: a = Q

dLh ,

FIG. 18. Geometry.
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FIG. 19. Numerical calculation of the distribution of the coffee
grounds on the surface of the filter.

FIG. 20. Numerical calculation of the distribution of coffee grounds
using higher Stokes velocities.

andQ is flux of water through the cone. Coffee grounds move
relative to the flow field with a velocity given by Stokes Law

vs =
2

9

(ρp − ρf )

µ
gr2

where ρp is the mass density of the particles, ρq is the mass
density of the fluid, µ is the dynamic viscosity, r is radius of
the particle, and g is acceleration due to gravity.

Simulations are started with 100000 coffee particles with
diameters distributed according to particle size distribution
of standard coffee. Particle trajectories are calculated until
they intersect with the filter paper whereupon they become at-
tached. A histogram of attachment locations is built up over
the simulation. Fig. 19 shows the final distribution of parti-
cles for a standard simulation. Fig. 20 shows the effect of
increasing the stokes velocity by a factor of 4, i.e. simulating
the effect of denser particles or a slower filtration velocity.

FIG. 21. Philips’ own research suggests that are a large number of
compounds found in coffee are extracted with similar kinetics.

IV. EXTRACTION MODELS

As noted above coffee extraction is a complex and poorly
understood process on the chemical level. While Philips’ own
research suggests that a large number of chemicals are all ex-
tracted at approximately the same rate, see Fig. 21, other clas-
sifications [2] suggest four groups of chemicals with different
extraction kinetics due to their increasing molecular weight.
In order of speed of extraction these are

1. Delicate: fruits and floral.

2. Mid times: wood, nuts etc.

3. Sweet: caramel, vanilla etc.

4. Bitter: clove, tobacco etc.

For an ideal cup of coffee only the first three components
should be extracted.

Here we report preliminary results towards a model of cof-
fee extraction. We consider only a single component (or mul-
tiple components with the same kinetics) and one dimensional
flow.

A. One Dimensional Coffee Extraction

To include coffee extraction within the standard equations
of porous medium flow we include an equation for transport
of coffee.

∂ρωC
∂t

+∇ · (ρvωC) = A1 (ωg − ωC) (58)

We assume the transport of coffee is advection dominated so
we do not include a diffusion term. ρ is the density of the
liquid, ωc is the (mass) concentration of coffee, v is velocity,
ωg is the concentration of coffee in the grains, A1 is a coef-
ficient which describes the kinetics of transfer of coffee from
the grains to the liquid.

We also include an equation to track the decrease in coffee
concentration within the grains.

d

dt
ωg = −A2 (ωg − ωC) (59)



12

FIG. 22. Numerical solution of coffee extraction equations 58
and 59.

Since the grains are assumed stationary we have a simple,
non-convective, time derivative. A2 describes the kinetics of
the transfer.

Numerical solutions of these equations are shown in
Fig. 22.

V. CONCLUSIONS

A. Progress

• By using a combination of experimental and theoretical
analysis we have identified relevant regimes in the first
two stages of the coffee extraction process.

• We have begun work one developing mathematical
models appropriate for the various regimes. These mod-
els are in varying stages of development.

• We have also started work on a model of coffee extrac-
tion.

• Our results suggest that a sophisticated mathematical
model of coffee extraction can be constructed.

B. Further Work

a. Initial Transient More work is needed on understand-
ing the rheology of dry and wet beds of coffee grains, and the
dependence on rheology on the particle size distribution. This
is an area that has been looked at in some detail in the context
of geomorphology where the deformation of granular materi-
als by wind, rain, river flow and glaciers has been studied in
some detail. For example studies have been carried out on the
effect of rainfall on surface [3] and underwater [4] sediments.

b. Steady State Each of the three regimes identified re-
quires further investigation. The flow patterns set up by jet
dominated flow need to be understood in more detail. One
complication absent from our experimental work but clearly
present in Philips’ experiments (coarse grains, single jet) is
the modification of the flow patterns by the release of gasses.
An important factor that must be addressed in models of
filtration velocity dominated flow is the resistance of layers of
coffee grounds to flow. The models used above neglect this
effect, appropriate if the resistance of the filter paper to flow
is much larger than that of layers of coffee grains. In fact data
provided by Philips shows that the reverse is true. Models if
buoyancy dominated flow require a more detailed understand-
ing of the factors changing the density of grains from less than
that of water to above that of water, and how the kinetics of
these processes compares with the timescales of coffee extrac-
tion.

c. Extraction Models The model of extraction we have
created is very simple. To improve it we need more under-
standing of processes occurring on the scale of a single grain.
In particular what limits the kinetics of dissolution of the var-
ious components of the coffee? Is it the hydration of the grain
or the solubility of those components? Can all components be
treated independently or can the presence of one compound
limit the solubility of others?

Appendix A: Kozeny-Carman for bimodal size distributions

The particle size distributions, Fig. 3, indicate that the dis-
tribution roughly has two modes. Although the coarse grains
(approx. 1000µm) dominate the mixture, it might be possible
that the fine grains (approx. 30µm) cause a non negligible in-
crease in flow resistance. The Kozeny-Carman equation pro-
vides a means of estimating the permeability in terms of the
average particle diameter dp,av and hydrodynamic porosity εh
of the granules. Various literature on mixtures with bimodal
diameter distributions suggest that for high coarse, low fine
mixtures the use of the geometric mean (weighted with frac-
tion sizes) is a better choice for the “representative” particle
diameter [5, 6].

For a bimodal mixture, we expect the porosity to lie within
the upper and lower bounds given by

φub = bvcφc + bvfφf , (A1)

and

φlb = φc − bvf (1− φf ) if bvf < φc

φlb = bvfφf if bvf ≥ φc,
(A2)

where φc, φf are the (measured) porosities of the coarse and
fine components, bvc, bvf are the fractions of the coarse and
fine component respectively (such that bvf + bvf = 1).
φub corresponds to the “zero-mixing” model (particles

packed without mixing), whereas φlb corresponds to the “idea
mixing model” (all fines are contained within voids of the
coarse). The measured porosity would typically lie in between
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these bounds depending on the mixing procedure, shape of
particles.
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