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Abstract

The problem brought to the 2010 Mathematical Problems in Industry Workshop by Corning
Incorporated involved a manufacturing process for the production of high-quality thin glass sheets
for many commercial applications (large screen video displays for example). The process begins with
hot molten glass flowing out of an apparatus (essentially an overflowing triangular trough) that helps
distribute the material into uniform sheets of desired width and controlled thickness. The design of
the apparatus is fundamentally based on exploiting fluid dynamics to control the process. The MPI
Workshop studied the fluid dynamics of two distinct stages of the process during the MPI workshop.
Formulation of sound mathematical models of the glass flow were the basis for numerical simulations
and stability analysis that can provide important insight on improving the reliability of the sheet
production process.

1 Introduction

The basic sheet glass production process considered by the workshop is illustrated schematically in
Figs.1 through 4. A trough is filled with molten glass via an inlet, as shown in Fig.1 (the inlet is on
the left in this figure). The exterior of the trough is a symmetric triangular wedge, while its interior is
a sloped, more shallow, wedge (indicated by a dashed line in Fig.1). As the trough’s interior reservoir
is filled, the molten glass overflows, and cascades down the two exterior walls of the trough. The two
cascading sheets meet at the trough’s underside, coalesce, and form a single viscous sheet. This hanging
sheet continues to fall under gravity, and also under external drawing forces that may be applied. As the
sheet falls in this “extensional flow” regime it thins, and eventually is cooled and solidified downstream,
at an appropriate final thickness. Clearly the whole production process relies on the system design
generating the correct fluid dynamics. The desired outcome is a sheet of desired thickness and uniform
cross-section, free of impurities. Any nonuniformities (such as ripples) in the final manufactured sheet
may be linked back to the fluid dynamics in the molten state. It should therefore prove very useful to
study these fluid dynamics in order to see how best to control and optimize the manufacturing process.
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Figure 1: A patent showing the basic design of the overflow glass former apparatus [13].

Figure 2: (left) An experiment showing nonuniform dripping in a glass former and (right) computational
simulation [12,22].

Questions of particular interest to Corning include:

• Can we formulate a minimal (asymptotically reduced) yet accurate model for each of the two
stages? Corning have some experience with such modeling, but would like to know whether
existing models are sufficient, or whether extra physics is needed.

• Thermal gradients in the direction of film flow will obviously be important. But what about the
effect of thermal variations across the film thickness? Might these be significant, and can we
accurately model them?

• Can we predict what will happen to the leading edge of an advancing front as it travels down the
overhang? How will the thermal gradients influence this process?

• What will happen to any impurities present in the original film?

The production process as described above falls naturally into two stages from the fluid-dynamical
viewpoint.

Stage 1: The overflow problem In the first stage, molten glass is pumped into the reservoir
at a controlled rate. It overflows, and cascades down the exterior walls of the container, which are
overhanging inclined planes. See Figs.3 and 4. The flow of the thin layers of molten glass down these
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Figure 3: Schematic side-view of sheet former.

inclined planes is modeled using low Reynolds number lubrication theory for viscous fluids. While molten
glass may exhibit some viscoelasticity, for simplicity we consider the glass to be a viscous Newtonian
fluid, but retain temperature dependence in the viscosity. Our thin film model describes transport due
to gravity, surface tension, and Marangoni surface stresses created by temperature gradients along the
flow direction. Previous studies without the temperature gradients have shown that instabilities at the
leading edge of the advancing sheet (described in the ideal case by a traveling wave solution) can produce
fingering (dripping) that is linked to undesirable non-uniformities in the sheet. Our study shows that
the temperature gradients modify the flow to have wave-like solutions whose speed changes and whose
“capillary-ridge” leading edge structure evolves as the flow advances. Another concern of Corning Inc.
is that any tiny impurities such as dust that may settle on the surface of the film as it flows down
the incline could be transported along the surface and into the interior of the film by a ‘tank-treading’
motion at the contact line. Our modeling therefore also considers passive scalar transport of possible
impurities in the flow.

Stage 2: The falling sheet When the two glass sheets reach the tip of the trough, they will merge
together as they fall off in what is called “sheet fusion”, producing a suspended glass sheet in free
space. The ideal situation is shown schematically in Figs. 3 and 4. This hanging sheet can be subject
to drawing processes to stretch it as it feeds out from the reservoir and cools. The extensional flow
model appropriate to this stage of the fluid dynamics reduces to a coupled set of long wave equations
for the conservation of the sheet thickness and axial momentum. Further work is needed on this model
to integrate it with the outflow from the first stage.

Variants of these two sub-problems have been considered in the past by many authors, working on a
variety of different applications, so a range of relevant literature exists. With regard to manufacturing
processes in the glass industry, Ellison & Cornejo [14] have recently published a review of glass substrates
for liquid crystal displays, in which they describe the history of the device design back to the original
Dockerty patent of Fig.1 [13]. Of relevance to problem stage 1 is the large literature on viscous flow
down inclined planes. The paper by Troian et al. [30] in 1989 reported on the hydrodynamic fingering
instability observed at the edge of such an advancing front and has lead to extensive further work. Of
particular relevance to the set-up here are papers by Lin & Kondic [21] on viscous Newtonian flow down
an overhanging plane, and studies of film flows driven by temperature gradients by Cazabat et al [11],
Bertozzi, Münch et al [4–6,9, 23], and Troian [19].

With regard to stage 2 of the process, again, many references on the evolution of free viscous films
exist, incorporating a variety of physical mechanisms. Our approach is in the spirit of work by Howell
& co-workers [10, 16] in which systematic asymptotic expansions are used to derive a closed system of
PDEs governing the evolution of the sheet’s thickness and axial velocity. We derive a variant of such
models, in which the effects of temperature gradients (leading to viscosity gradients and surface tension
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Figure 4: (a) Side-view of the glass-forming apparatus showing the overflow, flow down the inclined
walls and fusion yielding a sheet of glass in free-space. (b) Schematic of an enlarged view of the leading
edge glass flow (non-wetting case) on the inclined plane with coordinate system shown.

gradients) are also taken into account.
The report structure is outlined below.

• Section 2: Lubrication flow down the sides of the trough, with a view to investigating:

– Structure and instabilities of the leading edge of the flow (drips and rivulets);

– ‘Tank treading’ of the contact line and passive transport of impurities;

– How temperature variations affect stability.

• Section 3: Extensional flow of the fused viscous sheet hanging beneath the trough, with a view to
investigating how variations in viscosity both along the sheet and across the sheet affect the fluid
flow.

• Conclusions, including assessment of the accuracy of the models used, and possible influence of
neglected effects.

2 Lubrication flow problem

In this section we apply lubrication theory to describe the flow of the molten glass along the inverted
inclined planes that lie under the reservoir tank. The apparatus is usually designed to be symmetric so
that the two thin films are nominally identical and should merge evenly.

While the true rheological properties of glass may be more complicated and might be more fully
modeled by some viscoplastic or viscoelastic non-Newtonian constitutive laws [1], we will treat it as
a slow, viscous, incompressible Newtonian fluid flow. However we will take into consideration that
properties of the fluid (viscosity µ and surface tension γ) may be temperature-dependent, to incorporate
effects resulting from the large range of temperatures that will be experienced in the full glass-forming
process. The velocity field ~u and pressure p for the flow will obey the Navier-Stokes equations,

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
= −∇p+∇ · (µ(∇~u +∇T~u))− ρ~g, ∇ · ~u = 0, (1)

where the viscosity µ may be spatially dependent (it will be a function of the local glass temperature,
which may vary both spatially and temporally). We pick our coordinate system to be aligned with
the inclined plane, see Fig. 4, with x being in the direction of flow, y the transverse direction in the
plane and z normal to the plane with (u, v, w) = ~u being the components of the velocity field in those
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respective directions. In terms of this coordinate system, the acceleration due to gravity takes the form
~g = (g cosβ, 0, g sinβ). The complete description of the problem must also include boundary conditions
along the entire boundary of the glass flow. At the inclined plane, which we treat as being fixed and
impermeable, we will impose no flux and no slip conditions on the velocity field. At the free surface,
the geometric definition of the free surface as moving material surface yields the kinetic boundary
condition, and we impose a stress balance including influences of the surface tension of the glass and its
temperature-dependent variations (the capillary and Marangoni effects respectively).

For low Reynolds number flow as found in this industrial process, we can neglect the inertial terms,
yielding the Stokes equations

~0 = −∇p+∇ · (µ(∇~u +∇T~u))− ρ~g, ∇ · ~u = 0. (2)

Then, for thin glass films, the ratio of the height-scale h0 to the lengthscales in the plane L yields a
small aspect ratio, ε ≡ h0/L� 1. In this asymptotic limit (the lubrication limit) the Stokes equations
reduce to the system

−ρg sinβ =
∂p

∂z
, −∇‖p+

∂2(µ~u‖)

∂z2
− ρg cosβ ı̂ = ~0, ∇‖ · ~u‖ +

∂w

∂z
= 0, (3)

where we have separated the velocity and spatial gradient into parts parallel to the solid surface (~u‖ and

∇‖), and the perpendicular components (w and ∂z): ~u = ~u‖+wk̂, where ~u‖ = (u, v) and ∇‖ ≡ (∂x, ∂y).
These equations describe the velocity field within the glass film, 0 ≤ z ≤ h(x, y, t) where z = h(x, y, t) is
the film’s free surface. Starting from (3)1, we obtain the form of the quasi-static pressure. Treating (3)2

as an ODE for ~u‖ in the z-direction and applying the no-slip and stress balance boundary conditions
at z = 0 and z = h respectively yields the tangential velocity field in terms of the evolving film height
and material parameters,

~u‖ =
z2 − 2hz

2µ

[
ρg cosβ ı̂− ρg sinβ∇h− γ∇(∇2h)

]
+
τz

µ
ı̂, (4)

where γ is the surface tension and τ is a measure of the Marangoni stress generated by a nonuniform
applied temperature, τ ≡ dγ/dx = γ′(θ)dθ/dx. Details of the intermediate steps above have been
omitted as these are standard in the literature on thin film flows [26–28], particularly relevant references
for flows on inclined planes include [20,21,25], while relevant references including the effects of Marangoni
forcing include [5, 6, 11,23,24].

The last step of the derivation of the lubrication equation for h(x, y, t) is also standard, but we
reproduce it since it will be of help for one of the questions we address later. The kinematic boundary
condition at z = h takes the form

∂h

∂t
+ ~u‖ · ∇‖h = w. (5)

Integrating equation (3)3 with respect to z and applying the no-flux boundary condition at z = 0 gives

w(x, y, z, t) = −
∫ z

0
∇‖ · ~u‖ dz′. (6)

Substituting the result from (6) for w(x, y, h(x, y, t), t) into (5) yields a statement of conservation of
mass in the thin film flow,

∂h

∂t
+∇‖ ·

(∫ h

0
∇‖ · ~u‖ dz′

)
= 0,

(
or equivalently

∂h

∂t
+∇‖ · ~q‖ = 0

)
, (7)

(the flux ~q‖ can also be interpreted as in terms of a depth-averaged velocity, ~q‖ = hv̄‖). Substituting
in (4) yields a single governing PDE for the evolution of the film height,

∂h

∂t
+

∂

∂x

(
τ

2µ
h2 +

ρg cosβ

3µ
h3

)
= −∇ ·

(
ρg sinβ

3µ
h3∇h

)
−∇ ·

(
γ

3µ
h3∇(∇2h)

)
(8)
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where we will omit the notation indicating the tangent component from here on.
We note that an assumption implicit in deriving the lubrication equation is that h is smooth with

slowly varying gradients; this implies a contact line with a small contact angle (low slope), called the
wetting case. Lubrication models also have problems with the dynamics of contact lines – namely
fluids spreading into previously dry regions. There are several mathematically- or physically-motivated
regularizations to this problem, the simplest being the adding of a “prewetting layer” – a very thin
pre-existing coating of the fluid everywhere (“complete wetting”); this generally is not expected to
change the overall dynamics of the flow for large film thicknesses. Physically, even a monolayer of
fluid molecules, can smooth the path of an advancing fluid compared with a completely dry substrate.
Mathematically, the degenerate form of the last term in (8) for h → 0 is problematic in terms of the
regularity and uniqueness of solutions with moving contact lines [2]; having a slightly pre-wet surface
with a uniform lower bound on the film thickness, h = b > 0 avoids such issues.

Before pursuing mathematical analysis of this model, we re-write it in a dimensionless form. We
rescale lengths and time according to

h = h0h̃ x = Lx̃ t =
µ0L

ρgh2
0

t̃

where the timescale has been selected based on the speed of gravity-driven viscous flows, and where µ0

a typical or mean value of the viscosity, which is scaled as

µ = µ0µ̃(x̃)

to yield the non-dimensionalized equation

∂h

∂t
+

∂

∂x

(
Ma

2µ(x)
h2 +

cosβ

3µ(x)
h3

)
= −∇ ·

(
D sinβ

3µ(x)
h3∇h

)
−∇ ·

(
Ca

3µ(x)
h3∇(∇2h)

)
. (9)

The other dimensionless parameters are

Ma =
τ

ρgh0
D =

h0

L
Ca =

γh0

ρgL3
. (10)

Lubrication models are formally derived as leading order equations in perturbation expansions for
ε ≡ h0/L → 0. In this context, the D term (due to the component of gravity normal to the plane),
is a higher order term and should not appear in (9) as the leading order equation. However, for flow
down inverted planes, this is a destabilizing term and even if it has a small coefficient, its inclusion has
a significant effect and is necessary to fully capture the dynamics of the problem. In the absence of
the regularizing capillarity term, the first term on the right-side of (9) would make the model ill-posed,
with solutions that would blow-up instantaneously, even with infinitesimally small D > 0.

Some previous studies that have used this model include [17,21], where isothermal problems are con-
sidered. In [17] this term is emphasized and the D coefficient is normalized (which selects a lengthscale
for L), suggesting a balance between the second- and fourth-order spatial operators. PDE analysis of
thin film equations with such balances between destabilizing second-order effects and stabilizing fourth-
order surface tension effects, ht = −(hmhx)x − (hnhxxx)x [7, 8, 33] suggests that finite-time blow-up of
the film thickness (corresponding to the formation and growth of a pendant drop) cannot occur unless
the destabilizing term is sufficiently stronger than the fourth-order term, if m ≥ n + 2. In [17], the
differences between the cases of films on inclined and horizontal inverted plates with respect to blow-up
are described.

We note that the Ma-term in (9) assumes a constant Marangoni stress, namely there is a uniform
gradient of the surface tension in response to the imposed temperature gradient; this tends to drive thin
film flows from hot regions to colder ones. A constant stress is consistent with the simplifying assump-
tions of a linear dependence of the surface tension on temperature and a linear imposed temperature
profile. This model has been used in many recent studies of thermal Marangoni effects [5,6,11,23,24]. In
these studies, it was shown that interesting dynamics (undercompressive shocks and partial suppression
of fingering instabilities) can occur when the Marangoni stress opposes the gravity-driven flow.
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Figure 5: (left) Evolution to the traveling wave solution of (11) in shown in a fixed reference frame,
(right) the steady-profile traveling wave solution H(η).

2.1 Traveling wave solutions with constant viscosity

In the previous studies of thermal Marangoni driven flows, the temperature-dependence of the viscosity
had been treated as a weak effect, and hence ignored. Then the viscosity is treated as a constant and
(9) reduces to

∂h

∂t
+

∂

∂x

(
Ma

2
h2 +

cosβ

3
h3

)
= −∇ ·

(
D sinβ

3
h3∇h

)
−∇ ·

(
Ca

3
h3∇(∇2h)

)
(11)

The structure of advancing uniform contact lines in (11) can be obtained as traveling wave solutions
having a steady height profile moving with a constant speed c, h(x, t) = H(η) where η = x − ct. This
ansatz reduced (11) to the traveling wave ODE

−cdH
dη

+
d

dη

(
Ma

2
H2 +

cosβ

3
H3

)
= − d

dη

(
D sinβ

3
H3dH

dη

)
− d

dη

(
Ca

3
H3d

3H

dη3

)
. (12)

Traveling waves will asymptotically approach constant upstream and downstream heights for |η| → ∞;
if the heightscale is normalized with respect to the upstream film thickness, then these are

H(η → −∞) = 1 H(η →∞) = b� 1, (13)

where b is the thickness of the precursor/prewetting layer. It is straightforward to show that the
wavespeed must be given by

c =
g(1)− g(b)

1− b
g(H) =

Ma

2
H2 +

cosβ

3
H3. (14)

The traveling wave solutions can be obtained using ODE shooting methods, but these can be tricky to
implement numerically [31]. An alternative is to write the one-dimensional version of (11) in the moving
reference frame for H(η, t) and allow for evolution in time to the stable-in-one-dimension steady profile
H(η, t)→ H(η),

∂H

∂t
− c∂H

∂η
+

∂

∂η

(
Ma

2
H2 +

cosβ

3
H3

)
= − ∂

∂η

(
D sinβ

3
H3∂H

∂η

)
− ∂

∂η

(
Ca

3
H3∂

3H

∂η3

)
, (15)

starting from generic initial conditions satisfying the boundary conditions, see Fig. 5. Further com-
putations were done to see how the structure of the solution depends on the Marangoni and capillary
parameters, see Fig. 6. Since Ca multiplies the highest order derivative in (12), for the limit Ca → 0,
this equation is a singularly perturbed problem and the capillary ridge can be analyzed as a boundary
layer within the framework of matched asymptotics. Its width is expected to scale with O(Ca1/3), and
this appears to be borne out, at least qualitatively (see Fig. 6(right)).
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Figure 7: Comparison of traveling wave solutions for fixed viscosity vs. slowly evolving solutions with
viscosity controlled by a fixed temperature profile, µ(x) = ex/200.

2.2 Temperature dependent viscosity

Traveling wave solutions to (11) are possible because the equation is translationally invariant. If the
dependence of the viscosity on temperature is retained, as in (9) with a fixed imposed temperature field,
then the equation has non-autonomous coefficients and is no longer translation-invariant. However,
solutions have a similar structure, though their amplitude and speed may exhibit slow variations over
time. Fig. 7 shows a solution of (9) alongside the analogous solution of (11). Both solutions have the
same initial condition, and the same values for the system parameters: Ca = 1, Ma = 1/2, D = 1/5,
β = 20◦ and are shown at the same times. The red curves (solutions of (11)) show the expected traveling
wave behavior, but for the green curves (solutions of (9), the dimensionless viscosity is prescribed by
µ(x) = ex/200, modeling the effect of a decreasing temperature profile along the substrate, as x increases.
The simple exponential model was chosen for computational convenience and its results were somewhat
counter-intuitive and sparked further group discussions. It might be expected that flow into a region
with increasing viscosity would have a decreasing characteristic speed, however the figure shows a front
with a steadily increasing speed. One possible competing influence is that the gradient in the viscosity
creates an additional flux of fluid (note the rising upstream film thickness) which might accelerate the
front despite the retarding influence of the spatially increasing viscosity; further study should be given
to this point.
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2.3 A coupled model including heat transfer

A more realistic model would allow for an evolving temperature field controlled by heat transfer at
the substrate and heat flow through the evolving thin film [18]. Consequently, “µ(x)” in (9) would be

replaced by µ(θ(x, t)) where θ is the effective temperature and Ma → M̃a ∂xθ. We suppose that the
temperature is determined by the convective heat equation, and that heat is lost through the substrate
by conduction, and into the air by radiation. The model for the temperature θ reads

ρcp (θt + uθx + wθz) = k (θxx + θzz) , (16)

θz = α (θ − θs) on z = 0, (17)

−θz + hxθx√
1 + h2

x

= β
(
θ4 − θ4

a

)
on z = h. (18)

Here, cp is the specific heat capacity of the fluid, k is the thermal conductivity, α and β are transfer
coefficients, and θs and θa are the (assumed uniform and constant) temperatures in the substrate and
air respectively.

Under the assumption that the Peclet number, Pe = ρ2gLcph
2
0/(µ̄k) ∼ O(1) and the transfer co-

efficients α∗ = αL2/(kh0) and β∗ = βθ3
aL

2/(kh0) ∼ O(1), we find that the leading-order solution1

to (16-18) is θ = θ(x, t). We use the equations and boundary conditions at next order to obtain a
preliminary (nondimensional) model for the evolution of the temperature field:

Peh (θt + ūθx) = (hθx)x − β
∗(θ4 − 1)− α∗(θ − θ∗). (19)

where θ∗ = θs/θa, and the temperature has been scaled with the air temperature. This distinguished
limit (and its sub-limits) hold providing that Pe h2

0/L
2, αh0/k, βθ3

ah0/k � 1. If the transfer coefficients
are larger, we can obtain solutions which vary across the film (e.g., if αh0/L, βθ3

0h0/L � 1, we find
that θ = θ∗ (1− z/h) + z/h).

The final modelling step is to couple the surface tension and the temperature. The simplest rela-
tionship is to say that the surface tension decreases linearly as the temperature increases, i.e.

γ(θ) = γ0 − λθ. (20)

2.4 Two-dimensional stability analysis

An important further step in the analysis of the flow is the study of the stability of the uniform flow
to perturbations in the transverse direction. Transverse perturbations can lead to fingering instabilities
and growing perturbations, that corrupt the desired uniformity of sheets and coatings.

If we ignore the spatial variation of the viscosity, i.e. set µ(x) ≡ 1 in (9) to regain (11), we can
consider infinitesimal perturbations to the uniform film h = 1 far behind the contact line in the form
h ≈ 1 + δei(`x+ky)+σt with δ � 1. Substituting into (11) and retaining linear terms, we obtain the
dispersion relation:

σ = −i`(Ma + cosβ) + (`2 + k2)

(
D sinβ − Ca

3
(`2 + k2)

)
. (21)

The imaginary part of this relation connects to convection due to the Marangoni stress and tangential
component of gravity; this determines a phase speed of cph = Ma + cosβ for infinitesimal waves.
The real part of the dispersion relation shows that the system is long-wave unstable; perturbations
with wavelengths greater than λc = 2π

√
Ca/[3D sinβ] are expected to grow in amplitude and the

modes with maximum growth rate λ∗ = 2π
√

2Ca/[3D sinβ] are expected to dominate based on linear
theory. The Marangoni parameter does not enter into this critical wavelength, but may be important

1Here we formally use θ = θ0 + ε2θ1 + ...., where ε = h0/L and present the solution for θ0.
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in distinguishing between convective and absolute instabilities. More thorough study of rivulets and
fingering instabilities requires analysis of transverse perturbations to the traveling wave profile,

h(x, y, t) ≈ H(x− ct) + δg(x− ct) cos(ky)eσt δ � 1. (22)

This stability analysis, which must be written in terms of operators involving derivatives of H(η), must,
for the most part, be carried out numerically [3,15], since the leading-order traveling wave about which
we perturb is not available in closed form, but only numerically.

2.5 Particle trajectories

One question of particular interest for these flows is how impurities are transported in the flow. Based
on the no-slip boundary condition at the substrate, impurities on the substrate should remain fixed in
place. Impurities that deposit onto the free-surface of the film will move with the flow and will exhibit
a ’tank-tread’ rolling near the contact line [32].

To illustrate ideas for particle pathlines in lubrication flows, we first consider the canonical problem
of flow in a two-dimensional spreading drop. The porous medium equation,

ht = D(h3hx)x (23)

describes spreading of viscous drops on a horizontal plate due to gravity. This is a special case of the
main equation with Ma = Ca = 0, β = π/2 and D → −D. The component of the velocity along the
plate is given by

u =
Dhx

2
(z2 − 2hz) (24)

then from (6) the normal component of the velocity is

w =
D

2

(
1
2(h2)xxz

2 − 1
3z

3
)

(25)

Equation (23) has a closed-form explicit similarity solution describing infinite-time spreading of
finite-mass initial conditions. Seeking a similarity solution in the form h = tαf(x/tβ) yields

h(x, t) = t−1/5

[
K − 3x2

10D t2/5

]1/3

+

, (26)

for a droplet symmetric about x = 0, where K is a constant of integration depending on the initial
condition. Substituting (26) into (24, 25) yields the ODE system for particle pathlines:

dx

dt
= u(x, z, t)

dz

dt
= w(x, z, t) for 0 ≤ z(t) ≤ h(x(t), t) (27)

The solutions of this system are plotted in Fig. 8.
A similar procedure may be carried out for the traveling-wave solution of (12) (the case in which

the dependence of the viscosity on temperature is assumed weak, so that traveling waves exist). By
substituting a numerical representation of the traveling wave solution H(η) of (12) into (4, 6) we
can numerically compute the corresponding particle paths, using equations (27). Some representative
particle paths are shown in Fig. 9. As with our previous numerical simulations, we alleviate the stress
singularity at the moving contact line with a thin precursor film ahead of the moving front. We
observe that fluid particles sitting very close to the free interface near the moving front are readily
transported to the fluid’s interior. This suggests that small dust particles or other impurities present
during manufacture could, if they land on the film, be transported inside the glass sheet, leading to
permanent defects.
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Figure 8: Particle paths in a spreading viscous drop in the porous medium equation.

Figure 9: (left) Particle paths in the advancing contact line flow (right) detail of the flow field at the
base of the capillary ridge.

Figure 10: The hanging sheet geometry, with approximate dimensions.
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Figure 11: Model for extensional flow: schematic of the region of interest.

3 Extensional flow

3.1 Modeling

In this section we consider the second part of the manufacturing process, in which the two advancing
fronts on the two outer sides of the trough have merged (“fused”) underneath the trough, and fall down
under gravity (and possibly externally-applied forces also) as a single sheet in extensional flow. Our
approach closely follows that of Howell [16], though we include the effects of the temperature-dependent
viscosity, which was absent from that work.

The relevant forces here are gravity and surface tension, and since temperature θ varies, both surface
tension and viscosity, which are functions of temperature, will vary along/throughout the sheet. As in
the work of Howell [16] we assume a nearly-planar sheet, such that the ratios of typical thickness, h0,
and centerline deviation, H0, to a typical sheet length L, are both small: h0/L, H0/L ∼ ε� 1.

Scaling the transverse coordinate, sheet thickness and centerline deviations with h0, we define the
dimensionless sheet centerline, z = H(x, t), and its thickness h(x, t), so that its free surfaces are defined
by z = H ± h/2.

With gravity in the x-direction, and a reduced pressure p̄ scaled with µ0U/L (where µ0 is a typical
viscosity and U a typical axial velocity), our dimensionless governing equations (correct to order ε2) are

−ε2p̄x +
(
µuz

)
z

+ 2ε2
(
µux

)
x

+ ε2
(
µwx

)
z

= 0, (28)

−p̄z + 2
(
µwz

)
z

+ (µuz)x + ε2
(
µwx

)
x

= 0, (29)

ux + wz = 0, (30)

subject to a kinematic boundary condition, and normal and tangential stress balances at the two free
surfaces,

w = (H ± h/2)t + u(H ± h/2)x
n · σ · n = γ±κ,
t · σ · n = γ±s ,

 on z = H ± h/2.

To obtain a closed system of equations governing the evolution of the sheet, we first expand the depen-
dent variables p̄, u, w in powers of ε2. At leading order, we find extensional flow u0(x, t) (in the obvious
notation for the leading-order longitudinal velocity), but the problem is not closed. We need to expand
both the Navier-Stokes equations (in the form given above) and the boundary conditions to order ε2
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to obtain a closed system of PDEs for the leading-order quantities u0, h0, H0. We also assume that
the surface tension γ can be decomposed as γ± = γ0 + (∆γ)γ±1 (x, t), where γ0 is constant, and ∆γ/γ0

is O(ε2) (see [10]). The procedure is similar to that outlined in [10] (though complicated here by the
variable viscosity), hence we do not give the details of this calculation. Dropping the zero superscript
on any leading-order quantities for simplicity, the result is the following three equations:

4(hµ̄ux)x + Sth+
1

2Ca
hhxxx + Ma(γ+

1x + γ−1x) = 0,

ht + (uh)x = 0,

Hxx = 0,

where the dimensionless Stokes, capillary and Marangoni numbers are defined by St = ρgL2/(µ0U),
Ca = µ0U/(εγ0), Ma = ∆γ/(εµ0U), and were all assumed to be O(1)2 in the derivation.

Here, µ̄(x, t) is a cross-sheet averaged viscosity defined by

µ̄ =
1

h

∫ H+h/2

H−h/2
µdz, (31)

and γ±1x are surface tension gradients on the two free surfaces.
We can immediately see that a variation of the viscosity across the sheet does not cause it to bend,

and that the only the average value of the viscosity matters in determining the film thickness and glass
velocity. We note that corrections to the velocity, thickness and centreline are at O(ε2), indicating that
the thin-film approximation should accurately predict the evolution of the sheet generated by CFD
studies initiated by Corning.

In the simplest of cases, where we set St, Ma = 0 and Ca =∞, the steady state solution, assuming
that we know h at the top of the film, and the flux Q and tension T at the bottom of the film, is

h = h0exp

[
− T

4Q

∫ x

0

dx

µ̄

]
= h0exp

[
Tk

4Q

(
e−x/k − 1

)]
(32)

when µ̄ = ex/k. In particular, at the bottom of the sheet, the thickness becomes

h = h0exp

[
−Tk

4Q

]
, (33)

and we can see straight away that increasing the viscosity (i.e. decreasing k) can keep h close to h0.
Incorporating the capillary term would involve a calculation following that presented for a foam

lamellae in [10].
We note that the centreline of the sheet will bend if there is a pressure difference from one side to

the other, and in this case the centreline equation becomes:

Hxx =
Ca

2

(
P+ − P−

)
, (34)

with P± the pressures either side of the sheet. If these external pressures are constant, they neither
alter the film thickness nor the velocity.

Of course, as in the previous section, we should track the temperature field in the film, write the
viscosity and surface tensions as functions of temperature, and solve the four coupled equations together.
This is a difficult problem, which we are keen to pursue outside the study group forum.

2These choices give a distinguished limit of the problem. Another distinguished limit has the Marangoni and capillary
terms balancing at leading order, and a parabolic velocity profile across the sheet
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3.2 Bending stiffness

A viscous fluid sheet can suffer both stretching and bending effects and these effects can be coupled
depending upon the orientation of the sheet, it’s thickness, viscosity and lateral extent. In the modelling
process we have ignored the effect the bending stiffness and which can add an extra level of complexity
to the analysis. To at least partially justify this omission we estimate the bending stress associated
with the fluid and a solid with an appropriate set of parameters. For a solid the effective stiffness of
the material is characterized by the Young’s modulus and for a fluid it is the viscosity with respect to
the time scale for the flowing of the sheet that is the important parameter.

First assuming that the glass sheet is a solid with a Young’s modulus E, the cross-sheet characteristic
bending stress is given by

Bsolid =
1

hL

∫ h/2

−h/2
zσxx dz, (35)

where the stress component σxx = −κEz with κ = ∂2w/∂x2 the the corresponding curvature. Scaling
the curvature as h/L2 gives a characteristic size for the bending stress of

[Bsolid] ∼ 1

hL

Eh3

12

h

L2
=
E

12
ε3. (36)

In a similar fashion, the corresponding bending stress for a thin viscous sheet is given by [29]

[Bfluid] ∼ µU

3L
ε2. (37)

To answer whether or not bending stiffness should be included we consider a typical set of parameters
U ∼ 3× 10−3 ms−1, L = 1 m, h = 10−3 m, µ = 6800 Pa·s, E ∼ 107 Pa and we find that [Bsolid] ∼ 10−3

and [Bfluid] ∼ 10−5.
It is clear from this that the fluid bending stress can be thought of as a secondary effect because

of the slow speed of the slab. At this speed, the fluid bending moment only plays a role at very high
(εEL/4U ∼ 106 Pa·s) viscosities. Below these viscosities the sheet can be treated as solid with respect
to the bending stiffness.

4 Conclusion

In section 2 we formulated lubrication models for the flow of the molten glass along the inclined tank
walls. If (as assumed) the glass cools as it flows down the incline then Marangoni surface stresses
(Ma> 0) augment the influence of effect of gravity in driving the flow and instabilities of advancing
contact lines are expected [3]. If the temperature gradient is in the opposite direction, undercompressive
shocks can occur, which change the structure and stability properties of the advancing contact line. In
particular, this changes how disturbances ahead/behind the front propagate [9] and would have an
influence on the pathlines for impurities carried in the flow, i.e. § 2.5. Previous studies of thin film
flows with thermal Marangoni effects have generally neglected accompanying variations in the viscosity
(since those variations were relatively small). In the current problem, since the temperature variation
is expected to be substantial these effects may have a stronger role and should be studied further.

In section 3 we considered the evolution of the falling glass sheet. We derived an extensional flow
model for determining the thickness and centreline of the sheet and the (extensional) velocity of the
glass. Our model immediately showed that the presence of a nonuniform viscosity was not able to bend
the sheet, but that the evolution would be affected.

Of course, we should invest effort in establishing a model in which the transition from lubrication
flow to extensional flow is considered, in order to fully explain the behaviour of this method of glass
manufacture.
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