
Compressed representation

of a partially defined integer function

over multiple arguments

Nina Daskalova, Plamen Mateev, Stela Zhelezova

1. The problem

In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional
cube. The cube may be represented as a partially defined function over n argu-
ments:

f(x1, x2, . . . , xn), where xi ∈ [1 ÷ Ni] for i ∈ [1 ÷ n].

Considering that often the function f is not defined everywhere, is there a
known way of representing f or the points, in which it is defined, in a more
compact manner than the trivial one

x1, x2, . . . , xn, f(x1, x2, . . . , xn)?

The goal is to reduce the time necessary for moving or storing f and using
part of the time gained for computations for restoring the original f .

2. The team propositions

We consider the example data for this problem and observe that some argu-
ment combinations may be missing because the function is partially defined, but
no one combination can repeat. So a combination of function arguments for some
particular value is unique (Table1). Our idea is to replace the whole long list of
function arguments with a single unique number (ID), which depends on this
list. Then the function will be defined in the following way: (ID, f) instead of
the trivial one.

The criteria to choose ID are:

• easy calculated from the argument list;

• uniqueness;

• easy to calculate back the argument list from the ID.

We offer two methods to assign ID to each different argument list.

Compressed representation of a partially defined integer function ESGI’95

ID x1 x2 x3 f(x1, x2, x3)

1 2 1 5

2 2 1 2

2 2 2 7

4 2 2 1

4 3 1 6

Table 1: f(x1, x2, x3), x1 ∈ [1 ÷ 4], x2 ∈ [1 ÷ 3], x3 ∈ [1 ÷ 2].

2.1. ID is a consecutive number of the corresponding argument list
An argument list is a n-tuple over some alphabet (from 1 to max(N1, . . . , Nn))

so we can order the different n-tuples lexicographically. The number of all possible
combinations of function arguments is N1N2 . . . Nn. Then we use the consecutive
number of the argument list in this order as ID.

For our example in Table 1 all possible triples are: (1, 1, 1); (1, 1, 2); (1, 2, 1);
(1, 2, 2); (1, 3, 1); . . . (4, 3, 2). Then instead of presenting f as (1, 2, 1, 5) we use
only the couple (3, 5) (the argument list 1, 2, 1 is number 3 in the accepted lexi-
cographic order).

There are two possibilities to find an ID, defined above.
First, if the firm works with a client many times, it is possible to keep at both

applications (for the firm and for the client) all argument lists in lexicographic
order and their corresponding numbers.

If the clients are quite different each time and argument lists also change
dynamically, such storage is ineffective. In this case the ID number for each
argument list can be obtained by:

ID = N2N3 . . . Nn(x1 − 1) + N3N4 . . . Nn(x2 − 1)+

. . . + Nn−1Nn(xn−2 − 1) + Nn(xn−1 − 1) + xn.

To reverse this formula the next procedure could be used:

x_n = ID mod N_n; ID = ID div N_n

for k = (n-1) to 2 do

x_k = ID mod N_k + 1; ID = ID div N_k

2.2. ID is a number in some numeral system (for example binary),
different from the decimal one

Now we use (1111001, 5) to present f instead of (1, 2, 1, 5), because 12110 =
11110012 . Remember that 1 byte = 8 bits and a number in decimal system is 1

30

ESGI’95 Compressed representation of a partially defined integer function

byte while 8 positions in binary system are 1 byte. In our concrete example we
obtain 3 × 1 = 3 byte vs. 1 byte.

Let (∗, ∗, . . . , ai, ∗, . . . , ∗) denote an (n − 1)-dimensional cube. The most fre-
quently solved problem in OLAP is the computation of the sum of values F of a
given sub-cube of the n-dimensional cube. In the case of the (n− 1)-dimensional
cube the values F are:

F (∗, ∗, . . . , ai, ∗, . . . , ∗) =

∑N1

j1

∑N2

j2
. . .

∑Ni−1

ji−1

∑Ni+1

ji+1
. . .

∑Nn

jn
f(j1, j2, . . . , ji−1, ai, ji+1, . . . , jn)

To compute the values of all sub-cubes

F (∗, x2, . . . , xn), . . . , F (∗, ∗, x3, . . . , xn), . . . , F (∗, ∗, . . . , ∗)

an extra symbol is added to the alphabet of each argument (Table 2). The
argument lists are extended but the property, which we use to add an ID, is the
same. Therefore our idea can be extended also on the new argument lists.

ID x1 x2 x3 f(x1, x2, x3)

1 2 1 5

2 2 1 2

2 2 2 7

4 2 2 1

4 3 1 6

* 2 1 7

* 2 2 8

.

4 * * 7

* * * 21

Table 2: f(x1, x2, x3), x1 ∈ [1 ÷ 4], x2 ∈ [1 ÷ 3], x3 ∈ [1 ÷ 2]

In addition our group suggests the firm to archive the final records trying
another software.

The document compression standard DjVu [1] uses an algorithm called arith-
metic coding. Arithmetic coding, invented by Jorma Rissanen, and turned into a
practical method by Witten, Neal, and Cleary, achieves a superior compression.
Free browser plug-ins and desktop viewers from different developers are available
from the djvu.org website.

31

Compressed representation of a partially defined integer function ESGI’95

7z is a compressed archive file format with LZMA compression. Compression
ratio results are very dependent upon the data used for the tests. Usually, 7-Zip
compresses to 7z format 30-70% better than to zip format. And 7-Zip compresses
to zip format 2-10% better than the most of other zip compatible programs [2].

References

[1] Léon Bottou, Patrick Haffner, Paul G. Howard, Patrice Simard, Yoshua Ben-
gio and Yann Le Cun, High Quality Document Image Compression with
DjVu, Journal of Electronic Imaging, 7(3): 410–425(1998).

[2] http://www.7-zip.org/

32

