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Abstract

The problem of discriminating the magnetic dipoles of objects on the
surface of the earth, possible unexploded ordinances (UXO), from the
effect of the earth’s magnetic field in airborne magnetic field gradient
data was proposed. A model of simultaneous equations was developed
which hoped to discriminate between the effect of the earth’s magnetic
field and the possible UXO by solving for multiple dipoles using multi-
ple data points. The simplifying assumption, that the location of each
dipole is known, proved to produce unfavorable results when the flight
path has a varying altitude making the model impractical. Current
work suggests that a more practical solution to the problem can be
achieved with subspace tracking.

1 Introduction

The removal of UXO, such as landmines and mortar shells, is an expensive
and dangerous task. An airborne system for locating, and possibly identi-
fying, such objects will greatly assist in the clearing process. The problem
proposed was to locate magnetic field dipoles (dipoles), possible UXO, from
the measured magnetic gradient field tensors. The earth’s magnetic field is
three orders of magnitude greater than that of any objects located near the
surface and so a major part of the problem is concerned with separating the
earth from the dipoles. Data was provided which included the measured
magnetic gradient tensors, the total magnetic field, global positioning satel-
lite (GPS) coordinates for the measurements and magnetic gradient tensors
which had been compensated for the earth’s magnetic field.
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An outline of the paper is as follows. Section 2 briefly describes the mag-
netic field equations. In section 3 the model of a system of linear equations,
based on the assumption that the locations of the dipoles are known, devel-
oped at MISGSA 2004 is explained, followed in section 4 by an evaluation of
the model explaining why the model assumptions are not practical. Section
5 briefly discusses work that has been done on the problem since the model
developed at MISGSA 2004.

2 Magnetic field equations

The magnetic field H for a magnetic dipole with magnetic moment m is
given by

H =
3(m · r)r

r5
−

m

r3
, (2.1)

where r is the position vector of the field point relative to the dipole and
r is the magnitude of r. Equivalently, in index form, adopting Einstein’s
summation convention

Hj =
3mirirj

r5
−

mj

r3
. (2.2)

The magnetic field gradients must obey Maxwell’s equations in a vacuum

∂jHj = 0, (2.3)

∂jHk = ∂kHj. (2.4)

Thus there are only 5 linearly independent field gradients. The measured
magnetic field gradient tensor consists of 6 components, shown in Figure
1. This data, which was used for the results presented in this paper, was
measured using cars for possible dipoles. Five of these components can be
pre-multiplied by the corresponding rotation matrix to give the 5 linearly
independent magnetic gradients, Hxx, Hxy, Hxz, Hyy and Hyz, in Euclidean
space.

3 Model

The Frahm (1972) inversion only considers one field point at a time and
assumes there is only one dipole corresponding to that field point. This
means that the data must be compensated to remove the effect of the earth’s
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Figure 1: Magnetic gradient field tensor data.

magnetic field, before the Frahm inversion algorithm can be applied. The
earth’s magnetic field is far greater than that of the expected targets and
the model presented here hoped to find the targets in the uncompensated
data by solving for multiple dipoles (earth and target), using multiple field
points. In order to simplify the multiple points multiple dipoles (MPMD)
model the locations of the dipoles are fixed. Thus r, in equation (2.1), is
known and the problem is now linear in m. Now let

n =
r

r
. (3.1)

Then from equation (2.1)

H =
1

r3
[3(m · n)n − m]. (3.2)

Rewriting in index form, equation (3.2) becomes
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Hj =
1

r3
(3mininj − mj). (3.3)

For the magnetic gradient field

∂kHj =
1

r3
(3ninj∂kmi − ∂kmj)

=
1

r3
(3ninj − δij)∂kmi. (3.4)

Now for P dipoles the magnetic field at point q is given by

G
q =

P∑

p=1

H
pq, (3.5)

where H
pq is the magnetic field at field point q corresponding to the magnetic

moment m
p. The gradient tensors are given by

∂kG
q
j =

P∑

p=1

∂kH
pq
j (3.6)

=

P∑

p=1

1

(rpq)3
(3npq

i npq
j − δij)∂km

p
i , (3.7)

where m
p is the moment of dipole p, r

pq is the position vector of field point
q relative to dipole p, rpq is the magnitude of r

pq and n
pq = r

pq/rpq. For
Q field points, there is the system of 9 × Q equations in 9 × P unknowns,
which can be represented in matrix form by

Ĝ = Am̂, (3.8)

where

Ĝf = ∂kG
q
j , f = (3k + j − 3)q, (3.9)

m̂g = ∂km
p
i , g = (3k + i − 3)p, (3.10)

Afg =
3npq

i npq
j − δij

(rpq)3
. (3.11)

Then
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m̂ = A−g
Ĝ, (3.12)

where A−g is the generalised pseudo-inverse of A:

A−g = V S−1UT , (3.13)

where A = USV T is the singular value decomposition (SVD) of A, U and V
are orthonormal matrices and S is a diagonal matrix of the singular values
of A such that S11 ≥ S22 ≥ · · · ≥ 0.

4 Evaluation of the model

A constructed test case was used initially to evaluate the MPMD model,
with promising results. However, the results were not favourable on the
measured data. The main reason for this was the assumption that r is a
constant vector. In the test case the flight path was at a fixed altitude and
thus there was far less variation in the values of r. In the measured data the
altitude changes and this affects the solution. This can be seen in Figure
2, which shows the comparison of the measured data’s altitude, the Frahm
solution and the result of the MPMD model with dipoles placed at ground
level directly below the field points, using a window size of 2 (P = Q = 2),
and taking the smallest of the solutions for each dipole as the target value.

5 Subspace tracking

The MPMD model proposed at MISGSA 2004 proved to be impractical. The
assumption that r is a constant in the magnetic field equation (2.1) does not
work with measured data, where variations in r are common. Subsequent to
MISGSA 2004, work has continued on the problem, using subspace tracking.
The measured data is a mixture of data from different sources as well as
noise. This can be written as the equation

Y = DS + N , (5.1)

where Y is the measured values for the n sensors, S is the values for the m
sources (m ≤ n), D is a m×n mixing matrix and N is the noise matrix. The
noise matrix N can be dropped by assuming that the noise is an additional
source. The sources (subspaces) can now be determined by decomposing
the matrix Y , into the matrices D and S. The singular value decomposition
(SVD) can be used to do this decomposition. Using the SVD, the three most
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Figure 2: Comparison of MPMD model, Frahm solution and altitude of the
flight path.

significant subspaces had a high correlation with the three components of
the measured magnetic field and so can be assumed to be the earth’s mag-
netic field. Figure 3 shows the fourth subspace of the data which has a high
correlation with the components of the Frahm solution, shown in Figure 4.
The remaining two subspaces have significantly small singular values and are
assumed to be noise. Having only one subspace for the desired dipoles can
be expected since the subspaces are orthonormal, by definition of the SVD
(given in section 3), and the measure of three components of the dipoles are
not independent. Thus the orientation of the magnetic moment as well as
the direction to the dipole are properties of the mixing matrix D and logi-
cally if the subspace is a scaled magnitude of the dipoles then the structure
of D corresponding to the subspace is the appropriately scaled magnetic
field gradient equations. However, since D is constant, any movement in
the directions of and to the dipole over the measuring period of Y will be
averaged in some way. In order to track the movement of the subspace small
windows of the data must be used. The singular value decomposition does
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Figure 3: Subspace solution.
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Figure 4: The y-component of Frahm solution.
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not produce good results with the small windows. Present work is looking
at using statistical and geometric subspace tracking methods, such as those
by Miller et. al. (1995) and Srivasta (2000).

6 Conclusion

The problem posed at MISGSA 2004 was that of discriminating the magnetic
dipoles of objects on the surface of the earth, possible UXO, from the effect of
the earth’s magnetic field in airborne magnetic field gradient data. A model
of simultaneous equations using multiple data points was developed which
hoped to discriminate between the effect of the earth’s magnetic field and
the possible UXO by solving for multiple dipoles. However the assumption
that r is a constant vector, in order to simplify the model, meant that the
change in the magnetic field gradients due to the change in the altitude of
the sensor, results in an undesirable solution. Work, subsequent to MISGSA
2004, using subspace tracking has shown far more desirable results.
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