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1 Introduction

(1.1) Aralia Systems Ltd process large quantities of MPEG videos to enable
searching of video streams for particular features (e.g., red cars or blue
T-shirts). While feature recognition is not considered to be an issue (at
least for the purposes of the study group), colour recognition is a issue.

(1.2) To process the videos, the key frames are isolated from the video streams
and are then segmented to determine the key features in the frame.The
features are then stored in a database for easy querying and retrieval at
a later date. The key frames themselves are can be thought of as JPEG
images within the video stream.

(1.3) There appear to be two key problems with this process.

(1.4) Firstly, the segmentation algorithm is not robust to artefacts in the decom-
pressed image. The nature of the video streams is that the visual data is
highly compressed to conserve bandwidth. As such, the extracted images
are relatively low quality. A common artefact of low-quality JPEG im-
ages is the presence of blocks of colour in the image (i.e., the image looks
blocky). This arises from the fact that JPEG images are encoded in a
regular block pattern. The end result is sudden changes in colour (rather
than smooth transitions) that cause the segmentation algorithm to treat
the sudden change as the start of a new feature.

(1.5) Secondly, the human eye does not have uniform sensitivity to all colours.
For certain colours (e.g., green) we are able to distinguish many different
shades and tones, whereas for others (e.g., red) we are unable to. As such,
the simple Euclidean distance metric on the RGB colour space does not
match with our visual perception.

(1.6) Here we present our findings on both of these two problems.

2 Treating the JPEG transform as an inverse prob-

lem

(2.1) The JPEG transform is a lossly transformation, as such the inverse trans-
form in a so-called inverse problem, for which there are many potential
solutions. The inverse JPEG transform as defined in the JPEG standard
is one solution, but other solutions may be obtained by considering differ-
ent regularisations of the problem (e.g., by enforcing smoothness by use of
wavelets).

(2.2) To understand the problem of inverting the JPEG transform, we first con-
sider how JPEG compresses an image.
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Given f ∈ RN×N , Q ∈ R8×8, let

JQ : f 7→ {(JQf)j ∈ R8×8 : j = 1, . . . , N2/64}

denote the following operations:

First divide f into blocks of 8 × 8 pixels to obtain {fj ∈ R8×8 : j =
1, . . . , N2/64}. Then, to each fj

1. apply the discrete cosine transform: DCT (fj).

2. apply a quantization transform:

DCT (fj) 7→ round(DCT (fj)/Q) =: (Jf)j,

where / denotes the pointwise division of two matrices.

Due to this rounding operation at the end, the operator J is non-invertible.

(2.3) The JPEG compression process on an image I is as follows,

JPEG :

IRIG
IB

 T−→

 IY
ICb

ICr

 J−→

 JQY,q
(IY )

JQC,q
(ICb

)
JQC,q

(ICr)


where T transform the (R,G,B)-colour space representation of the I to the
(Y,Cb, Cr)-colour space representation of I, and the quantization matrices
QY,q and QC,q are dependent on a quality factor q ∈ [1, 100].

2.1 The standard JPEG reconstruction

(2.4) For each JPEG compressed component of the form JQ(f), the standard

JPEG decompression process f̂ = ĴQ(JQ(f) ∈ RN×N is such that by dividing

f̂ into blocks of 8 × 8 pixels to get {f̂j : j = 1, . . . , N2/64}, each block f̂j
satisfies

f̂j = DCT−1(Q · (JQf)j). (1)

where · denotes a pointwise multiplication of two matrices.

(2.5) Note that since J is non-invertible, f̂ is simply an approximation
of f and can exhibit undesirable artefacts. The JPEG decompression
process is written as JQY,q

(IY )
JQC,q

(ICb
)

JQC,q
(ICr)

 Ĵ−→

 ÎY
ÎCb

ÎCr

 T−1

−−→

ÎRÎG
ÎB


where  ÎY

ÎCb

ÎCr

 =

 ĴQY,q
(JQY,q

(IY ))

ĴQC,q
(JQY,q

(ICb
))

ĴQC,q
(JQY,q

(ICr))


and (ÎR, ÎG, ÎB) is the (R,G,B) representation of (ÎY , ÎCb

, ÎCr)
T .
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2.2 The proposed solution

(2.6) The artefacts introduced by the JPEG decompression process arise because
J is not invertible due to the rounding operation it carries out, and in
general ĴQ(JQ(f)) 6= f .

(2.7) We propose a regularized reconstruction. Given the data JQf , the JPEG
decompression process can be improved if we can recover f by solving for
x ∈ RN×N ,

JQx = JQf. (2)

The problem is that there can be many solutions x satisfying this equation.

(2.8) However, typical images which are of interest tend to be ‘sparse’ with re-
spect to wavelets. This means that for a typical image f and some discrete
wavelet transform W , most of the entries of Wf will be either zero or
insignificant. When faced with this type of ill-posed inverse problems, a
common approach is to apply wavelet regularization. So, given the com-
pressed data JQ(f), instead of approximating f using Ĵ described above,
we let the reconstruction of f be freg, where

freg ∈ argmin
x∈RN×N

‖Wx‖1 subject to Jx = Jf. (3)

(2.9) Note that whilst ĴQ(JQ(f)) does not necessarily satisfy (2), freg is a solution
of (2).

(2.10) The final hurdle to implementing this is to develop a method to solve the
minimization problem (3), which is equivalent to solving

min
x∈RN2

‖x‖1 subject to JQW
−1x = JQf.

Over the last decade, there have been many algorithms developed for the
purpose of solving such minimization problems. During ESGI100, I used
a software package called spgl1 [9, 8], which is an l1 minimization solver,
designed for solving minimization problems of the form

min
x∈RN

‖x‖1 subject to Ax = b

where b is the observed data, and A is a linear operator. In our case, JQ
is a nonlinear operator, so spgl1 is not exactly appropriate for (3). Despite
this, we obtained promising numerical results by letting A = JQW

−1 where
W is the wavelet transform for boundary corrected Daubechies wavelets.
(In order to solve an l1 minimization problem using spgl1, we are required
to implement the forward operator A and the adjoint operator A∗. In our
case, the adjoint of JQW

−1 does not exist. So, what I did was to implement
implement the forward operator correctly as JQW

−1, but the adjoint as
WJ̃∗Q, there J̃Q is JQ without any quantization. Doing so means that spgl1
will not necessarily converge to a minimizer. )

3



Working with Compressed Video Data ESGI100

(2.11) In the following examples, the quality of the original images have been com-
pressed with quality q = 25, where q is the standard measure of quality in
JPEG, as describe in [1]. It is likely that there will be significant
improvement in the numerical results by developing a more ap-
propriate solver. We present the reconstructions obtained via solving (3)
(using spgl1 and boundary corrected Daubechies wavelets) with the stan-
dard JPEG decompressed reconstruction of (1).

2.3 Kernel recovery Techniques

(2.12) As an alternative to general inverse problem methods, kernel methods [7]
have established themselves as powerful tools in recovering smooth functions
from unstructured data. There are fast algorithms available for optimal
recovery of smooth approximations from unstructured data — this sort
of method is likely to be much faster than solving more general inverse
problems.

(2.13) This kind of recovery is likely to improve decompressed images where the
underlying image is smooth. It is not clear how well it would work in
recovering images with sharp discontinuities.

3 The colour clustering

(3.1) We based on the algorithm named Region Growing, which chooses the region
with similar colour as a seed point. We modified MATLAB function created
by Dirk-Jan Kroon [5], where input agruments are image, coordinates of the
seed point and maximum intensity distance. The difference between a pixel’s
intensity value and the region’s mean, is used as a measure of similarity. This
process stops when the intensity difference between region mean and new
pixel become larger than a certain treshold. Output arguments are mean
colour of the region and the logical output image of region.

(3.2) The main goal of segmentation is partition an image into regions with similar
colours. In function im seg using region growing2 image is segmented as
follows:

• start from the seed point coordinates (1, 1);

• region growing2 marks the region and the mean colour;

• choose first point which is not classified to any of regions before and
repeat region growing2.

The process stops when every pixel is classified into the certain region.

4
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Figure 1: The reconstructions here are of a 512× 512 crop of the MATLAB image
offices 4.jpg. Top row: Original image. Middle row: Standard JPEG reconstruction.
Bottom row: Regularized reconstruction with DB-6 wavelets
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Figure 2: The reconstructions here are of a 256× 256 crop of the MATLAB image
peppers.png. Top row: Original image. Middle row: Standard JPEG reconstruc-
tion. Bottom row: Regularized reconstruction with DB-7 wavelets
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Figure 3: The original image (on the left) and the region chose by region growing2

with the certain seed point (on the right).

Figure 4: The image segmented by function im seg with maximum intensity dis-
tance 0.2 (on the left) and 0.3 (on the right).

(3.3) The last step was to segment image which was in the L∗ab colour space, not
in RGB as before (im seg lab function). Comparing Figure 4 and Figure
5 we can see that better segmentaion is received using L ∗ ab colour space
(function im seg lab).

4 Colour metrics

(4.1) We would like define a distance between colours that corresponds to human
perception. This is an old problem that has attracted interest from many
scientists, including names such as Helmholtz and Schrödinger. We will
describe a couple of approaches that can solve the problem approximately.

7



Working with Compressed Video Data ESGI100

Figure 5: The image segmented by function im seg lab with maximum intensity
distance 20 (on the left) and 30 (on the right).

4.1 Colour Space

(4.2) This section provides some background material on what colour is and is
mostly lifted from an earlier study gropup report [4].

(4.3) The human retina has three types of colour photorecepter cone cells, with
different spectral sensitivities. A fourth type of photorecepter cells, the rod,
is also present. The rods are only used at extremely low light levels (night
vision), and do not contribute to the perception of colour.

(4.4) Because the human has exactly three type of colour photorecepter, three
real numbers are necessary and sufficient to describe a colour. We can think
of the three numbers as the power received by each of the three different
colour photorecepters.

(4.5) The International Commission On Illumination, (CIE1) has defined several
parametrization of the space of colours. If S : [λ1, λ2]→ R+ is the intensity
function for the light, then the CIE XYZ components are defined by

(X, Y, Z) = k

∫ λ2

λ1

S(λ)
(
x(λ), y(λ), z(λ)

)
dλ , (4)

where the functions x(λ), y(λ), and z(λ) are the CIE 1931 Standard Col-
orimetric Observers, see Figure 6, and k is a normalization constant which
makes Y = 100 for a standard light source S(λ), i.e.,

k =
100∫ λ2

λ1
S(λ) y(λ) dλ

. (5)

1http://www.cie.co.at
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Figure 6: CIE 1931 Standard Colorimetric Observers and the spectral distribution
for the CIE illuminant D65. They are tabulated in [10] and can also be found at
the CIE web-site [3].

For the CIE standard illuminant D65, see Figure 6, we have k = 0.047332.
The number Y is called the luminance and is an attempt to define the total
observed intensity of the light.

(4.6) The CIE xy chromatic coordinates are given by

x =
X

X + Y + Z
, y =

Y

X + Y + Z
. (6)

Sometimes a third coordinate z = Z/(X + Y + Z) is defined, but it can
always be found from the relation x + y + z = 1. The two chromatic
coordinates x and y describe “pure” colour, in the absence of luminance (or
brightness). When monochromatic light sweeps over the visual light range
from 400nm to 700nm, it traces a curve in the xy-space, see Figure 7. The
line connecting the two ends of the curve is called the line of purples. It
joins extreme blue with extreme red and consists consequently of mixtures
of blue and red.

(4.7) A colour can be specified by chromaticity (x, y) and luminance Y in the form
of the CIE xyY components. To recover X and Z the following formulas are
used:

X = Y
x

y
, Z = Y

1− x− y
y

. (7)

(4.8) The colours on a computer screen or a television is given by mixing three
primaries : red, green, and blue. The three primaries corresponds to three
points in xy-space and the screen can reproduce all colours in the triangle
spanned by the three primaries, the gamut of the primaries. In Figure 7
the primaries for the HDTV, [2], are plotted and it is easily seen that not
all colours can be obtained. The actual colours in the plot need not be
correct, they depends on the computer screen, or on the printer and the

9
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Figure 7: The tristimulus diagram. The monochromatic colours lie on the curved
part of the boundary. The dashed line joining the the end of the visible spectrum
[400nm, 700nm] is the line of purples. The triangle are the colours that can be
produced by the primaries of the Rec. 709 RGB specifications (HDTV), [2]. The
circle indicates the D65 white point.

illumination. Other devices such as a computer screen, a projecter, etc.
also have three primary colours and can only reproduce the colours in some
triangle.

4.2 Colour Differences

(4.9) The human perception of similar colours has not much to do with the Eu-
clidean distance in the xy-plane. Indeed, some sixty years ago MacAdam
conducted some colour matching experiments where a person was asked to
match a colour with given chromatic coordinates (x, y) by adjusting another
colour by a single control that traced a line through (x, y) in the chromatic
plane. The standard deviation turned out to be ellipses in the chromatic
plane, see Figure 8.

(4.10) If the ellipses are enlarged approximately three times they define the just no-
ticeable difference, i.e., colours inside the enlarged ellipse appears to be the
same as the one at the center while colours outside appears to be different
from the colour at the center. This discrepancy between human perception
and the Euclidean distance has spawned several attempts to define param-
eters which are more uniform with respect to the human perception.

(4.11) MacAdams experiments has been repeated and also extended to include in-
tensity so we have ellipsoids in the xy` colour space, where ` = 0.2 log10(Y ),
see [10, Tables I and II(5.4.2), and I(5.4.3–4)]. We don’t have the 3D results
in electronic form so all numerical experiments are done using the MacAdam
ellipses in the 2D xy colour space.

10
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Figure 8: The MacAdam ellipses, [6], enlarged 10 times. If the depicted ellipses are
diminished by a factor of three then colours on the ellipse can just be seen to be
different from the colour at the center. The parameters of the ellipses was found in
[10, Table 2(5.4.1)].

4.3 Small Distances

(4.12) Assuming the metric (or first fundamental form or line element) is constant
inside the ellipse the elleipse determine the metric. Indeed, if the major
and minor semiaxis has length a and b respectively and the major semiaxis
forms the angle θ with the x-axis then the components of the metric is given
by(

g11 g12
g21 g22

)
=

(
E F
F G

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1/a2 0

0 1/b2

)(
cos θ sin θ
− sin θ cos θ

)


cos2 θ

a2
+

sin2 θ

b2

(
1

a2
− 1

b2

)
cos θ sin θ(

1

a2
− 1

b2

)
cos θ sin θ

sin2 θ

a2
+

cos2 θ

b2

 . (8)

(4.13) The length of a vector (∆x,∆y) originating from the centre can now be
found as

‖(∆x,∆y)‖2 =
(
∆x ∆y

)(E F
F G

)(
∆x
∆y

)
. (9)

(4.14) There are two problems with this approach. The most severe is that the
metric should be close to constant along the vector, i.e., it is only good for
small distances and is probably not suitable for the application at hand.
The other problem is that the metric is only known in a finite number of
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points so we have to extend it to all of colour space, or at least to the
RGB-triangle.

4.4 Extrapolating the MacAdam Ellipses or the Metric

(4.15) We are given the centres (x̂k, ŷk) ∈ [0, 1]2 and values âk, b̂k, θ̂k of the major
axis, the minor axis and the angle of the major axis of the MacAdam ellipses,
respectively. We extrapolate these values to the rectangle Ω = [0.1, 0, 7] ×
[0.0, 0.7] by solving the following linear constrained qudratic optimisation
problem:

minimise

∫ 1

0

∫ 1

0

∣∣∣∣∂2a∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2a∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2a∂y2

∣∣∣∣2 dx dy , (10)

such that a(x̂k, ŷk) = âk, k = 1, . . . , K , (11)

and a(x, y) ≥ 0 (x, y) ∈ Ω , (12)

and similar for b and θ, except that (12) is omitted for θ. Using B-splines
to represent the functions a, b, and θ the resulting ellipses can be seen to
the left in Figure 9.

(4.16) Note that the domain ω doen’t include all of the visible colours, but it does
include the RGB-triangle. If we want to include all of the visible colours
we just have to enlarge the domain Ω.

(4.17) The resulting field of ellipses correspond to a metric tensor (first fundamen-
tal form or line element) with components given by (8).

(4.18) This does not generalise easily to 3D so alternatively we could extrapolate
the components gij of the metric, but it is difficult to keep the extrapo-
lated metric positive definite. To overcome this we could take the matrix
logarithm of the metric tensor found at the centre of the MacAdam ellipses,
extrapolate these using (10) and (11) and finally take the matrix exponential
of the result.

4.5 Colour Distance

(4.19) We now seek a map (ξ, η) : Ω → R2 such that the euclidean distance in
ξη space is in good agreement with human perception of colour distance.
That is, we want the that the image of the ellipses to be circles of equal
size. This is the same as saying that we have an isometry with respect to
the extrapolated metric on Ω and the standard euclidean metric on R2.

(4.20) If the major and minor axis of the ellipses, or equivalently the eigenvectors
of the metric tensor, maps to the standard basis in R2 then we do have an
isometry. The Jacobian of our map is

J =

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
, (13)

12
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Figure 9: To the left the xy-colour space with the MacAdam ellipses in red. The
black ellipses are the result of interpolating (and extrapolating) the MacAdam el-
lipses. To the right the image under a spline map that tries to map the non constant
metric in colour space to the standard euclidean metric. We have used different
knots in the different lines, indicated by the thin lines.

13



Working with Compressed Video Data ESGI100

the eigenvectors are (a cos θ, a sin θ) and (−b sin θ, b cos θ), respectively, and
they maps to the standard basis if

J

(
a cos θ −b sin θ
a sin θ b cos θ

)
=

(
1 0
0 1

)
(14)

or equivalently

J =

(
a cos θ −b sin θ
a sin θ b cos θ

)−1
=

1

ab

(
b cos θ b sin θ
−a sin θ a cos θ

)
. (15)

We now solve the quadratic optimisation problem

minimise

∫ 1

0

∫ 1

0

(
∂ξ

∂x
− cos θ

a

)2

+

(
∂ξ

∂y
− sin θ

a

)2

dx dy (16)

such that ξ(0.1, 0.0) = 0 , (17)

and similar for η. Expressing ξ and η using the same B-splines a before we
obtain the images to the right in Figure 9.

(4.21) Looking at larger versions of these images we can see that the map in the
top row is not one to one, but the maps in the other two rows are. We can
also see that there is very little difference between the maps in the second
and third row.

(4.22) If we look at the map in the second row we see that the ellipses have become
more similar in size and more like circles, especially inside the RGB-triangle.

(4.23) The ξη map is also defined for colours outside the visible and also tries
to make the ellipses into circles here. This is of course unnecessary and
it would be a good idea to introduce a weight function that has a higher
weight on the visible colours. Alternatively it could have a higher weight
inside the RGB-triangle than outside, see Figure 10.

(4.24) The advantage of this approach is that it leads to a quadratic programming
problem which has unique solution and is realtively cheap to solve. The
disadvantage is that we restrict the set of possible sollutions. We ask that
the images of the eigenvectors (or semiaxis) maps to the standard basis but
it is sufficient (and necessary) that they map to an arbitrary orthonormal
basis. Equivalently, the map is an isometry if and only if

JTJ =

(
ξ2x + η2x ξx ξy + ηx ηy

ξx ξy + ηx ηy ξ2y + η2y

)
=

(
E F
F G

)
, (18)

where ξx, ξy, ηx, and ηy denotes the partial derivatives. So we try solve the
constrained optimisation problem

minimise

∫ 1

0

∫ 1

0

(
ξ2x + η2x − E

)2
+ 2 (ξx ξy + ηx ηy − F )2

+
(
ξ2x + η2x −G

)2
dx dy (19)

such that det J ≥ 0 , (x, y) ∈ Ω . (20)
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Figure 10: To the left the result of the optimisation when the visible colors are
weighted a 100 times more. To the right when the colours in the RGB triangle are
weighted 100 times more.
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Figure 11: To left map from the second row of Figure 9 which is used as the initial
guess in the optimisation problem (19). To the right the result of the optimisa-
tion. The objective function (19) has the value 0.198571 at the start and the value
0.0170004 at the end of the optimisation. There are many active constraints at the
end which means the map is (nearly) singular.

(4.25) The result can be seen in Figure 11. The result doesn’t look very good,
but closer inspection reveals that the ellipses indeed are more like circles
especially outside the set of visible colours. So here it is definitely a good
idea to use weight functions that emphasise the visible colours (or the RGB
colours) at the expense of the non visible colours.
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