
The Computer as a Solution Space ESGI107

The Computer as a Solution Space

Problem presented by

Zenotech

Dr David Standingford

ESGI107 was jointly hosted by
The University of Manchester

Smith Institute for Industrial Mathematics and System Engineering

with additional financial support from
KTN Ltd

Natural Environment Research Council

Manchester Institute for Mathematical Sciences

i

The Computer as a Solution Space ESGI107

Report author

Harry Braviner (University of Cambridge)
Dr Ostap Hryniv (University of Durham)
Dr Bernard Piette (University of Durham)

Anna Railton (Smith Institute)

Executive Summary

Zenotech provides cloud-based high performance computing (HPC) ser-
vices to customers wanting to run large parallelised simulations. The
transfer of data between nodes in a parallelised problem takes a few
orders of magnitude more time than the calculation of the data itself,
causing a bottleneck. Any improvements to algorithm implementation
that can improve efficiency, reliability, accuracy or robustness to errors
would mean more effective and economic use of HPC resource. Zenotech
challenged the study group to find a mathematical characterisation of
a HPC system that would allow for a more effective mapping of algo-
rithm topology onto HPC network topology and a better understanding
of scalability and robustness in the system. We investigated how to
best optimise partition size and time of data transfer on a square lat-
tice and the effect of using old boundary data for continued calculation
when new data does not arrive on time. We also produced a toy network
model to test the effect of different partition choices and communication
strategies.

Version 1.0
April 20, 2015

iv+22 pages

ii

The Computer as a Solution Space ESGI107

Contributors

Harry Braviner (University of Cambridge)
Robert Davey (University of Manchester)
Dr Ostap Hryniv (University of Durham)
Jeremy Minton (University of Cambridge)

Piotr Morawiecki (Polish Academy of Sciences)
Dr Bernard Piette (University of Durham)
Prof. Colin Please (University of Oxford)

Anna Railton (Smith Institute)

iii

mailto:h.j.braviner@damtp.cam.ac.uk
mailto:robert.davey@postgrad.manchester.ac.uk
mailto:ostap.hryniv@durham.ac.uk
mailto:jeremyminton@maths.cam.ac.uk
mailto:piotr.morawiecki@maths.com.pl
mailto:b.m.a.g.piette@durham.ac.uk
mailto:please@maths.ox.ac.uk
mailto:anna.railton@smithinst.co.uk

The Computer as a Solution Space ESGI107

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Objectives . 3
1.4 Overview of our approach . 4

2 Approaches to the problem 4
2.1 Optimising strategy on a square lattice 4

2.1.1 Limit when the network bandwidth is the main factor 9
2.1.2 Limit when network latency is the main factor 10
2.1.3 Realistic limit . 11

2.2 Algorithm efficiency for parallelisation 11
2.3 Impact of transferred data arriving late 13
2.4 HPCsim - a Python simulation of a High Performance Computer . . 15

2.4.1 Motivation and aims . 16
2.4.2 The general plan of HPCsim 17
2.4.3 Doing a computation . 18
2.4.4 Performing a communication 18
2.4.5 Current state of the code . 19

3 Open Problems 20

4 Conclusions 21

iv

The Computer as a Solution Space ESGI107

1 Introduction

1.1 Background

(1.1) High performance computing (HPC) is moving towards exascales, with net-
works containing many thousands of nodes working in parallel. However,
little thought is given to the HPC system architecture when solving mathe-
matical problems. Features of HPCs such as latency, bandwidth and memory
are seen as limiters that are assumed to be dealt with by a black box com-
piler and not by algorithm design nor more efficient allocation of work across
processors. In general, users of HPC (mathematicians or otherwise) have a
limited understanding of the nature and limitations of computing power and
this can lead to HPC not being used to its full potential.

(1.2) Zenotech provides cloud-based HPC services, making unlimited HPC re-
sources available to companies without them having to purchase, maintain
and manage hardware. End users are also removed from requiring a deep
understanding of the working of HPC. Zenotech and the industry as a whole
will benefit from any method to maximise the resources available and to
increase reliability and accuracy of the computations run on their systems.

(1.3) In large computations, the bottleneck is the time to send data between nodes
through the network. The speed of processors (measured in floating-point
operations per second, or FLOPs) is more than adequate, summarised in the
slogan ‘FLOPs are free’. However, processing speed is constrained by an
architecture that needs too much energy to send, receive and store data. It
is not currently capable of operating to capacity due to limited local access
to memory, as shown in Figure 1.

(1.4) There is scope for more finesse in how algorithms are designed and how work
is allocated within a HPC network topology. When parallelising a large
computing job, the solution space is split into partitions, each of which then
becomes the responsibility of a particular node.

(1.5) Currently, processors are ‘load balanced’, distributing computing workload
(split into these partitions) across multiple nodes to optimise resource use.
However, this can mean that as nodes finish blocks of processing concur-
rently, they try to transmit their data simultaneously across the network.
This causes delays as the network becomes congested and processors are left
hanging while they wait for data from their neighbours.

(1.6) Zenotech would ultimately like to improve the utilisation of computing as a
tool for solving mathematical problems. This could be achieved by improv-
ing the a-priori characterisation of a computer for specific mathematical
purposes. There is also a need to improve the scalability of very large scale
simulations; currently doubling the number of nodes does not make your

1

The Computer as a Solution Space ESGI107

Figure 1: Structure of CPUs inside a node and nodes inside a HPC. There will
typically be 8+ cores in a CPU and multiple CPUs in a node. There can be
thousands or tens of thousands of nodes in a HPC network. Orders of magnitude
for the times to transfer data between different memory locations are in units of
clock cycles, Tcc, the time needed for a simple CPU operation, and are shown next
to the layer of connections they refer to. By far the most costly is the network
connection between nodes.

simulation twice as fast. In particular, there is need to improve knowledge
of both weak and strong scaling, where:

• Weak scaling – how the solution time varies with the number of pro-
cessors for a fixed problem size per processor ;

• Strong scaling – how the solution time varies with the number of
processors for a fixed total problem size.

(1.7) Furthermore, as the number of nodes and thus the probability of hardware
failure increases, there will be an increased demand for algorithm robust-
ness to node failure.

(1.8) There is also the potential for better use of highly distributed computing
systems where the mathematics will automatically degrade to normal-form
local approximations when data does not arrive in a timely manner.

1.2 Problem statement

(1.9) Is it possible to describe various aspects of computer architecture mathe-
matically and exploit HPC network design to increase system performance,
accuracy and robustness?

2

The Computer as a Solution Space ESGI107

1.3 Objectives

(1.10) There are many possible directions for tackling this problem, which we dis-
cuss in this section. Firstly, can we do domain decomposition in a more
intelligent way (both from the outset and dynamically as the code is run-
ning)? Is it possible to build into the partition size ‘breathing space’ for
potentially late information from other nodes? For example, could you tell
METIS1 to map partitions like the topology of a network, putting nodes local
to each other in the simulation on nodes connected by low latency?

(1.11) Can we mask communications better by sending outermost data first?
Data for other nodes does not all have to be calculated and sent in one go;
a staggered approach may be useful.

(1.12) Can we learn more knowledge about the network as the code proceeds
and use this knowledge to our advantage? The network path between any
two nodes is not known, cannot be directly discovered and is not always the
same between HPCs. However, there is the potential to learn about latencies
between nodes and use this information to our advantage in some way.

(1.13) Can we show that some sort of asynchronous communications protocol
is a more sensible approach than the even loading of CPUs? What is the
best way of scheduling communications so they don’t overlap and how can
we do this robustly, given the unknowns in the network? Is it possible to
achieve a uniform rate of requests/transfers across the network?

(1.14) Can we create a toy network model and input known partition metadata
to test new ways of partitioning the system? This model can be validated
against known HPC behaviour and timings. There could also be the possi-
bility of including both asynchronous behaviour and network uncertainty.

(1.15) ‘Egalitarian model of data transfer’ – is it possible to make intelligent
decisions on whether to send data from node Pi through the network de-
pending on whether other nodes are actually waiting for Pi’s data? This
is a potential paradigm shift as instead of thinking about what node Pi

needs, we could think about what Pi can provide to other nodes. Could this
benevolence model of asking for data instead of just exchanging when ready,
improve performance?

(1.16) Dependence on PDE type – can we represent hyperbolic, elliptic or
parabolic systems in a ‘normal form’ based upon computer architecture?
Can we apply a similar analysis to spectral methods?

(1.17) Robustness – what is the best way to dissipate out errors? Can an algo-
rithm ‘struggle on’ in the face of the loss of any one node? Is it possible to
identify the most critical nodes at any one point and build in some redun-
dancy? There will be some dependency on the problem type (hyperbolic,

1METIS is graph partitioning software which is widely used in HPC.

3

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

The Computer as a Solution Space ESGI107

elliptic etc.) as to how catastrophic node failure is. This could be investi-
gated using a toy network model or by numerical analysis of different PDE
types and algorithms.

(1.18) It was decided to consider graphics processing units (GPUs) as just a system
with many CPUs and different parameters and thus not as separate case.

1.4 Overview of our approach

(1.19) Over the week, our approach to these problems was based around three main
directions of enquiry. In Section 2.1 we attempt to quantify when it is most
efficient to transfer data between nodes. We aim to optimise the number of
partitions and the timesteps between copying boundary data to other nodes.
We do this in different dimensions d and for differing network latencies and
bandwidths.

(1.20) We propose a new way of thinking about how to parametrise algorithm
efficiency in Section 2.2, where we consider computing nodes as vertices in a
directed graph.

(1.21) In Section 2.3, we consider the impact of data arriving late to a node. Can
a node realistically keep calculating with old data while waiting?

(1.22) We also produced a toy model of a network made of switches, nodes and
processors, which could be used as a test bed for the effectiveness of different
algorithm implementations without the need for running jobs on HPCs. The
details of this can be found in Section 2.4.

2 Approaches to the problem

(2.23) We are considering an unsteady problem, where a solution on a d–dimensional
spatial grid is propagated forward in time by an explicit method, i.e. a clas-
sical finite difference time domain. A similar analysis could be done for a
steady problem, a method where harmonic time–dependence had been re-
moved, or a method using implicit time–stepping.

2.1 Optimising strategy on a square lattice

(2.1) In this section we assume we are using an integration scheme that is local
and only requires a relatively small number of data points to be transferred
between partitions after each integration step.

(2.2) We will split the domain into Np square partitions, each of size Ld, where d is
the spatial dimension. We give definitions used in this section in Table 1, but

4

The Computer as a Solution Space ESGI107

M size of domain (total number of grid points)

d spatial dimension

Np number of partitions, N
(opt)
p is the optimal value

L = (M/Np)
1/d side length of each partition hypercube

TCPU time needed to compute one integration time step on one grid point

w number of neighbours required on each side of a node for one time
step of the integration, w ≥ 1. This depends on the integration
method.

Tlat the latency of the network before each network transaction

DL area of partition that does not depend on data from adjacent par-
titions

DB area of partition that needs to be integrated before boundary data
can be copied to the neighbours

B available network bandwidth

B0 bandwidth available to each node when the network is not used

Bsat total maximum bandwidth across the whole network

k timesteps between copying boundary data between nodes, k(opt) is
the optimal value

Table 1: List of parameters used in Section 2.1

5

The Computer as a Solution Space ESGI107

Figure 2: Integration at the edges (k = 2, w = 2). The blue points are the
responsibility of one node and the red values are those that need to be transmitted
from the adjacent partition before the blue node does its k timesteps. Timestepping
is from j = k to j = 0. The black circles are the values that will need transmitting
from the blue node to the red after these k timesteps before the next step.

we often refer to the partitions as squares or cubes, rather than hypercubes.

(2.3) After k integration steps, we will need to copy some data at the boundary of
each partition between nodes so that each node can carry out a few integra-
tion steps without further data. We can view the local partition as a set of
nested concentric cubic layers and what we have to consider is the number
of layers, w = wn, that must be copied between partitions. We are assuming
that the integration scheme evaluates the solution at time t + 1 in terms of
values at time t.

(2.4) Each partition can be split in two regions:

• DL is the area at the centre which does not depend on the data coming
from the adjacent partitions;

• DB is the layers near the boundary which will need to be integrated
before the boundary data can be copied to the neighbours.

(2.5) In the simplest case, w = k = 1, we only need to copy one layer of data that
is all the data at the boundary of the cube. DB will then be two layers deep
and DL will be the entire domain minus the two outermost layers. If k > 1,
then DB has a trapezoidal shape as depicted in Figure 2.

(2.6) The operations that need to be performed are the following:

1. Solve the equation on the edges of the domain for k steps before data
can be copied between nodes.

2. While transfer takes place, the equation will be solved inside the domain
and we assume that this takes less time than the network transfer.

3. If not, the bottleneck is the computation and the partition number Np

can be increased.

6

The Computer as a Solution Space ESGI107

(2.7) The time needed to perform k steps is thus the sum of the time needed to
solve the problem on the edges (blue and red points in Figure 2) and the time
needed to copy the data between the adjacent partitions (filled red points in
Figure 2).

(2.8) If we look at each step, the number of computations that must be performed
near the edges is given by

nj = (L+ 2wj)d − (L− 2kw − 2wj)d ≈ 2dLd−1(2wj + kw) (1)

and if we sum over the k steps,

k−1∑
j=0

nj = 2dLd−1w(2k2 + k). (2)

(2.9) So, the time needed to perform the k integration steps is

2dLd−1w(2k2 + k)TCPU , (3)

where TCPU is the time needed to compute one integration time step on one
grid point.

(2.10) The volume of data that must be copied after k steps will be

2dLd−1wk. (4)

This needs to be done twice: once to copy local data to each neighbour and
once to read data outside the domain from the neighbours.

(2.11) Therefore, the time required to copy the data is

4dTlat + 4dLd−1wk/B, (5)

where B is the available network bandwidth and Tlat is the latency of the
network before each network transaction. It has a factor of 4d as each par-
tition has 2d neighbours and it needs to both read and copy local data from
and to each of these. If this is only done once every k timesteps, this will be
divided by k, as in equation (8).

(2.12) When the network is not used, each node will have a bandwidth B0 but as
the network is saturated, they will only get a fraction of that.

(2.13) If Bsat is the total maximum bandwidth across the whole network, the band-
width available, on average, is assumed to be Bsat/Np.

7

The Computer as a Solution Space ESGI107

(2.14) So putting all this together, we get

tk step = max

[(
k
M

Np

+ 2dLd−1wk(k + 1)

)
TCPU , (6)

2dLd−1w(2k2 + k)TCPU + 4dTlat +
4dLd−1wkNp

Bsat

]

= max

[(
k
M

Np

+ 2d
M (d−1)/d

N
(d−1)/d
p

wk(k + 1)

)
TCPU , (7)

2d
M (d−1)/d

N
(d−1)/d
p

w(2k2 + k)TCPU

+4dTlat +
4dM (d−1)/dwN

1/d
p k

Bsat

]
,

using the definition of L given in Table 1.

(2.15) The first argument of the max function is the total time needed to compute
all the lattice points on the partition, including the red points in Figure 2.
The second argument is the time needed to compute all the lattice points on
the edges of the lattice and to copy them to the 2d neighbours as well as to
obtain copies of data from the neighbours.

(2.16) Therefore, the time needed to perform one step is

t1 step =
tk step

k
= max

[(
M

Np

+ 2d
M (d−1)/d

N
(d−1)/d
P

w(k + 1)

)
TCPU , (8)

2d
M (d−1)/d

N
(d−1)/d
p

w(2k + 1)TCPU +
4dTlat
k

+
4dM (d−1)/dwN

1/d
p

Bsat

]
,

(2.17) We now want to determine the optimum value of Np, w and k. Before we do
this, we will assume that the bulk of the partition is much bigger than the
edges or, more explicitly,

M

Np

� 2d
M (d−1)/d

N
(d−1)/d
P

w(k + 1). (9)

(2.18) Before we proceed to find how to minimize the time needed to compute each
step, we must try evaluate what is likely to be the biggest bottleneck.

(2.19) If we consider a three dimensional problem where each domain is of size
L = 100, there are 106 points inside the domain and if we consider k = w = 1
each edge contains about 6 × 104 points. If the network has a bandwidth
of 10Gbit, it can transfer about 1GB per second, (gigabyte, 1 byte is 8 bit),
and so about 108 doubles per second (1 double is 8 bytes). It will thus take

8

The Computer as a Solution Space ESGI107

of the order of 10−4 to 10−3 seconds to copy the data points on the edges.
We believe that the latency of the switches can vary between 1ms and 1µs
and so the transfer times are right within that interval. In our example we
have assumed that we have only one function for our equation when one can
easily have 10 or more. This would increase the copying time to 1ms. Using
other values of k and w would increase the copying time too.

(2.20) We must also consider how switches work. In our estimation of the network
performance in equation (8), we assume that the switches establish the links
between nodes once for each transfer. Tlat is thus paid only once per data
transfer per partition side. Is this really how a switch works or are the data
split into blocks for which the connection must be re-established each time?
If the latter applies, then the switch latency will be applied to every block
of data and becomes proportional to the amount of data transferred.

(2.21) In equation (8), Bsat is the total bandwidth available on the network and we
have assumed for the sake of simplicity that it is, on average, shared equally
between all the nodes. If the switch latency is applied to each data block as
described above, thus inducing a time penalty proportional to the amount
of data transferred, it must be included in the estimation of Bsat.

(2.22) In any case, our estimation above suggests that the time needed to copy data
between the different partitions will dominate the time needed to perform
the calculations.

(2.23) We will now proceed with the estimation of the best parameters for Np and

k to minimize equation (8), N
(opt)
p and k(opt).

2.1.1 Limit when the network bandwidth is the main factor

(2.24) If the time needed to compute the equation, M
Np
TCPU , is smaller than the

transfer time, then

2d
M (d−1)/d

N
(d−1)/d
p

w(k + 1) (10)

is very small too. Moreover, if the latency is smaller than the transfer time,
then the optimal value for Np will be obtained when

MTCPU

N
(opt)
p

=
4dM (d−1)/dwN

1/d
p

Bsat

(11)

and so

N (opt)
p =

(
MTCPUBsat

4dM (d−1)/dw

)d/(d+1)

. (12)

9

The Computer as a Solution Space ESGI107

2.1.2 Limit when network latency is the main factor

(2.25) In this section we consider the other limit, i.e. where the network latency
dominates. As argued above, this will apply if the latency is paid only once
per full data transfer and when the edges of the partitions are relatively small
(as in two dimensional problems, for example).

(2.26) In this limit, M
Np
TCPU is considered large and the optimal condition is met

when

M

Np

TCPU = 2dM (d−1)/dN (1−d)/d
p w(2k + 1)TCPU (13)

+
4d

k
Tlat +

4dM (d−1)/dwN
1/d
p

Bsat

or

MTCPU = 2dM (d−1)/dN1/d
p w(2k + 1)TCPU (14)

+
4d

k
TlatNp +

4dM (d−1)/dwN
(1+d)/d
p

Bsat

,

which can be solved for specific dimension d.

(2.27) However, if Bsat is very large, and the time needed to compute all the lattice
points inside the partition domain is larger than the one needed for the edges,
we can neglect the first and third term on the right hand side of equation (15)
to obtain

M

Np

TCPU =
4d

k
Tlat (15)

then the optimal number of partitions is

N (opt)
p ≈ kMTCPU

4dTlat
. (16)

(2.28) We therefore see that, in this limit, the optimal number of partitions is
proportional to the ratio between the total time needed to compute the
equation on the full domain of the problem and the switch latency.

(2.29) To optimise k, we impose

dt1step
dk

= dM (d−1)/dN (1−d)/d
p 2wTCPU −

4d

k2
Tlat = 0 (17)

and so

k(opt) =

(
4dTlat

2wTCPUdM (d−1)/dN
(1−d)/d
p

)1/2

=

(
2dTlat

wTCPUdLd−1

)1/2

. (18)

10

The Computer as a Solution Space ESGI107

(2.30) This shows that k(opt) is the square root of the ratio between the network
latency time and the time needed to compute on the edges of a partition.
One must also remember that k must be an integer and it would thus be
inappropriate to substitute (18) into (16).

(2.31) The evaluations above assumed that the system is homogeneous. In practice,
the latency will vary between nodes. We can use equation (16) using for Tlat
the average latency on the network, but then we must balance out the nodes
according to their individual latency.

(2.32) We denote Tlat,i the average latency of partition i between all the neighbours
of that partition, and Mi = Ld

i the partition domain size. The time needed
for each step will be governed by the largest latency, Tlat,iM , on the next work
on node iM . We could then increase the volume of any other partition i so
that

Ld
iTCPU =

4d

k
Tlat,iM (19)

without any loss of speed. The volume of the domain iM could then be
reduced but the gain will be minimum as it will only decrease the time
needed to compute the border of the partition which is small compared to
the time needed to compute the bulk of the domain. On the other hand, if
the partitions are irregular by design, smaller domain should be mapped to
the one with the largest latency, but the benefit will be small.

2.1.3 Realistic limit

(2.33) In practice, the latency and the network bandwidth are likely to play a role
and one must therefore optimise equation (8). This will lead to algebraic
equations which can’t be solved analytically but can be evaluated numerically
if one has estimates of the different parameters. The first thing to do will be
to evaluate if one is close to any of the limits considered in our analysis and
then to refine the optimal values of Np and k numerically.

2.2 Algorithm efficiency for parallelisation

(2.34) An algorithm’s efficiency is typically described by how the number of com-
putations scale with the size of the problem. This becomes an insufficient
measure once the problem exceeds the capability of a single machine as then
data transfer must be considered as well.

(2.35) If we consider the computational process as a directed graph, where each
node is a computation that requires data from all the computations con-
nected upstream, then we begin to visualise connectedness. More specifically
(by applying cuts to this graph), partitions indicate where in computer space

11

The Computer as a Solution Space ESGI107

Figure 3: Visualising an algorithm as a graph. Blue circles represent nodes do-
ing some calculation, while arrows between them show the dependence on other
nodes before further computation can continue, i.e. information transfers. Time t
increases from top to bottom, which each horizontal row of nodes computing the
same timestep. Cuts create partitions and thus here we have two partitions.

the computations are performed. The edges passing over a given cut indicate
data that must pass between nodes. This visualisation is shown in Figure 3.

(2.36) This then becomes a scheduling/commodity problem to minimise the maxi-
mum of the data transfer times and computation times,

minimax

{
number of vertices in partition× computation time,

total information transfers× transfer time

}
. (20)

However, more generally, it is likely that a given algorithm has a natural
choice of cuts as well as a high degree of symmetry making many cuts equiv-
alent.

(2.37) This could be exploited with more sophisticated scaling laws that indicate
how information transfer scales in addition to computations. For example,
letting n denote the size of the problem and M denote the number of compu-
tational nodes, a simple central differencing scheme would scale O(n/M,M)
where the first term is the computations and the second is data transfer.
Compare this to a spectral method which requires a Fourier transform at
each step so scales like O(n log n, nM). Both of these methods would also
scale linearly with the number of timesteps.

(2.38) This is a clear indication of the parallelisability of an algorithm and would
be a more modern indication of algorithm efficiency.

(2.39) One shortcoming of this method is that it is not obvious how to represent
interdependence of computation and data transfer. It is possible to envisage
two algorithms with the same computation and data transfer requirements,

12

The Computer as a Solution Space ESGI107

but where one is highly flexible in when the data is transferred whereas the
other is highly restricted.

(2.40) One idea to incorporate this is to count the number of upstream computa-
tions required by each node in the graph and take the difference between
the current node’s value and the value of the node being transferred from
another partition. This would indicate the time difference between the data
being available for transfer and the time the data is required at its desti-
nation and would therefore provide some measure of an algorithm’s time
flexibility. Unfortunately, this begins to degrade the elegance and intuition
of the proposition.

2.3 Impact of transferred data arriving late

(2.41) During the week, we also considered the impact of a node continuing to
calculate with old boundary data when fresh data arrives late.

(2.42) Consider a one-dimensional problem of the type

ut + aux = duxx (21)

computed on the grid N =
{

0, 1, . . . , n, n + 1
}

using the scheme

Mn+1 = AMn , (22)

where A is the matrix of computation and Mn =
(
Mn

0 ,M
n
1 , . . . ,M

n
n ,M

n
n+1

)tr
is the discretisation of the solution (Mn

k is the value of the nth iteration at
node k).

(2.43) For example, for the heat equation (a = 0 and d = 1) we would have A = (aij)
with the only non-vanishing entries in row i, 1 ≤ i ≤ n, being

ai,i−1 = ρ , aii = 1− 2ρ , ai,i+1 = ρ , ρ = ∆t
∆x2 , (23)

while the 0th and the n + 1st rows are chosen according to the boundary
conditions imposed on (21).

(2.44) The pure advection equation (a = 1 and d = 0) would have A as the first
order finite difference (central or asymmetric) chosen, while for general a and
d A will be a linear combination of these two cases.

(2.45) If n is so large that the whole vector M of solutions cannot fit on a single com-
puter, one has to split the grid N into parts and solve separate sub-problems
on different nodes while communicating the corresponding ‘boundary values’
between the nodes. For simplicity we consider an idealized network of just
two processors, ‘left’ and ‘right’, the generalisation to more complex situa-
tions being straightforward.

13

The Computer as a Solution Space ESGI107

(2.46) We split the computational gridN between the left and right nodes as follows

L =
{

0, 1, 2, . . . , i, i + 1
}
, R =

{
i, i + 1, . . . , n, n + 1

}
,

ie., for some i, 1 < i < n− 1, the lattice vertices {i, i + 1} form the common
part (or ‘boundary’) of the two subdomains and thus must belong to both
left and right partition sets.

(2.47) Notice that if the values of our solution at iteration n are known at all nodes
in L, in the next step only the values in L \ {i + 1} (where B \ A = {x ∈
B |x /∈ A}) can be computed locally, while the value Ln+1

i+1 must be copied
from the corresponding value in R. Similarly, if all values of the solution are
known for each lattice vertex in R, in the next step the values of the solution
in R\{i} can be computed locally while the value Rn+1

i must be copied from
the value computed in L.

(2.48) If the copied data arrives late, our scheme will read

Ln+1
j = Ln

j + f(Ln
j−1, L

n
j , L

n
j+1) , j ≤ i , Ln+1

i+1 = Rn
i+1 ,

Rn+1
k = Ln

k + f(Rn
k−1, R

n
k , R

n
k+1) , k ≥ i + 1 , Rn+1

i = Ln
i ,

(24)

where f is the function used to discretise the spatial part of the problem
in equation (21) (like the ρ–dependent part of equation (23) for the heat
equation).

(2.49) In the matrix form, this is [
L
R

]n+1

= Ã

[
L
R

]n
(25)

where the square matrix Ã = (ãjk) (whose dimension is 2 larger compared to
that of A, due to duplicating the grid node i + 1 in L and i in R) is defined
via

ãj,k = aj,k , 0 ≤ j ≤ i , 0 ≤ k ≤ n + 1 ,

ãi+1,i+3 = ãi+2,i = 1 ,

ãj+2,k+2 = aj,k , i < j ≤ n + 1 , 0 ≤ k ≤ n + 1 ,

(26)

where all other entries of Ã are set to zero.

(2.50) Consider this problem to be

un+1 = Ãun. (27)

We discussed computational linear stability of this scheme (which requires

that all eigenvalues of the matrix Ã are smaller than 1 in absolute value). It
was numerically implemented in MATLAB and considered for various stan-
dard methods and values of a and d in (21). The diffusion operator was con-
sidered using central differences and the advection operator was considered

14

The Computer as a Solution Space ESGI107

Figure 4: Structure of a HPC network, showing switches connecting nodes. Fast
connections (i.e. between processors) are shown in green while slower ones are in
red.

using both central differences and upwinding. The preliminary numerical in-
vestigations in a number of cases we considered reproduced the conventional
results for the case which did not involve information transfer between nodes.

(2.51) For the pure diffusive case the maximum timestep appeared insensitive to
introduction of the two-node exchange mechanism; a similar result was un-
expectedly found for the advection equation. For intermediate results there
appeared situations where slightly larger timesteps might be possible. Hence,
these preliminary results indicate that the latency effects do not reduce the
stability regime.

(2.52) Using the scheme outlined above, the effect on accuracy will be of order
of ∆t, since at every time the solution is dependent on the information
which for some vertices is one step old. We haven’t analysed this in detail,
but concluded that latency effects will significantly influence those problems
where time accuracy is essential.

2.4 HPCsim - a Python simulation of a High Performance
Computer

(2.53) The source code for the simulation described in this section can be found at:

https://github.com/harrybraviner/HPCsim

15

https://github.com/harrybraviner/HPCsim

The Computer as a Solution Space ESGI107

2.4.1 Motivation and aims

(2.54) In high performance computation the majority of the wall-clock time is spent
on data transfer, rather than computation. This consists of:

• CPU register ↔ cache transfers

• cache ↔ memory transfers

• memory ↔ memory transfer between machines, i.e. network communi-
cation,

as shown in Figure 1 on page 2 and Figure 4. The last item in this list is the
slowest and is the focus of HPCsim.

(2.55) Nodes in an HPC compete for network resources and which node ‘wins’ (i.e.
manages to perform its computation first) is dependent upon the stochas-
ticity of the system. To see this consider the following (rather contrived)
example in Figure 5, a highly simplified version of the network shown in
Figure 4.

Figure 5: A network formed of four nodes {N1, N2 ,N3, N4} and two switches
{S1, S2}.

(2.56) Suppose each node has one process running on it. Node N1 is performing a
computation with an expected run time of 1 second and needs to communi-
cate the results to node N3. It will take 3 seconds to do this communication.
Simultaneously, node N2 is performing a computation with the same 1 sec-
ond expected run time, but needs to communicate with node N4. Nodes
N3 and N4 need data from N1 and N2 respectively to continue their own
calculations.

(2.57) If we consider a (vastly oversimplified) model of the network in which only
a single communication may be using a link at any one time, then either N1
will attempt to communicate first, blocking the N2↔ N4 communication for
3 seconds; or N2 will be the first node to attempt a communication, blocking
the N1 ↔ N2 communication for 3 seconds (see Figure 6).

(2.58) Which of these occurs will be determined by the small differences in the time
it takes N1 and N2 to complete their computations. There will also be some

16

The Computer as a Solution Space ESGI107

Figure 6: The two communications that need to take place, and cannot do so
simultaneously.

stochasticity in the time network communications take to complete. These
will add up to create a large time difference between N3 and N4 completing
their computations.

(2.59) Depending on the details of the problem being solved, it might be desirable
for, say, N3 to complete the computation earlier than N4, and we would
design a strategy accordingly (‘N1 sends first’).

(2.60) Understanding how this stochasticity behaves in a large and realistic network
from first principles would be a formidable task. The goal of HPCsim is to
allow this to be studied by numerical experiment.

2.4.2 The general plan of HPCsim

(2.61) We want to simulate a HPC in such a way that will allow us to explore
network bottlenecks. It should also allow us to run the simulation rapidly
on a small machine. The code is object-oriented and written in Python 2.

(2.62) There are two main classes in the code:

• Process objects represent individual processes of the HPC, of which
there may be several per node.

• Switch object represent both the switches and the shared node mem-
ory of the HPC. At present Process ↔ Switch links are identical to
Switch ↔ Switch links. A more realistic model would assign much
lower latencies to the former.

(2.63) The HPC is formed as a graph of objects of these classes, with Process

objects having only a single edge connected to them. The main loop of

17

The Computer as a Solution Space ESGI107

the program maintains a ‘birds-eye’ view of this graph through the lists2

SwitchList and ProcessList.

2.4.3 Doing a computation

(2.64) We cannot simply timestep forward the wall-clock time, tWC, repeatedly
asking each process ‘are you ready to communicate’? To do so would require
us to take timesteps much smaller than the standard deviation of the time
processors take to complete operations – this might even run more slowly
than real-time! Instead we ask each Process to decide

• tnext, the time at which it will finish doing some computation

• tsend, the time at which it will next try to send anything over the
network.

(2.65) The reason these two times are different is that the process might finish
some computations, find that the network is busy, and so have to try again
when the network is free. This is not necessarily the time at which the
next batch of computation will be finished. The main loop searches through
ProcessList for the process with the lowest value of tnext or tsend, then
calls the update() function of that process.

(2.66) The update() function attempts any communication that it needs to do,
and, if it is able to start doing more computation, draws a random number
to determine how long the next piece of computation will take. Presently
the time taken to compute each grid cell is drawn from a constant plus a
lambda distribution. This gives us a minimum time to do the computation,
plus a long tail.

2.4.4 Performing a communication

(2.67) The update() function of the Process object decides whether or not a com-
munication is necessary. If it is, it calls the mpiSend() function of the Switch
object to which it is attached, passing the process it wishes to communicate
with as an argument.

(2.68) The Switch object then uses Dijkstra’s algorithm to work out the fastest
path to the receiving process. It then ‘leases’ the connection for the time it
will take to complete the communication, marking each edge involved in the
communication with tlease, the time at which those edges will once again
become free. This methodology relieves us of the need to mark the edges as

2A computer scientist might complain that this is a dangerous procedure with any linked-list
style structure, since new objects might be added to the tree without these lists being updated.
We trust the main loop not to do this, since there shouldn’t be a need to add new objects during
the simulation anyway.

18

The Computer as a Solution Space ESGI107

free once the communication is complete; the next attempt to communicate
simply checks if the present time is later than tlease (see Figure 7).

Figure 7: Process P1 completes first, and leases a connection to P4 until tlease=
1.15. When process P2 completes, it will have to wait until this time before it can
communicate with processes P3 or P4.

2.4.5 Current state of the code

(2.69) The code still contains a number of unresolved bugs which prevent it from
simulating more than a small number of computational timesteps. There are
further design flaws that should be changed in the next iteration of this code.
For example, the code is currently built with a one–dimensional problem in
mind: each Process sends a single boundary value to the Process to its
‘left’, and one to the Process to the right. This should be generalised to
higher dimensional problems.

(2.70) There is also the question of how to computationally represent the ‘cone’ of
points that a process may compute without receiving any information from
other processes. Doing this as a large array of Boolean values (representing
‘have we computed this?’) will slow the simulation down immensely due
to the large number of memory accesses. We need a more abstract way to
represent this scheme if we are to incorporate it into the simulation.

(2.71) A more realistic model of the network communication is vital and we should
attempt to incorporate both the finite bandwidth and finite latency of the
network. The ability of a switch to make only a finite number of connections
should also be incorporated.

(2.72) The network is currently built as either a linear structure or a binary tree.
This should be replaced by more realistic network topologies and random
assignment of processes to processors.

19

The Computer as a Solution Space ESGI107

(2.73) HPCsim will be of much more use if visualisation tools can be incorporated
into it. We would like to show which timestep each process is up to, and
which parts of the network are most heavily utilised.

3 Open Problems

(3.1) One of the problems that our study has highlighted is the need to better
understand how switches work and how the transferring of data is performed
and scales with size and competition for bandwidth. More specifically, we
need to know how the time needed to copy data depends on the data volume
and on the total number of transfers taking place simultaneously on the
high speed network. This is important both for the analytical study and the
simulations.

(3.2) There are two ways to address that problem. One would be to obtain a
better description of the protocols and algorithms used by the switches man-
ufacturers like Mirinet, Infiniband or RapidIO. This might be difficult as,
unlike the Ethernet protocol, this seems to be proprietary information.

(3.3) The second method would be to do some measurements on some existing
network. Ideally one would like measurements on hardware from the different
manufacturers, if only to compare how they measure up against each other.

(3.4) The quantity to measure is the average time taken to copy different volumes
of data, to obtain an empirical function t(size) in the conditions listed below.
The network should not be used for any other tasks during the measurements,
as much as this is possible.

1. Two nodes connected to a single switch without any other traf-
fic on the switch – t(size) would provide a raw optimal performance
of the switch and the protocol used.

2. 2n nodes connected to the same switch without any other traf-
fic on the switch – this would measure how the data transport scales
with the number of connections, n, on a single switch. In particular, it
will be interesting to see how the system performs when the network is
saturated.

3. Two nodes connected to two different switches linked directly
together or with 1, 2,... intermediate switches – this will in-
evitably depend on the topology of the network. One should start with
a simple topology where there is only one path between two nodes (a
tree structure) and then consider topologies with multiple path like a
hypercube.

4. Two nodes connected to a multiple switch network.

20

The Computer as a Solution Space ESGI107

(3.5) We would like to emphasise that these measurements need only be done
once to allow us to improve our model of the HPC. They do not need to be
performed each time a job is submitted.

(3.6) While submitting a job in a batch queue does not allow one to know which
node will be used, an administrator should be able to start them on individual
nodes manually so that t(size) can be measured between the two nodes. The
measurements should not take more than a few seconds or minutes at the
most.

(3.7) The tests described above would provide data describing how the average
data transfer time scales with the volume of data, the number of simultaneous
transfers on a single switch and finally how this data varies as communicating
nodes are several switches away from each other.

(3.8) If only the first or the first two tests above can be performed, simulations
might be able to provide reasonable data for the other, more complex, con-
figurations. A few measurements with chained switches would nevertheless
be very valuable to validate the algorithm used in any simulation.

(3.9) In this report, for the analytical estimations of the optimal partitioning we
have assumed a very simple linear size dependence for the data transfer time.
The constant term was linked to the latency of the network and the linear
term to the average available bandwidth. The reality is likely to be more
complex and exhibit a more general function. In particular, near saturation
the network is likely to exhibit a more complex non-linear behaviour that
simulations might be able to capture.

(3.10) More work should be done on the characterisations and numerical analysis of
different PDEs (elliptical, hyperbolic, parabolic) as well as spectral methods.
The robustness of algorithms to either hardware failures or errors and the
scalability of the problem will depend heavily on the type of PDE being
solved.

4 Conclusions

(4.1) When network bandwidth is the limiting factor, one must copy as little
data as possible at a time so data should be transferred every timestep
(Section 2.1.1).

(4.2) When network latency is the limiting factor, we find a value of an optimal
value of k that depends on the ratio between the network latency time Tlat
and the time needed to compute the edges of a partition (Section 2.1.2,
equation (18)). This does however assume the system is homogeneous, with
constant latency between nodes. In a more realistic system, one would have
to solve equation (8) numerically to find the optimal value of Np and k.

(4.3) In Section 2.3 we show that latency effects to not reduce the stability regime,

21

The Computer as a Solution Space ESGI107

although will significantly affect problems with a large time-accuracy depen-
dence.

(4.4) HPCsim detailed in Section 2.4 is in its early stages of development but could
be extended to include more physically realistic properties of HPC networks,
including inbuilt communication protocols and more authentic switch mod-
els. It could then be used to test scalability and robustness of different
algorithms as well as different communication strategies.

22

	Introduction
	Background
	Problem statement
	Objectives
	Overview of our approach

	Approaches to the problem
	Optimising strategy on a square lattice
	Limit when the network bandwidth is the main factor
	Limit when network latency is the main factor
	Realistic limit

	Algorithm efficiency for parallelisation
	Impact of transferred data arriving late
	HPCsim - a Python simulation of a High Performance Computer
	Motivation and aims
	The general plan of HPCsim
	Doing a computation
	Performing a communication
	Current state of the code

	Open Problems
	Conclusions

