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Executive Summary

The Environment Agency provides a forecasting and warning service to
people at risk from flooding. However, flood forecasts are inherently un-
certain. Efforts to quantify the uncertainty based on quantile regression
have failed to capture the full extent of the uncertainty associated with
significant flooding events.

An investigation into factors that may be correlated with the uncertainty
lead to the observation that there are structural biases in the model. It
is possible to remove these, and thereby reduce the mean square error
of the predictions, but the benefit of this is apparent in the prediction
of ’normal’ conditions, rather than in flood predictions.

Additionally, a tweak to the linear fit in the quantile regression is sug-
gested which is better suited to the data.
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1 Introduction

1.1 Background and scope

(1.1.1) The Environment Agency provides a forecasting and warning service to
people at risk from flooding. However, flood forecasts are inherently un-
certain. The differences between forecast time series of river level and
subsequent observations can be relatively large, so understanding uncer-
tainties is useful when interpreting forecasts for decision support.

(1.1.2) Historic flood forecast performance data has been analysed to give an
estimate of unceratinty of current flood forecasts in real time. This ap-
proach assumes that previous error relationships continue to hold. The
paper (Weerts et al, 2009) describes a technique for doing this based on
quantile regression.This is used to determine non-parametric relationships
between the quantiles of the error distribution of the flood forecasts and
the forecast magnitude and the lead-time of the forecast.

(1.1.3) An evaluation of the method has found that a greater-than-expected pro-
portion of observed flood peaks fall above the upper uncertainty bounds.
For instance, restricting observations to significant events it was found for
some locations that typically more than 50% of peaks exceed the 5% level.
However, overall the uncertainty bounds were found to contain the correct
proportions of observations. The problem is that it is the peaks that are
of most interest to forecasters and the public.

(1.1.4) It is thought that this may be due to non-stationarity of the errors. In
particular, rivers tend to rise more quickly than they fall, and the errors
in prediction are much smaller for falling water levels. Another possible
factor is the use of forecasts (which may be inaccurate) for rainfall. How-
ever, even when the actual observed rainfall is used as a model input, the
problem persists.

(1.1.5) Amongst the quantities that are of most interest are the magnitude of
the flood peak, and the time at which a particular threshold is crossed.
Currently, the uncertainties in the predictions of these are not quantified.

1.2 Available data

(1.2.1) For this study group problem, the data consisted of observations of river
height at a single location over a number of years, together with predictions
based on the actual observed rainfall data. The predictions are made every
two hours, at lead times of 1 to 40 hours. Observations are taken every
15 minutes.

(1.2.2) A subset of these data were considered. Only lead times of an even number
of hours were considered, together with the corresponding observations.

1



ESGI

This results in a straightforward, and largely complete, dataset where at
time steps of 2 hours we have the observed value at that time, the predicted
value 2 hours previously, the predicted value 4 hours previously, . . ., the
predicted value 40 hours previously.

(1.2.3) Naturally, the predictions made at longer lead times are more inaccurate.
Consideration was given to aspects of modelling that could give rise to
increased uncertainty in the predictions.

2 Theoretical sources of variability

2.1 Motivation

(2.1.1) From the data provided, we note that the error predictions are particularly
poor when there is a rapid increase in water level, and the model often
underestimates large flood events.

(2.1.2) Whilst we have not been given the model used by the Environment Agency
to predict river levels following rain, we are aware that the error estimates
do not take account of the rate of increase or decrease of water level.
Therefore we examine the gradients in water level, with the aim of un-
derstanding their effect on the evolution of water levels over time. In this
section we look at a well established model for river flow, with the aim of
linking greater errors in prediction to physical effects.

2.2 Shallow water equations

Figure 1: Diagram of modelling set-up including relevant parameters for the shallow
water equations

We consider flow along a river with a bed of constant slope. We assume
that the section of river under consideration is of typical length L and
drops a height D as shown in Figure 1. At any point the top of the water
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is of height h(x, t), and the bed of height d(x), above the reference height.
Thus the water depth at any point is H(x, t) = h(x, t) − d(x). The water
velocity along the river is given by U(x, t).

The governing equations for the above system are derived using the prin-
ciples of conservation of mass and momentum, and then averaged over the
depth of the river to give respectively

∂H

∂t
+
∂ (Hū)

∂x
= 0, (1)

∂ (Hū)

∂t
+
∂ (Hū2)

∂x
= −ρgH ∂ (d+H)

∂x
− αū2. (2)

Here, ū is the depth averaged horizontal velocity, ρ is water density, g
is the gravitational constant, and we have assumed that shear stress is
proportional to ū2 with co-efficient α.

We non-dimensionalise using L as the horizontal length scale, D as the
height scale, and we choose our velocity scale by balancing gravity with
shear stress. We use the shallow water assumption that ε = D/L � 1,
and obtain the equation set

∂H

∂t
+
∂ (Hū)

∂x
= 0, (3)

0 = −H∂ (d+ εH)

∂x
− ū2, (4)

where we have neglected O(ε2) terms. We now compare the ε = 0 to the
ε� 1 case, in order to determine the importance of this term.

We solved the ε = 0 case with humped initial conditions to represent heavy
rainfall upstream. Results are shown in Figure 2, which demonstrates the
shock behaviour that this system can exhibit.

This shock behaviour is unphysical and hence could be a source of inaccu-
racy in a simple model. These findings show that it is important to take
into account the magnitude of the water gradient when predicting river
depth.

2.3 Hysteresis

Next we compare the behaviour of the ε = 0 and ε � 1 models, as
the water level increases and decreases. By plotting the flux versus water
depth at fixed x over time, we see that the ε� 1 model exhibits hysteresis,
whereas the ε = 0 model does not (as shown in Figure 3).

From this we can see that the more complicated model picks up behaviour
not seen in the simpler system, indicating it is important to take into
account whether water levels are rising or falling to generate more realistic
models.
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Figure 2: Evolution of the solution of the ε = 0 equations with the initial condition
shown by the dark blue line
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Figure 3: Plots of water flux against depth of the river at a fixed location as a flood
passes through (arrows show increasing time). ε = 0 is on the left, with ε = 0.02
on the right.
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3 Analysis of the data

3.1 Factors affecting uncertainty

(3.1.1) An attempt was made to find factors affecting the uncertainty of the 12
hour lead time prediction. Firstly, since it is already known that there is
a relationship between predicted river height and the error, a simple plot
was produced (figure 1)

(3.1.2) Two things are apparent from this plot. Firstly, it is clear that the error
is indeed dependent on the predicted height. Quantile regression seems
like an appropriate method to attempt to capture this effect. Secondly,
the mean of the error is clearly dependent on the predicted height. That
is, there is a bias in the prediction. In particular, low predicted heights
are liable to be underestimates and higher predicted heights are liable to
be overestimates.

(3.1.3) It is possible to quantify the magnitude of this bias, and to adjust the
predictions so that the means of the residual errors are approximately
zero irrespective of the predicted river height. This is a very natural
step, however whether it is an improvement is very much contingent on
how model performance is scored. If it is desired to reduce the mean
squared error of the time series (this would be a typical objective) then
the model output could be adjusted to remove the bias and the score will
improve. However, it is clear that the problem of the predictions being
underestimates for events of interest (where the river is observed to be
unusually high) this correction will make the problem worse!

(3.1.4) There is reason to suspect, both from theoretical considerations and from
plots of the residuals that the rate of change in river height may have an
effect on the accuracy of the predictions. There are a number of ways that
rate of change can be calculated, we chose to take the difference between
the prediction with lead time of 12 hours and the prediction with lead
time of 6 hours as an approximation.

(3.1.5) Figure 2 shows a scatter plot of the error against the gradient. It is clear
again that there is a systematic error present - when the river level is
predicted to rise significantly, the predicted rise is typically an overesti-
mate. Similarly, predicted falls are also typically underestimated. This
suggests that the mean square error of the prediction could be improved
by applying some kind of smoothing.

(3.1.6) The structural bias is clearly the dominant effect here, it would need to be
removed before an assessment can be made as to the impact of gradient on
the spread of errors, and how it interacts with the predicted water level.
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3.2 Removing bias

(3.2.1) We have at any time a large amount of information which may be helpful
for assessing the uncertainty of a particular prediction. We have the re-
cently observed actual values as well as the recent and current predictions
(note there is evidence of correlation in the errors of predictions close in
time). This gives a a high dimensional problem, which can be reduced by
using principle components analysis (PCA).

(3.2.2) Taking the 10 most important dimensions, as found by PCA, we per-
formed a multiple linear regression against the error. This gave a highly
significant result (p < 10−10) and by removing the projected error from
the predictions, we reduced the sum of the square of the errors by 54%.

(3.2.3) It is important to remember that this step by itself is not necessarily an
improvement. Although the mean squared error has been reduced, there
may be other measurements of error of greater concern. In particular,
one of the effects of this step is to make the predictions significantly less
volatile. This means that extreme events are predicted less often. Al-
though many of these may be false alarms, some will be correct and the
trade-off may be considered undesirable.

(3.2.4) The main advantage of this process is as a cleaning step, and ensuring
that predictions genuinely are unbiased. Having done this, the resulting
error may prove easier to analyse and model, allowing the risk of flood
to be captured with the uncertainty measurement, rather than having a
central prediction which is overly cautious.

4 Comment on existing approach

4.1 Quantile regression

(4.1.1) Quantile regression seems to be an appropriate method for establishing
a non-parametric relationship between the error and potential correlates
such as predicted river height.

(4.1.2) It is important that assumptions made in the regression (such as fitting a
straight line) are justified by the available data.

(4.1.3) Figure 3 shows a linear quantile fit. There is some cause for concern
here, in particular it is evident that a disproportionate number of points
where the error exceeds the 99th percentile occur when the predicted river
height is large. This corresponds with the observations made about the
uncertainty of the peaks not being captured. Of additional concern is
the fact that the 95th percentile has negative slope, which is unexpected
given the greater uncertainty at higher predicted values. This shows that
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the bias in the model is a dominating effect. Indeed a two-tailed 90%
prediction interval would not necessarily include the actual predicted value
at high river levels.

(4.1.4) There are a number of options for attempting to correct the issue of the
poor linear fit. One of the simplest, which was implemented, is to simply
divide predicted river heights into a low-regime and a high-regime and to
fit different straight lines in the two regimes. An example is shown in
figure 4.

(4.1.5) Since the behaviour in the two regimes is clearly different, it is advanta-
geous to split the fits in this way as this allows for more accurate represen-
tations of the possible error. In particular, this results in larger estimates
for the upper bound in flood-type conditions, which corresponds with the
observations from the data.

(4.1.6) It was not possible in the time available to combine this approach with
the one taken in subsection 3.2, but this would potentially be a fruitful
avenue for exploration.

5 Conclusion and recommendation

5.1 Conclusion

(5.1.1) The analysis undertaken confirms that it is possible to get a better under-
standing of the uncertainty of a prediction from information that is known
at the time the prediction is made. However, the relationships between
these known factors and the uncertainty are complex and a certain amount
of experimentation will be required to find a good implementation.

(5.1.2) A surprising feature of the data was the bias in the predictions. This bias
was in the direction of the model making larger jumps in the predicted
values than the actual observed changes in the river height. Given that
a false negative with regard to a flood event is more serious than a false
negative, it is perhaps understandable that this has arisen.

5.2 Recommendations

(5.2.1) An attempt should be made to remove the systematic bias from the pre-
dictions. Having done this it may then be easier to assess the factors
affecting the uncertainty and to quantify this.

(5.2.2) A danger in this approach is that the prediction will not have such high
peaks - thereby making the prediction of extreme events even worse (though
compensated for by a reduction in false alarms). Therefore, it would be
particularly important that the uncertainty is quantified accurately.
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Figure 1: Scatter plot of error against predicted height
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Figure 2: Scatter plot of error against gradient as measured by the
difference in the LT12 and LT6 predictions.
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Figure 3: Quantile regression with a linear fit. Showing 1st, 5th,
50th, 95th and 99th percentiles.
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Figure 4: Quantile regression with two separate linear fits. This
better captures the behaviour for high river levels.
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