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1 Problem description

The N-Side company presented a vehicle routing and scheduling problem for
the transportation of patients to hospital using a heterogeneous fleet of vehi-
cles. One specificity of the problem is that the duration of the consultations is
uncertain. The deterministic version of the problem is a close variant of the dial-
a-ride problem (DARP), which is the subject of several recent research projects
(see e.g. [1, 2, 3, 4]). The growing interest for this topic has been motivated by
the great di�culty of this combinatorial optimization problem.

In the next sections, we describe the parameters, constraints and objective
of the problem.

1.1 Given parameters:

• A set of vehicles V with heterogeneous transportation capacities (e.g., 4
seats)

• A set of patients P with their location, the location of the health center
they’re going to, their appointment time, tA, and the duration of the
appointment, �A.

1.2 Constraints:

• A patient Pi should arrive at a hospital before his appointment time t
i

A

• If a patient goes to the hospital by a vehicle, he must go back home on a
vehicle also but not necessarily the same one.

• A patient should not wait more than tH minutes at the health before and
after his appointment (so this can lead to a total 2tH minutes wait at the
health center).

• The ride time of a patient Pi is upper bounded by t
i

R

• The working time of a driver is upper bounded by T
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1.3 Objective

The objective is to find the vehicles’ plannings that maximize the number of
transported patients while respecting all the time constraints (departure time,
rendez-vous time, and arrival time to home) as well as the vehicle capacity
constraint.

2 Work organization

Sébastien Mouthuy (Head of Innovation & Development Group) presented the
studied problem. There are 11 people who are interested at this problem and
participated in the discussion. Finally, we have decided to form the following
working groups

• Group 1 (Global Routing Heuristic Algorithm): Fen Zhou (UAPV), Haitao
Wu (UAPV), and Min Ju (UAPV)

• Group 2 (Global MIP solution): Jérémy Omer (INSA Rennes)

• Group 3 (MIP based Routes Selection): Imane Sefrioui (Univ Abdelmalek
Essaadi) Luis Flores (UAPV), Bruno Rosa (UAPV)

• Group 4 (Insertion Heuristic Algorithm): Samuel Deleplanque (ULB/GOM)

• Group 5 (Data Analysis): Marcos de Melo da Silva (Univ Paris 13)

3 Global routing heuristic algorithm

3.1 Spatial-temporal Graph modeling

To route vehicles, each vehicle is represented by a path starting from the begin-
ning of the day in the depot and visiting other locations (home of patients and
the hospitals) until the end of the service in the same day. Such a path is basi-
cally characterized by its traces in two dimensions: space and time. Therefore,
it is natural to use a Spatial-Temporal graph. We discretize the the daily service
by a set of time period T . We model the VRPS problem with a Spatial-Temporal
graph G(V,A,C,R) where:

• The set of vertex V = {P i

t
: t 2 T, i 2 N}[ {H =i

t
}[ {vs, vd} is composed

of the vertex P
i

t
for patients and the vertex for hospitalHi

t
, where i is a

location and t is a period of time, in addition of two vertex vs and vd which
respectively represents the start and the end of the service of a driver.

• The set of arcs A is the union of three sets of arcs A = A1 [A2 [A3:

– A1 = {(vi
t
, v

i

t+1), (vs, v
1
i
), (vmaxt

i
, vd) : i 2 N, t 2 T}. Each arc

(vi
t
, v

i

t+1) represents a link within the same location between two
consecutive periods of time, which allows the path crossing this arc
to model a vehicle staying in the same location;

– A2 = {(vk
t0 , v

i

t
) : i 2 N, k 2 N, t 2 T, t

0 2 T, (t = t
0 + dki  dk ^

i 6= k)}. Each arc (vk
t0 , v

i

t
) represents a link between two di↵erent

locations i and k, t = t
0 + dki ensures that a vehicle respects the
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travel time from location i to k and respects the time window (the
departure time and the arrival time);

– A3 = {(vk
t0 , v

i

t
) : i 2 N, k 2 N, t 2 T}. Each arc (vk

t0 , v
i

t
) represents a

patient request to go from location k at t0 to hospital i at t� Trki;

• The set of costs C is the union of three sets of costs C = C1 [ C2 [ C3:

– C1 = {c(vk
t0 ,v

i
t)

: (vk
t0 , v

i

t
) 2 A1}. Each c(vk

t0 ,v
i
t)

2 C1 represents the

cost for a patient to stay at the station i between the two periods of
time t

0 and t.

– C2 = {c(vk
t0 ,v

i
t)

: (vk
t0 , v

i

t
) 2 A2}. Each c(vk

t0 ,v
i
t)

2 C1 represents the

cost for a vehicle to go a location k at t0 to the location i at t.

– C3 = {c(vk
t0 ,v

i
t)

: (vk
t0 , v

i

t
) 2 A3}. A negative cost c(vk

t0 ,v
i
t)

is a↵ected

to each arc (vk
t0 , v

i

t
) 2 A3, which represents a client demand and is

used to direct the shortest paths into client demand arcs A3. The
negative cost value allows attraction in the process of calculating
shortest paths to satisfy customer demands. Indeed, over a course
of vehicle, the more customers are satisfied, the more cost decreases
through traversing arcs of negative cost.

3.2 Heuristic algorithm

INPUT: the set of vehicles and the data of patients.
OUTPUT: the schedule of the vehicles.

• Step 1. Construct the Spatial-temporal Graph G(V,A,C,R) according
to its definition.

• Step 2. Arrange the schedule for each vehicle by the following principles:

– Each vehicle starts at the node vs of G.

– Each vehicle has two properties:

⇤ Capacity: represents the residual capacity of the vehicle.

⇤ Compatibility: represents the vehicle can serve these patients
who now are already on this vehicle by keeping all the time con-
straints.

– At current time period t, starting from t0, the vehicle search the next
moving by following principle:

⇤ If the capacity of the vehicle is 0 which means the vehicle can
not take any more patients, the vehicle deliveries these patients
to corresponding hospitals or homes according to the strategies.

⇤ If the capacity is not 0, search and pick up these waiting service
patients (waiting going to hospital or back to home) which the
vehicle can pick up such that the compatibility is kept, i.e., there
is a routing strategy to serve all the patients on the vehicle and
keep all the time constraints.

⇤ If the capacity is not 0 and no waiting service patients can be
picked up, the vehicle deliveries these patients to corresponding
hospitals or homes according to the strategies.
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⇤ One vehicle is finished arrangement when current time period is
tfinal

• Step 3. Select these patients which are fully serviced, i.e.,going to hospital
and back to home by vehicles as our final served patients and output
corresponding schedule for vehicles.

Remark: The routing strategy in step 2 can be implemented by greedy
algorithm or enumeration.

3.3 Illustrative Example

We give an example in this section. There are three patient locations denoted by
P1, P2, P3 and the number of patients in each location are 4, 2 and 2 respectively.
The Spatial-temporal Graph is shown in Figure 1.

We discrete the service time of one day into serial time periods from t0 to
tfinal. We assume that t1, t2 and t3 are the time periods of leaving for patients
at P1, P2 and P3 and the objective hospitals of patients at P1, P2 and P3 are
H1 H2 and H1 respectively. Supposes there are two vehicles whose capacity is
4 and the view time of each patient costs two time periods.

First we arrange the schedule of one vehicle denoted by the red line. Ac-
cording to the heuristic algorithm, the vehicle starts from (vs, t0) to (P1, t1).
As the number of patients at P1 is 4, vehicle picks up the 4 patients and its
capacity is changed to 0. Therefore vehicle directly deliveries the 4 patients to
H1 and its capacity is changed to 4 at (H1, t2). Then there are two patients
waiting to leave at (P3, t3). But it will take two time periods from H1 to P3 thus
the vehicle can not serve the patients at (P3, t3). The next task is at (H1, t4)
to delivery the 4 patients back to P1. Following the similar process, we finally
arrange the schedule for the two vehicles indicated by the red line and green
lines.

Figure 1: Example of heuristic algorithm in subsection 3.2
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4 Mixed integer linear programming approach

The classical compact formulation of the DARP can be found for instance in
[3]. The formulation considers a graph of tasks (V, E). Denoting n the number
of patients, the transport of a patient Pi is associated with two pairs of vertices
(vi, vi+2n) and (vi+n, vi+3n) that correspond to the origin and destinations of
the way to the health and of the way back home. The edges include link all the
pairs of vertices (vi, vj) 2 V2 except those that do not respect the chronological
succession vi ! vi+2n ! vi+n ! vi+3n. Each vertex vi+2n has a time window
[ti
A
� tH ; ti

A
] stating that patient i must arrive at the health center before his

appointment and cannot wait more than tH minutes before. A similar time
window [ti

A
+�

i

A
; ti

A
+�

i

A
+ tH ] is associated with vertex vi+n to express the time

constraints of the pickup at the health center after the appointment.
To adapt the formulation to our specific problem, we had to consider a set

of variable (zk
i
, z

k

i+n
) 2 {0, 1}2 for all patients Pi and all vehicles k, such that

z
k

i
= 1 if and only if vehicle k takes Pi to his health center. As a consequence,

the two specificities of our problem with respect to the classical DARP is that
we maximize X

i,k

z
k

i

, and add the constraint
z
k

i
= z

k

i+n
, 8i, k

to express that a patient has to do the round-trip if he is taken care of.
We implemented the model using the mathematical programming modeling

language AMPL. The model files are attached to this report with a ”.mod”
extension. Since AMPL is very expressive, we refer directly to the code for the
detailed formulation of the model.

4.1 Preprocessing the edges of the graph of tasks

To accelerate the solution of the model, we preprocess the graph of tasks to
delete all the useless edges, based on the time windows of the vertices.

For this, we first compute time windows for the nodes of pickup at home vi

and that of return at home vi+4n. Let t
i,j

DR
be the direct ride time from vertex vi

to vj . Then, patient i cannot leave home after ti
A
�2tS�t

i,j

DR
if he needs to be at

his appointment at ti
A
. Likewise, he cannot leave home before ti

A
� tH �2tS� t

i

R

if his ride cannot last more than t
i

R
. As a consequence the time window of vi is

[ti
A
� tH � 2tS � t

i

R
; ti

A
� 2tS � t

i,j

DR
].

Similarly, vi+4n has a time window

[ti
A
+ �

i

A
+ tS + t

i,j

DR
; ti

A
+ �

i

A
+ tH + tS + t

i

R
].

Now that every node vi has a relatively tight time window, denoted [li;ui],
we can use the following rules to simplify the graph of tasks:

1. Arrive before the end: if li + tS + t
i,j

DR
> uj , then delete (vi, vj).

2. Respect max ride time: if vi is a pickup node and lj � tS > ui + tS + t
i

R
,

then delete (vi, vj).
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3. Triangle max ride time: if vi is a pickup node and t
i,j

DR
+ t

j,i+2n
DR

+ tS > t
i

R
,

delete (vi, vj) and (vi+2n, vj).

We can also add a heuristic rule to delete extra edges. The rules formulates
that an e�cient route should not lead to long waits at some node. Denoting tW ,
a chosen threshold, the rules can be expressed as: if ui + 2tS + t

i,j

DR
< lj + tW ,

delete (vi, vj).
All the deletion rules are coded in the AMPL script file, “NSIDE.run”, at-

tached to this report.

4.2 Alternative formulations

The original formulation that we implemented contains so-called big-M con-
straints to compute the starting service time at each node and the capacity
after each node. As an illustration, we consider the continuous variables ⌧

k

i
,

the minimum starting service time of patient i by vehicule k, and the binary
variable x

k

i,j
corresponding to the flow value of vehicule k on the edge (i, j).

Then, the propagation of the starting service time on edge (i, j) for vehicule k

is given by:
⌧
k

j
� ⌧

k

i
+ tS + t

i,j

DR
�M(1� x

k

i,j
), 8(i, j), 8k

where M is the classical “big-M” value, that can optimally be set to (ui � lj).
It is well-known that big-M formulations usually fail to provide good upper

bounds based on the continuous relaxation. As a consequence, we considered
two slightly di↵erent formulations were studied to improve these constraints.

The first alternative formulation, referred to as the “reduced” formulation,
does not deal with the big-M constraints but reduces the number of variables
and constraints. We actually observed that it is not necessary to use one variable
for the starting service time per vehicule. Instead, it is su�cient to consider the
variables ⌧i corresponding to the starting time of service at node i. With this,
the propagation constraints become:

⌧j � ⌧i + tS + t
i,j

DR
�M(1�

X

k

x
k

i,j
), 8(i, j).

Finally, we followed the exact opposite process to build an extended formu-
lation. For this we consider additional starting time variables for each arc and
each vehicule ⌧

k

i,j
to avoid the use of the “big-M” value. The variable ⌧

k

i,j
takes

a value equal to the starting time of service at node i if and only if vehicule k

goes through edge (i, j). We obtain the following constraints:

⌧
k

j
� ⌧

k

i,j
+ (tS + t

i,j

DR
)⇥ x

k

i,j
, 8(i, j), 8k (1)

⌧
k

i
=

X

i,j

⌧
k

i,j
, 8i, 8k (2)

⌧
k

i,j
 ui ⇥ x

k

i,j
(3)

4.3 Preliminary results

Preliminary tests were done on DARP instances of Cordeau1. These tests were
chosen, because some instances are smaller than those provided by NSIDE, and

1The instances are available online http://neumann.hec.ca/chairedistributique/data/
darp/branch-and-cut/
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a2-16 a5-40 a5-60
complete graph 982 6298 14248

preprocessed graph 168 882 1412

Table 1: Number of edges in the task graph

complete graph preprocessed graph
a2-16 a5-40 a5-60 a2-16 a5-40 a5-60

big-M 0.38 1112 > 3600 0.08 7.6 2731
reduced 0.24 200 > 3600 0.09 38 470
extended 13.11 > 3600 > 3600 0.14 400 > 3600

Table 2: Runtime to solve the compact MILP formulation

we do not expect the MILP approach to scale up. The test instances are “a2-
16”, “a5-40” and ‘a5-60”. They correspond to the problem proposed by NSIDE
with 8 (2), 20 (5) and 30 (5) patients (vehicles). The format of Cordeau was
slightly modified to fit the AMPL requirements. The corresponding AMPL data
files are attached to this report.

In these tests, we always used CPLEX 12.6.3 to solve the MILPs, because it
provided he best results in our first tests. Table 4.3 provides the number edges
in the complete graph and that in the preprocessed graph, and in Table 4.3,
we present the CPU times for the three formulation (“big-M”, “reduced”, “ex-
tended”), with and without preprocessing the graph.

The analysis of every result is not straightforward. Clearly, preprocessing
the graph is absolutely necessary and the extended formulation has no added
value. However, the choice between the reduced and the initial formulations
would require additional experimental tests, even if the reduced formulation
seems better at this stage.

4.4 Using the compact formulation for large instances

The results presented in the previous clearly indicate that the MILP approach
will not scale up to solve the real instances NSIDE has to deal with. However,
it might be used in a heuristic approach based on clustering the patients into
subgroups that are likely to be served together. Clustering was not studied in
these three days, but it should be emphasized that it is also a di�cult issue,
because it must consider the geographical and temporal aspects altogether.

Nevertheless, results from the literature suggest that en extended formu-
lation based on column generation will be more adapted for a mathematical
programming-based approach. The one restriction is that it requires an inten-
sive e↵ort in development. Such an approach can be found in [5, 3]. A heuristic
approach that would be also based on the generation of valid routes for one
vehicle, dynamic programming has also shown to be e�cient (see e.g. [4]).

5 MIP based Routes Selection

A randomized insertion heuristic was used to generate a set of feasible candidate
routes. The routes are generated under some constraints, either by adding nodes
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or links. The constraints include the number of routes, the maximal duration
of a route, the travel time, the time window of each patient, and the capacity
of each vehicle. Once a number of routes are generated, a route selection is
performed to select the best ones. Route selection requires a list of feasible
candidate routes and assemble a solution from the candidates. The idea is to
select the subsets that maximize the number of patients served.

Figure 2 shows a set of 4 possible routes generated for a problem of 6 patients.
Figure 3 shows the selected routes that maximizes the number of patients served.
We note that only patients 1 and 3 are not served when selecting these 2 routes.

Figure 2: Example of 4 possible routes generated for the problem of 6 patients.

Figure 3: Example of the 2 selected routes that serve 4 patients.
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The Integer Linear Programming model for the problem of the route selection
is proposed below.

5.1 Model

Let P = {p1, p2, . . . , pn} be the set of the patients, R = {r1, r2, . . . , rm} the
set of feasible routes and V = {v1, v2 . . . , vp} the set of vehicles. We assume
to know which are the patients that are picked up at home and taken to the
hospital as well as the patients that are picked up at hospital and taken back
home by each route rj 2 R. So, given a patient pi 2 P and a route rj 2 R,
the constant aij = 1 i↵ route rj takes the patient pi to the hospital and aij =
0 otherwise. Similarly, the constant bij = 1 i↵ route rj takes the patient pi to
home and bij = 0 otherwise.

5.1.1 Decision Variables

The binary decision variables are defined as follows:

xj =

(
1 if the route rj is selected

0 otherwise
li =

(
1 if the patient pi is served

0 otherwise

5.1.2 Constraints

The goal is to serve as many patients as possible, i.e., we can maximize the
following objective function:

maximize

X

i2P

li (4)

subject to:
X

j2R

aij · xj � li 8i 2 P (5)

X

j2R

bij · xj � li 8i 2 P (6)

X

j2R

xj  |V | (7)

xj , li 2 {0, 1} 8j 2 R 8i 2 P (8)

• The objective function (1) expresses the number of patients served (pick
up and delivery) that should be maximized.

• Constraint (2) and (3) guarantee that the patient is served if he is picked
up to go to the hospital and brought back home after consultation.

• Constraint (4) states that the number of routes chosen does not exceed
the number of vehicles.

• Constraint (5) imposes the binary variables.
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5.2 Experiments

We used CPLEX to solve the model. Experiments are done on 2 GHz Intel Core
i5 processor with 4 GO RAM. Results are summarized in table 3.

Table 3: Experiments

Patients Routes Patients
served

Time(s) GAP (%)

100 100 53 12 0
100 200 56 46 0
100 300 58 100 0
100 400 58 360 0
100 500 56 900 23.63
120 100 63 15 0
120 200 64 87 0
120 300 65 536 0
120 400 65 900 21.96
120 500 67 900 25.05
150 100 77 21 0
150 200 79 105 0
150 300 80 655 0
150 400 78 900 28.98
150 500 80 900 30.90
200 100 94 74 0
200 200 98 900 2.96
200 300 99 900 30.79
200 400 99 900 35.89
200 500 102 900 35.99

In particular, we built some generated scenarios by varying the number
of patients in the set {100, 120, 150, 200}, the number of routes in the set
{100, 200, 300, 400, 500}. In total we generated 20 di↵erent instances. We note
that all of them were run for a time limit set to 900 seconds (15 min). We
report:

• Patients served: The value of the objective function (the number of pa-
tients that were satisfied).

• Time: CPU time required to solve the instance (seconds).

• GAP: the percentage between the feasible integer solution found and the
optimal (%).

From Table 3, we can see that the model is able to serve more than a half of
the patients. For 12 instances, we were able to find optimality within a short
time. For example, for 100 patients and 400 routes, the optimality was found
in a reasonable time (6 minutes). In only 8 cases, the optimality was not found
within 15 minutes, but a solution was returned and a GAP was not greater than
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35.99% for 200 patients and 500 routes. In average, for these cases, solutions
were found in 15 minutes for an average GAP of 28.37%.

After that a set of routes are selected, we can apply improvement to repair
the solutions by removing the patients that are present in more than one route.

We can serve per day an average of 200 patients and it is necessary for the
program to return a solution in a maximum of half an hour when receiving a
total of 1000 routes. Choosing the optimal solution depends on the quality and
quantity of route selection.

6 Insertion Heuristic Algorithm

7 Data Analysis

The data provided by the representative of N-Side concerns the service provided
in the city of Liege, Belgium. It contains the patient records of one year grouped
by week (among 100 and 300 entries per week). The service includes more than
25 medical centers, a central depot and a heterogeneous fleet of vehicles (capacity
among 5 and 7 places). Additionally, a patient appointment also contains his
home coordinates, the respective hospital coordinates, the rendez-vous time, the
type of medical care, and a expected visit duration.

Figure 4: Satellite view of the city of Liege, Belgium.

In order to use the real data during the workshop, the provided files needed
to be clean so that inconsistent entries and visits that last more than one day
(e.g., hospitalization) were removed. The GPS coordinates were converted to
Cartesian coordinates with the depot at the origin. Figure 5 depicts the ap-
pointments for one week. The cleaned files were then transformed to the format
used in the DARP instances of Cordeau.
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An initial data analysis and clustering has been performed. Figures 6 and
7 shows some of the links between patients and the respective medical centers.
We know that is not always possible to schedule all the clients, and the analysis
of geographical distribution of centers and patients can indicate appointments
that will present some di�culties to be covered; for example, in Figure 7, only
one patient has appointment in center 9 and they are far away from each other.
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Figure 6: Patients with appointments in medical center 1.

8 Conclusions and future work

N-Side has presented a routing and scheduling problem in ESGI, which is sim-
ilar to the famous dial-a-ride problem (DARP). To this end, several possible
approaches have been proposed, for instance global MILP formulation, MIP
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Figure 7: Patients with appointments in medical centers 8 to 26.
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based routes selection method, global incremental routing heuristic algorithm.
Due to the limitation of working time, only the main ideas and some prelimi-
nary results have been presented in this report. For future work, the proposed
methods may be implemented and applied to solve the real instances provided
by N-Side.
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