
Optimal scheduling of distributed generation to achieve linear

aggregate response

Paul Beagon, Miguel D. Bustamante, Mel T. Devine, Susan Fennell, Jonathan
Grant-Peters, Cameron Hall, Róiśın Hill, Taulant Kerci, Gary O’Keefe

This problem was presented by Captured Carbon at the 141st European Study Group with Industry
University College Dublin, Ireland, 25-29 June 2018

Abstract

Captured Carbon supply power to Eirgrid by using many small power generators (Single

Generators) as if their combined power were a unique large power station (Virtual Generator).

When Eirgrid order power from a power station, they assume that power output increases

linearly over a period of time (ramp up time), after which the station generates power at full

capacity. The main question we tackle is: How can we control the start up time of many

small generators in order to get as close as possible to a linear combined ramp behaviour?

In this report, we provide 5 different approaches (gradient descent, mixed integer linear

programming, bin packing, systematic adjustment and ramp tracking simulation) to the

problem using sample data from 20 single generators provided by Captured Carbon. We also

discuss briefly the “equity” challenge, consisting of the possibility to have optimal solutions

for which not always the same single generator starts first. We conclude with some suggestions

for future work.

1. Introduction

In Ireland, the electricity transmission system operator is Eirgrid. They are responsible for

ensuring that electricity is transferred from generators to consumers in addition to forecasting

energy demand in order to ensure that power meets demand. In recent years, the uncertainty

associated with renewable sources such as wind and solar have made it difficult to ensure

demand balances with supply. Consequently, Eirgrid co-ordinate with generators and instruct

them to increase or decrease power output as required.

To ensure such a balance, Eirgrid seek electricity consumers, typically industrial, who

can provide power back to the grid. Consumers may do so in two ways: either through their

own micro-generators or by reducing their demand. Captured Carbon are an energy service

provider that provide electricity to the grid by coordinating a number of such consumer

sites (henceforth known as sites). As a result, Captured Carbon are considered as a virtual

1

Po
w

e
r

G
e
n

e
ra

ti
o
n

Time

Figure 1: The above plot shows the production of a Power Plant when Eirgrid instructs it to change state
from minimum production to maximum production.

generator or a virtual power plant.

When operating the grid, Eirgird require information on how each generator (real or

virtual) will operate and assume that each generator behaves like a single generator. For

conventional power plants (e.g., gas or coal-fired) this is not a problem. However, for virtual

generators made out of multiple sites such as Captured Carbon, this can be challenging.

Single generators operate in one of three states: minimum production, maximum produc-

tion, and ramping production. When the generator operates in either minimum or maximum

production state, it produces energy at a constant rate. Defining the power produced as

the rate of change of the energy produced, the power produced when operating at minimum

production is 0 MW and the power produced when operating at maximum production is C

MW, where C is known as the capacity of the generator. Now, when the generator operates

in the ramping production state, the behaviour is slightly different. In this case, the power

produced is not a constant; rather, it increases linearly with time, so the rate of change of

the power produced is constant: this rate is known as the ramping rate. In Figure 1, the

generator enters this state at time T0.

For Captured Carbon, each of their generating sites has different characteristics. For

example, some sites may have a capacity (i.e., maximum power production) of 0.1 MW while

some could have a capacity of 5 MW. In addition, ramping rates may vary between sites. For

2

each site, the ramping rate is known, fixed and linear, as in Figure 1. However, because each

site is different, Captured Carbon’s aggregated ramping rate may be non-linear; see Section

1.2 for further details.

Herein lies the challenge for Captured Carbon: because Eirgird expect Captured Carbon

to behave like a single generator with a linear ramping rate, Captured Carbon’s non-linear

ramping rate means there are times when they provide excess power, compared with what

Eirgird expect them to provide. In these cases, Captured Carbon do not receive any pay-

ments for the excess power. Moreover, there are also times when Captured Carbon provide

insufficient power and consequently face fines for the shortfall.

However, when coordinating the consumer sites, Captured Carbon have flexibility in

when to instruct each site to start providing power. This provides them an opportunity to

minimise their excess power and fines. Captured Carbon posed the following task to the

141st European Study Group with Industry (ESGI141):

• Find ways to schedule Captured Carbon’s sites such that their aggregate ramping rate

is as close to linear as possible.

This report details how the participants of ESGI141 tackled the problem. Captured

Carbon provided the group with sample data for 20 sites, each with different characteristics

(see Appendix A). A number of different methods were considered:

1. Direct Methods:

• Gradient Descent

• Mixed Integer Linear Programming

2. Heuristic Methods:

• Systematic Adjustment

• Bin Packing (with simulated annealing)

• Simulated Annealing on the direct problem

• Ramp Tracking Simulation

The report is structured as follows: the Introduction continues with a description of

notation and objective functions proposed. Section 2 describes each of the different method-

ologies: the Gradient Descent Method in Section 2.1, the Mixed Integer Linear Programming

Method in Section 2.2, the Systematic Adjustment Method in Section 2.3, the Bin Packing

Method in Section 2.4, Simulate Annealing directly applied to the original problem in Section

2.5, and the Ramp Tracking Simulation Method in Section 2.6. Finally, Section 3 provides

conclusions and ideas for future work.

3

Po
w

e
r

G
e
n

e
ra

ti
o
n

Time

Figure 2: The above plot shows the production of a single small power generator. The qualitative behaviour
is the same as that of a Power Plant.

1.1. Notation for a single site

We now describe notation for the sites that Captured Carbon control in order to change

their effective power production. Consider Figure 2. This plot shows the energy produced

by a single site i when instructed to transition from the state of minimum production to the

state of maximum production.

Qualitatively, Figures 1 and 2 are the same. We use the quantitative distinction between

these plots as an opportunity to introduce some notation. In Figure 2, which plots power

production p versus time t, there are four points (t, p) of interest: (0, 0), (di, 0), (di + Ri, 0)

and (di +Ri + τi, Ci). We explain the significance of these points below:

• (0, 0): Time 0 refers to the time at which Eirgrid instruct Captured Carbon to transition

towards a state of maximum production. At this time Captured Carbon are in a state

of minimum production which corresponds to 0 MW being produced.

• (di, 0): The time di refers to how long Captured Carbon delay before passing on to the

i-th site the instruction to transition towards a state of maximum production. As no

instructions have been given to the site thus far, production is still at 0 MW.

• (di + Ri, 0): For each site, there is a time frame which it requires in order to respond

to the instruction from Captured Carbon. We call this the response time and denote

4

it by Ri. The time di + Ri refers to the time at which the i-th site transitions from a

state of minimum production to ramping production. At this instant production levels

are still 0 MW as the site has still been in a state of minimum production thus far.

• (di+Ri+τi, Ci): For each site, there is a period of time required during which the power

production grows linearly in time (i.e. the rate of change of the power production is

constant), going from 0 MW to its maximum possible value Ci MW (Ci is the so-called

capacity of the i-th site). By definition, throughout this time the site is in ramping

production state. We call this time τi. Once this time is completed, the site’s power

production continues to be Ci MW, its full capacity. The time di +Ri + τi is the time

at which the i-th site transitions from the state of ramping production to the state of

maximum production.

Given that C is the maximum output of the virtual power plant which Captured Carbon

represent, and Ci is the maximum output of each of their individual sites, it follows that

C =
∑n

i=1Ci, where n is the total number of sites.

1.2. Behaviour of a collection of sites

Let n refer to the number of sites which Captured Carbon have at their disposal. Further

define the ramping function f by:

f(x) :=

0 x < 0,

x 0 ≤ x < 1,

1 1 < x.

(1)

With f defined, we can write an expression for P (t), the power generated by a single

Power Plant at time t, and F (ddd, t), the total power generated by all of Captured Carbon’s

sites at time t given delays ddd.

P (T0, T1, t) = Cf

(
t− T0
T1 − T0

)
. (2)

F (ddd, t) :=
n∑
i=1

Cif

(
t− di −Ri

τi

)
. (3)

We define also the difference between these:

E(ddd, T0, T1, t) := F (ddd, t)− P (T0, T1, t) (4)

The function F is piecewise linear. It further has the properties that if t < min
1≤i≤n

(di+Ri),

5

Po
w

e
r

G
e
n

e
ra

ti
o
n

Time

Figure 3: We plot above the production of both a single large Power Plant, and a collection of small generators
which have the same maximum output capability.

then F (ddd, t) = 0 and if t > max
1≤i≤n

(di + Ri + τi), then F (ddd, t) = C. In so far as this, F , the

total output of all our small generators, behaves in the same fashion as P , the output of a

single large generator. However, in the region min
1≤i≤n

(di + Ri) < t < max
1≤i≤n

(di + Ri + τi), F is

a piecewise linear function, instead of a linear function like P .

1.3. Objective functions

How do Captured Carbon make money? Eirgrid pay them an amount based on the

power generated by the virtual Power Plant which Captured Carbon emulate. That is,

revenue depends on P (T0, T1, t) and is independent of F (ddd, t). Given this, the means by

which Captured Carbon maximise profits is by minimising costs. There are three sources of

costs at play here:

• Fines. If F (ddd, t) < P (T0, T1, t), then Captured Carbon are not delivering the power to

Eirgrid that they are contractually obliged to provide. When this happens they are

liable to be fined.

• Unpaid Power. Captured Carbon are paid for generating exactly P (T0, T1, t) at time t.

If F (ddd, t) > P (T0, T1, t), then they are supplying free energy to the grid.

• Costs of sites. Each site that Captured Carbon coordinates has a cost per unit of

energy associated with it. For site i, we denote this cost by γi. It is more efficient for

6

Captured Carbon to activate cheap generators first in order to reduce this cost. The

accumulated cost at a late enough reference time Tref (i.e., such that Tref > di+Ri+ τi)

of running a site i whose power production started ramping at time t = di + Ri until

reaching full capacity Ci at time t = di + Ri + τi, is equal to γi times the area under

the power production curve, namely

Costi = γiCi

(
1

2
τi + Tref − di −Ri − τi

)
= γiCi

(
Tref − di −Ri −

1

2
τi

)
. (5)

With these sources of costs in mind, we identify the following objective functions.

J1(ddd, T0, T1) :=

∫
V0

|E(ddd, T0, T1, t)|dt (6)

J2(ddd, T0, T1) :=

∫
V0

G (E(ddd, T0, T1, t)) dt (7)

J3(ddd, T0, T1) :=
n∑
i=1

Costi −K
∫
V0

E(ddd, T0, T1, t)Θ (−E(ddd, T0, T1, t)) dt (8)

where E(ddd, T0, T1, t) = F (ddd, t) − P (T0, T1, t), G(x) = xΘ(x) − K xΘ(−x) with Θ being

the Heaviside function (Θ(x) = 1 if x > 0 and Θ(x) = 0 if x < 0), and K is a positive

constant representing the fines. The costs Costi are defined in equation (5). Finally, V0 is an

appropriately chosen time interval in which the integrand is nonzero. Notice that we know

the integrand is non-zero on the following finite closed interval:

[
min

(
T0,min

i
(di +Ri)

)
,max

(
T1,max

i
(di +Ri + τi)

)]
,

so we must choose V0 so that
[
min

(
T0,min

i
(di +Ri)

)
,max

(
T1,max

i
(di +Ri + τi)

)]
⊆

V0. For example, if we impose the constraints T0 < min
i

(di +Ri) and T1 ≥ max
i

(di +Ri + τi),

then we may use the interval V0 = [T0, T1].

A further simplification is to be noted. From the fact that the cost Costi is linear in the

variable di, we can replace J3 with the following equivalent functional:

J̃3(ddd, T0, T1) := −
n∑
i=1

γiCidi −K
∫
V0

E(ddd, T0, T1, t)Θ (−E(ddd, T0, T1, t)) dt . (9)

This differs from the actual total cost by a constant that depends on the parameters of the

7

problem and the late reference time only:

J̃3(ddd, T0, T1) = J3(ddd, T0, T1)−
n∑
i=1

γiCi

(
Tref −Ri −

1

2
τi

)
.

1.4. Practical computation of the objective function

At first glance, the objective functions shown in Equations (6), (7), (8) and (9) seem

computationally daunting due to the integration required. However, we first note that both

F (ddd, t) and P (T0, T1, t) are piecewise linear functions, which implies that so is their difference.

Moreover, we know the points at which each of these functions are nonsmooth. F (ddd, t) is

nonsmooth at t = di + Ri and at t = di + Ri + τi for any i, while P (T0, T1, t) is nonsmooth

at t = T0 and t = T1.

Therefore, all we need to do in order to compute these integrals exactly is to find the set

of points at which the integrand is nonsmooth. Then we use these points as our grid for the

Trapezoidal Rule, which then computes the integral exactly.

1.5. Modelling Options

The values of the constants CCC,RRR,τττ and γγγ depend on the qualities of the generators which

Captured Carbon have access to. However, the values of T0 and T1 are more difficult to

define. They may be treated as constants, but unless Eirgrid require that their power plants

start up in a single precise time, then we forfeit a degree of freedom unnecessarily. On the

other hand, there does exist a constraint on T1 in that Eirgrid expect Captured Carbon to

reach full capacity at a finite time after they have been notified.

Some options as to how to deal with T0 and T1 include:

• Treat them both as constants. One appropriate choice of constants (leading to a min-

imum total time to full power, and a minimal amount of time spent in the ramping

process) is T0 = maxi(Ri + τi)−maxi(τi) and T1 = maxi(Ri + τi).

• Define T0 = mini(di +Ri) and T1 = maxi(di +Ri + τi).

• Let both T0 and T1 be variables such that T1 is bounded from above.

• Treat T0 as a constant and let T1 be variable.

2. Methods

The following tables summarise the notation to be used in the methods described in this

Section.

8

i ∈ I Sites/generators

t ∈ T̃ time
n ∈ N iterations

Table 1: Indices and sets.

Ci Maximum generation capacity at site i
C Total capacity of all sites i
Ri Response time for site i
τi Ramp time for site i
γi Cost per unit energy associated with site i
γ Mean cost
K Multipler describing fines

Table 2: Parameters (model inputs).

Costi Cost of site i

J1(ddd), J2(ddd), J3(ddd), J̃3(ddd) Objective functions
f(x) Ramping function

F (ddd, t) Total power generated
E(ddd, t) Error function

P (T0, T1, t) Virtual power generated
Θ(x) Heaviside function
G(x) Function describing asymmetric error
δ(x) Dirac delta function
δi,j Kronecker delta function

U(x) PDF of uniform distribution
||x||l l-norm

Table 3: Functions.

T0 time when ramping begins
T1 time when ramping stops
di delay time for site i
ddd vector of delay times

geni,t generation from site i at time t
belowt distance below target curve at time t
abovet distance above target curve at time t

bi,t binary variable indicating whether or not site i is generating at time t

bi,t binary variable indicating whether or not site i is at maximum capacity at time t
κ Gradient descent multiplier
κn Gradient descent step value
αn Simulated annealing step value

Table 4: Variables (model outputs).

9

2.1. Gradient Descent Method

2.1.1. Objective Functions

The gradient descent method is a classical method that can be applied to optimise an

objective function provided this objective function is twice differentiable with respect to the

independent variables, and provided the minima of the objective function are local.

In our problem, the independent variables are the n delay times di, i = 1, . . . , n along

with the initial and final times T0, T1. We will focus our analyses on two of the objective

functions: J2(ddd, T0, T1) and J̃3(ddd, T0, T1), defined in equations (7) and (9) respectively, which

we summarise below:

J2(ddd, T0, T1) =

∫
V0

E(ddd, T0, T1, t) [Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt ,

J̃3(ddd, T0, T1) = −
n∑
i=1

γiCidi −K
∫
V0

E(ddd, T0, T1, t)Θ (−E(ddd, T0, T1, t)) dt ,

where

E(ddd, T0, T1, t) =
n∑
i=1

Cif

(
t− di −Ri

τi

)
− Cf

(
t− T0
T1 − T0

)
, (10)

where f is the ramping function defined in equation (1), and V0 can be chosen as

V0 =
[
min

(
T0,min

i
(di +Ri)

)
,max

(
T1,max

i
(di +Ri + τi)

)]
.

As explained in the Introduction, the integrand is a piecewise linear function of time.

This, along with the fact that the dependence of the integrand on the variables ddd, T0 and

T1 is via a parameterisation within the ramping function f , implies that it is possible to

calculate explicitly derivatives of the objective function. We will be interested in calculating

the gradient of each of the objective functions J2(ddd, T0, T1) and J̃3(ddd, T0, T1), namely the set

of partial derivatives of these functions with respect to the independent variables.

Objective Function J2(ddd, T0, T1). Assuming without loss of generality that T0 is fixed, we

now calculate ∂
∂di
J2(ddd, T0, T1), i = 1, . . . , n and ∂

∂T1
J2(ddd, T0, T1). We have, first,

∂

∂dj
J2(ddd, T0, T1) =

∫
V0

[
∂

∂dj
E(ddd, T0, T1, t)

]
G′ (E(ddd, T0, T1, t)) dt , j = 1, . . . , n ,

where the derivatives of the time integration limits with respect to dj do not contribute

10

because E(ddd, T0, T1, t) = 0 at those times. Now, using formula (10) for E we readily obtain

∂

∂dj
E(ddd, T0, T1, t) = −Cj

τj
f ′
(
t− dj −Rj

τj

)
,

and notice that f ′(x) = 1 for 0 < x < 1 and f ′(x) = 0 otherwise. Also, we have explicitly

G′(x) = Θ(x)−KΘ(−x). Thus we obtain

∂

∂dj
J2(ddd, T0, T1) = −Cj

τj

∫ dj+Rj+τj

dj+Rj

[Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt , j = 1, . . . , n .

(11)

Second, we calculate the derivative of the objective function with respect to T1. In a

similar way to the previous derivatives we obtain:

∂

∂T1
J2(ddd, T0, T1) =

∫
V0

[
∂

∂T1
E(ddd, T0, T1, t)

]
G′ (E(ddd, T0, T1, t)) dt .

Using the above formula (10) for E we obtain

∂

∂T1
E(ddd, T0, T1, t) = C

t− T0
(T1 − T0)2

f ′
(
t− T0
T1 − T0

)
.

Thus, using the previously discussed property of f ′(x) we get:

∂

∂T1
J2(ddd, T0, T1) =

C

(T1 − T0)2

∫ T1

T0

(t− T0) [Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt .

(12)

Objective Function J̃3(ddd, T0, T1). As for the gradient of the objective function J̃3(ddd, T0, T1),

the calculation is quite similar. We omit the derivation and simply provide the results for

the components of the gradient:

∂

∂dj
J̃3(ddd, T0, T1) = −γjCj +

KCj
τj

∫ dj+Rj+τj

dj+Rj

Θ (−E(ddd, T0, T1, t)) dt , j = 1, . . . , n (13)

and
∂

∂T1
J̃3(ddd, T0, T1) = − KC

(T1 − T0)2

∫ T1

T0

(t− T0)Θ (−E(ddd, T0, T1, t)) dt . (14)

11

2.1.2. Local Extrema

A local extremum of a given objective function J(d1, . . . , dn, T1) is a choice of the n + 1

variables (d1, . . . , dn, T1) such that the n + 1 equations ∂
∂dj
J(ddd, T1) = 0, j = 1, . . . , n and

∂
∂T1
J(ddd, T1) = 0 are satisfied simultaneously. There may be many local extrema, i.e. many

different choices of these variables (d1, . . . , dn, T1) so that the equations are satisfied. Some-

times, however, there are no local extrema because the objective function takes minimum

values at a kind of boundary in the (d1, . . . , dn, T1) space. One expects, for the type of prob-

lems we are dealing with, that the relevant local extrema are so-called local minima, i.e. that

the objective function evaluated at points that are close to the chosen point (d1, . . . , dn, T1)

is larger than the objective function evaluated at the chosen point. Notice that the actual

value of the objective function is of interest, as different local minima will provide different

values for the objective functions at the minima, and we are interested in finding low values

of the objective function because that is how the company can make savings. It is the goal of

all of the methods presented in this report to find these local minima for the chosen objective

function in a quick way and to find the lowest minimum within a given search range.

For the objective function J̃3(ddd, T0, T1), we have a problem though. It is possible to show

that its minima are not local. To see this, look at the equation ∂
∂T1
J̃3(ddd, T0, T1) = 0:

− KC

(T1 − T0)2

∫ T1

T0

(t− T0)Θ (−E(ddd, T0, T1, t)) dt = 0 .

The left-hand side is sign-definite: the only way it is zero is if E(ddd, T0, T1, t) ≥ 0 for all

t ∈ V0. In other words, there can be no fines and the actual power production curve lies

strictly above the linear virtual power plant ramping curve. This gives us, however, a nice

start: assuming (d1, . . . , dn) are given, one can choose the time T1 to be the shortest one so

that E(ddd, T0, T1, t) ≥ 0 for all t ∈ V0: in graphical terms, this implies that the actual power

production curve touches the linear virtual power plant ramping curve at least at one point.

In any case, the fact that E(ddd, T0, T1, t) ≥ 0 for all t ∈ V0 implies that the other components

of the gradient are given by:

∂

∂dj
J̃3(ddd, T0, T1) = −γjCj, j = 1, . . . , n ,

which are all non-zero. In conclusion, there are no local extrema for this problem. To apply

the method in this case, therefore, one has to change the strategy by for example fixing T1

and considering the objective function as a function of ddd only. In such a case, only equations

(13) are needed in order to determine the extrema so we would have the following n equations

12

for the n unknowns (d1, . . . , dn):∫ dj+Rj+τj

dj+Rj

Θ (−E(ddd, T0, T1, t)) dt =
γjτj
K

, j = 1, . . . , n ,

which implies that there must be fines (there are times at which the actual power production

curve goes below the linear virtual power plant ramping curve), and these fines are bounded

from above.

For the objective function J2(ddd, T0, T1) as a function of the n+ 1 variables (d1, . . . , dn, T1)

we have a different situation. From equations (11), (12), the local minima solve the system∫ dj+Rj+τj

dj+Rj

[Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt = 0 , j = 1, . . . , n ,∫ T1

T0

(t− T0) [Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt = 0 .

In contrast to the previous case, these equations imply a balance between contributions

coming from the time intervals where E > 0 and the time intervals where E < 0. Therefore,

there must be fines as well as over-production: the actual power production curve must cross

the linear virtual power plant ramping curve at least in one point.

2.1.3. Gradient Descent Algorithm: Barzilai-Borwein method

The Barzilai-Borwein gradient descent method (Barzilai and Borwein, 1988) for a given

objective function J(xxx) (here xxx = ddd in the case J = J̃3 and xxx = (ddd, T1) in the case J = J2)

consists of starting from a seed point xxx = xxx(0) and a second point xxx = xxx(1) in the space

of variables, and iteratively going from there along the directions of steepest descent of

the objective function, until reaching a local minimum (or a boundary). The directions of

steepest descent are obtained by calculating the gradient of the objective function, namely the

vector ∇J with components
(

∂
∂d1
J(ddd, T0, T1), . . . ,

∂
∂dn

J(ddd, T0, T1),
∂
∂T1
J(ddd, T0, T1)

)
. We define

iteratively a sequence of points by the 2-point recursion relation

xxx(m+1) = xxx(m) − κm∇J(xxx(m)),

where

κm =
(xxx(m) − xxx(m−1))T (∇J(xxx(m))−∇J(xxx(m−1)))

‖∇J(xxx(m))−∇J(xxx(m−1))‖2
.

For this method to converge, a necessary condition is that the Hessian of the objective func-

tion J , namely the matrix of second derivatives of J with respect to the independent variables,

be finite. It is possible to show that this condition holds for both J2 and J̃3. The calculations

13

are lengthy but straightforward: we do the calculation of these derivatives explicitly for J2

in Appendix B.

2.1.4. Implementation and Results

In this study we apply the above gradient descent algorithm to the functional J2(ddd, T0, T1)

considered as a function of ddd only, i.e. we prescribe T0 and T1 to take nominal values. With

this restriction, the gradient of J2(ddd, T0, T1) has only n components, namely ∂J2
∂di
, i = 1, . . . , n,

where n is the total number of generators.

In order to implement this algorithm we wrote a Mathematica program (details of which

can be found in Appendix C) which takes an initial seed ddd(0), calculates the next seed ddd(1)

using a classical line-search algorithm (that takes 0.5 seconds) and then applies the Barzilai-

Borwein gradient descent method (Barzilai and Borwein, 1988) to complete up to 200 iter-

ations ddd(2), . . . , ddd(200) (this takes 3 seconds). The calculations were done on a MacBook Air

with a 1.7 GHz Intel Core i7 processor, with 8 GB 1600 MHz DDR3 of RAM.

Parameter values. We use the parameters from 20 sites that were provided by Captured

Carbon (see Appendix A). We set the constant representing fines to K = 0.1. This means

the cost of producing more power than the straight ramp line of the Virtual Power Plant is

10 times higher than the fines due to producing less power than this reference ramp. Initial

and final times for this reference Virtual Power Plant ramp are set to T0 = 0, T1 = 60 min.

Sensitivity to choice of seed. We found that the method is quite sensitive to the choice

of initial seed. This shows that there are a lot of local minima, which is good from the point

of view of the “equity” challenge. On the other hand, for some initial seeds the convergence

is bad, and for many initial seeds the method does not provide a monotonous decrease of

the objective function via iterations; rather, the cost takes transient jumps that can last for

up to 100 iterations before entering a monotonous decay phase. Due to this sensitivity we

performed a search over 30 initial seeds chosen randomly, so that for each seed the algorithm

would be applied, leading to 200 iterations in each case. In this way we could obtain a good

indication of the different behaviours. In figure 4 we show the best case we found, which

achieved the minimum cost (72 euro) over the 30 cases studied.

To illustrate the overall behaviour amongst the 30 cases studied, we calculated the opti-

mum configuration for each case and made a histogram of the achieved minimum cost of those

optimal configurations (see figure 5). This cost is defined as the objective function J2 (with

units of energy), evaluated at the local optimum, multiplied by the sum of the prices per unit

energy of the 20 sites considered. We can see that 23 out of the 30 cases have a minimum

cost below 350 euro: these 23 cases produce iterations that converge to a local minimum,

while the remaining 7 cases produce non-convergent iterations. For example, the outlier at

14

474 euro is actually a case where the method did not converge: it achieved a minimum at

the 89-th iteration and failed to converge at subsequent iterations. This is shown in figure 6.

10 20 30 40 50 60 70

Time

(min)

10

20

30

40

50

60

Power(MW)

Power Production at Iteration 193

50 100 150 200
Iteration

100

200

300

400

Cost (€)

Figure 4: Left Panel: Virtual Power Station production power (actual in blue; ideal in orange) at iteration
193 of the best minimum found over 30 seeds (cost: 72 euro). Right Panel: Cost as a function of the
iteration number. The green dot denotes the cost at the iteration 193.

100 200 300 400
0

1

2

3

4

Histogram of Minimum Cost (€) over 30 Local Optima

Figure 5: Histogram, over the 30 local optima found, of the cost associated with each local optimum. This
cost is defined as the objective function J2 (with units of energy), evaluated at the local optimum, multiplied
by the sum of the prices per unit energy of the 20 sites considered.

10 20 30 40 50 60

Time

(min)

10

20

30

40

50

60

Power(MW)

Power Production at Iteration 89

50 100 150 200
Iteration

200

400

600

800

1000

1200

1400

Cost (€)

Figure 6: Left Panel: Virtual Power Station production power (actual in blue; ideal in orange) at iteration
89 of the worst minimum found over 30 seeds (cost: 472 euro). Right Panel: Cost as a function of
the iteration number. The green dot denotes the cost at the iteration 89.

15

Equity. We briefly consider the equity challenge. Figure 7 shows 20 histograms, one for

each generator site, of the starting times over the 23 different optimal configurations found

where the method converged: these configurations are local minima with costs below 350

euro. We can see that there are optimal configurations for which any given site starts as late

as 25 minutes after the first site starts. Moreover, there is a good spread of possible starting

times for many sites (except perhaps for sites 1 and 15, which typically start during the first

10 minutes). Notice that due to the fact that some of the sites have long ramping times

(over 50 minutes for site 14), this spread of starting times implies that the total time spent

from non-zero actual production to reaching maximum capacity will exceed the nominal 60

minutes of ideal Virtual Power Plant ramping time. Figure 8 shows a histogram, over the 23

optimal solutions found, of these actual times spent going from zero to maximum capacity.

0 5 10 15 20 25

Time

(min)
0

2

4

6

8

10

12

Count
Start Times Site 1

0 5 10 15 20 25

Time

(min)
0

1

2

3

4

5

Count
Start Times Site 2

0 5 10 15 20 25 30

Time

(min)
0

1

2

3

4

5

Count
Start Times Site 3

0 5 10 15 20 25 30

Time

(min)
0

2

4

6

8

10

Count
Start Times Site 4

0 5 10 15 20 25 30

Time

(min)
0

2

4

6

8

Count
Start Times Site 5

0 10 20 30 40

Time

(min)
0

2

4

6

8

10

Count
Start Times Site 6

0 5 10 15 20 25 30 35

Time

(min)
0

1

2

3

4

5

Count
Start Times Site 7

0 10 20 30 40

Time

(min)
0

1

2

3

4

5

6

7

Count
Start Times Site 8

0 5 10 15 20

Time

(min)
0

2

4

6

8

10

Count
Start Times Site 9

0 5 10 15 20 25 30

Time

(min)
0

2

4

6

8

Count
Start Times Site 10

0 10 20 30 40

Time

(min)
0

2

4

6

8

Count
Start Times Site 11

0 5 10 15 20 25 30 35

Time

(min)
0

1

2

3

4

5

6

Count
Start Times Site 12

0 5 10 15 20 25 30 35

Time

(min)
0

1

2

3

4

5

6

7

Count
Start Times Site 13

0 5 10 15 20 25

Time

(min)
0

2

4

6

8

Count
Start Times Site 14

0 10 20 30 40 50

Time

(min)
0

2

4

6

8

10

12

Count
Start Times Site 15

0 5 10 15 20 25 30

Time

(min)
0

1

2

3

4

5

Count
Start Times Site 16

0 10 20 30 40

Time

(min)
0

1

2

3

4

5

6

Count
Start Times Site 17

0 5 10 15 20 25 30 35

Time

(min)
0

1

2

3

4

5

6

7

Count
Start Times Site 18

0 5 10 15 20 25 30 35

Time

(min)
0

1

2

3

4

5

6

7

Count
Start Times Site 19

0 10 20 30 40

Time

(min)
0

2

4

6

8

Count
Start Times Site 20

Figure 7: Addressing the equity challenge using the gradient descent method. Histograms, for each of the 20
different generator sites in the problem, of the starting times over the 23 different optimal solutions found
that produced minimum costs lower than 350 euro.

16

60 65 70 75 80

Time

(min)
0

1

2

3

4

Count
Histogram of times from zero to maximum capacity

Figure 8: Addressing the equity challenge using the gradient descent method. Histogram, over the 23 different
optimal solutions found that produced minimum costs lower than 350 euro, of the time spent ramping up the
individual sites: this is measured from the time when the earliest site starts ramping up production until the
time when the latest site reaches its maximum capacity. Notice that the ideal ramping time of the Virtual
Power Plant is set to 60 minutes.

2.2. Mixed Integer Linear Programming

In this section we describe the Mixed Integer Linear Programming (MILP) approach used

to solve the problem presented by Captured Carbon. MILP is an optimisation technique that

decides the level of different variables so as to find the optimum value of a specified function,

known as the objective function. Typically MILPs include constraints that place limits on

the values the decision variables may take. Furthermore, some variables are limited such

that they may only take integer variables while other variables may be continuous. A MILP

is considered to be linear when both the objective function and each of the constraints are

linear.

For this workshop we used MILP to determine how to optimally schedule each generating

site. The methodology is in contrast to the other approaches considered in this report which

all seek near-optimal solutions. We consider two different objectives to optimise using MILP.

Firstly, we minimise the sum of the distances between the actual summed ramping rates and

the target ramping rate line:

min
∑
t

(
abovet +Kbelowt

)
, (15)

where abovet and uppert are continuous decision variables representing the distances above

and below the target line at time t, respectively. The parameter K represents the penalty

multiplier for when the actual ramping rate is below line, relative to when it is above, i.e.,

being below the line is K times worse that being above the line. In Figure 9, we consider a

value of K = 10.

17

The second objective minimises was the total cost associated with consumer generating:

min
∑
i,t

γigeni,t + γ
∑
t

(
abovet +Kbelowt

)
, (16)

where geni,t is the continuous decision variable representing generation from site i at time t.

The parameters γi and γ represent the cost associated with site i generating and the average

of those costs, respectively.

When seeking to optimise both equations (15) and (16), the following constraints must

be observed:

geni,t ≤ Ci, ∀i, t, (17a)

geni,t = geni,t−1 +Ri

(
bi,t − bi,t

)
, ∀i, t, (17b)

bi,t ≥ bi,t−1, ∀i, t, (17c)

bi,t ≥ bi,t−1, ∀i, t, (17d)∑
t

(bi,t − bi,t) = τi, ∀i, (17e)

∑
i

geni,t + belowt − abovet =
t
∑

iCi

|T̃ |
, ∀t, (17f)

bi,t, bi,t ∈ {0, 1}, ∀i, t, (17g)

geni,t, abovet, belowt ≥ 0, ∀i, t. (17h)

The binary decision variable bi,t indicates whether site i is generating at time t (bi,t = 1) or

not (bi,t = 0). Similarly, the binary decision variable bi,t indicates whether site i is generating

at its maximum capacity at time t (bi,t = 1) or not (bi,t = 0). Constraint (17a) ensures site

i cannot generate more than its maximum capacity. Constraint (17b) ensures, that if site i

is generating at time t, its generation must equal its generation from the previous time step

plus its ramping rate (Ri). However, when site i is at its maximum capacity, constraint (17b)

also ensures it stays generating at that maximum capacity. Constraint (17c) ensures that if

site i is generating at time t − 1, then it must also generate at time t, i.e., once it begins

ramping, it must continue. Similarly, constraint (17d) ensures that if site i is generating at

its maximum capacity at time t− 1, then it must also do so at time t.

The difference bi,t − bi,t is one if site i is generating, but not at its maximum capacity,

at time t, and zero otherwise. Hence, the sum of these differences must equal site i’s ramp

time (τi), as indicated by equation (17e). Finally, constraint (17f) ensures that the sum of

generation across the sites plus/minus any errors below/above must equal the target ramping

line (
t
∑

i Ci

|T̃ |), where |T̃ | represents the total number of timesteps considered.

18

Figure 9 displays the results and shows that the MILP approach can schedule the gen-

erators such that the output ramp rate is linear. In Figure 9a, objective function (16) is

minimised and the problem solves in 17 seconds. In Figure 9b, objective function (15) is

minimised and the problem solves in ≈9 hours. In Figure 9c, objective function (15) is again

minimised. However, in this case, the algorithm ceases after 60 seconds and the solution

obtained at that point is displayed, showing a near linear ramp rate. For these results, the

problem was solved using the programming language GAMS1 and were performed on a 3.4

Ghz, 16GB RAM desktop PC.

In Appendix D, we provide the GAMS and Python code used to solve the problem when

equation (16) is the objective function.

1www.gams.com

19

www.gams.com

(a) Objective function (16).

(b) Objective function (15).

(c) Objective function (15) with 60 second time limit.

Figure 9: Power generation results from MILP approach.

20

2.3. Systematic Adjustment

2.3.1. Overview

The systematic adjustment algorithm is a heuristic approach where we start from the

extreme solution where every site starts ramping as late as possible, and then sequentially

make minimum-cost adjustments to this until it can be ensured that the total power gener-

ated from the sites is greater than the optimum power output throughout. The systematic

adjustment algorithm was implemented in a discrete-time framework, but could be adapted

to continuous time, although this would be more computationally expensive.

2.3.2. Method

Our aim is to ensure that the target power output is always achieved, while minimising

any excess output. Our initial step is to set the start of the ramp-up time, ti = di + Ri, for

each site so that they all achieved their full capacity Ci at the same time T1, as shown in

Figure 10 and Listing 1 Then, we set the earliest of these start up times as T0. We assumed

that [T0, T1] was the optimal range over which to achieve the company’s ramp-up time.

Figure 10: Initial configuration.

We discretise time between T0 and T1 into M segments. Let uk represent the k-th time

in the discretisation, so that u0 = T0 and uM = T1.

i n i t t i = T 1−ramp up norms

Listing 1: Python code extract: set initial ramp-up start times

21

We begin by comparing the output generated by the initial configuration at u0 with the

optimal output at u0. These match, since both are zero. Having established that there is

no discrepancy at t = u0, we move to t = u1, where we will generally find that the power

generated by the initial configuration is less than the optimal output. In order to have

sufficient power generated at u1, we will need to change at least one of the ti values to be

less than u1.

We consider all of the sites where ti > u0, and identify the site where ti can be shifted to

u0 at least cost. Since the ramp-up time is already included in the cost the additional cost,

for each site will be Ci(ti − u0)× (unit price).

whi le Output [t] < (T 1−T 0) ∗ t im e l i n e [t] :

Find the s t a r t time o f the s i t e to move

f o r i in range (0 , n o o f s i t e s) :

i f (i n i t t i [i] − t im e l i n e [t−1]) < 1e−10:

i n i t t i [i] = 100 # igno r e s s i t e s that are con t r i bu t i ng to the

power output at the s t a r t o f t h i s time−s tep
f o r i in range (0 , n o o f s i t e s) :

i f i n i t t i [i] < 100 :

f ind min [i] = max((i n i t t i [i] − t im e l i n e [t−1])∗ capac ity norms [

i]∗ p r i c e s [i] / 6 0 , 0 . 0) #hose the s i t e which w i l l i ncur the

l e a s t i n c r e a s e in co s t

e l s e :

f ind min [i] = 100 # igno r e s s i t e s that are con t r i bu t i ng to the

power output at the s t a r t o f t h i s time−s tep
min cost = np . argmin (f ind min) # index o f s i t e to move

Move the s t a r t time o f the s i t e chosen to the prev ious time−s tep
and amend the r e l e van t in fo rmat ion in the ar rays

f o r t2 in range (1 , t ime s t ep s+1) :

i f t im e l i n e [t2]> i n i t t i [min cost] and t ime l i n e [t] <=T 1 :

Output [t2] −= (t ime l i n e [t2] − i n i t t i [min cost]) ∗
capac i ty norms [min cost] / ramp up norms [min cost]

Output deta i l ed [t2] [min cost] −= (t ime l i n e [t2] − i n i t t i [

min cost]) ∗ capac ity norms [min cost] / ramp up norms [min cost]

move t i = i n i t t i [min cost] − t im e l i n e [t−1]

i n i t t i [min cost] = t ime l i n e [t−1]

a c t u a l t i [min cost] = t ime l i n e [t−1]

f o r t2 in range (1 , t ime s t ep s+1) :

i f t im e l i n e [t2] > i n i t t i [min cost] and t ime l i n e [t2] <=(T 1 −
move t i) :

Output [t2] += (t ime l i n e [t2] − i n i t t i [min cost]) ∗
capac i ty norms [min cost] / ramp up norms [min cost]

Output deta i l ed [t2] [min cost] += (t ime l i n e [t2] − i n i t t i [

min cost]) ∗ capac ity norms [min cost] / ramp up norms [min cost]

e l i f t im e l i n e [t2] > (T 1 − move t i) and t ime l i n e [t2]<=T 1 :

Output [t2] += capac i ty norms [min cost]

Output deta i l ed [t2] [min cost] += capac ity norms [min cost]

Listing 2: Python code extract: move site with lowest increase in cost

Having changed one ti value, see Listing 2, we assess the new configuration, see sub-

22

figure 11a. If the power generated at t = u1 is still below the optimal level, we again consider

all sites where ti > u0 and identify the site where ti can be shifted to u0 at least cost; this

process can be repeated until we obtain a configuration where the power generated at u1 is

sufficient, see sub-figures 11b to 11l. Once sufficient power at u1 is obtained, we consider

sites with ti < u1 and whose power output is less than the excess power being generated at

t = u1; from these sites we select the site with the largest power output at u1 and move its

ti back to its latest possible value, T0 − τi, see sub-figure 11m and Listing 3, and repeat if

necessary.

When the minimum requi rements have been at ta ined

check i f any s i t e can be moved back to i t ’ s o r i g i n a l s t a r t time

whi le s t i l l a ch i ev ing the o v e r a l l minimum requirements , then from these

move the s i t e that g i v e s the l a r g e s t cont ibut i on to the cur rent

time−step , and update the ar rays

push back = 0

i f Output [t] > (T 1 − T 0) ∗ t im e l i n e [t] :

f o r i in range (1 , n o o f s i t e s) :

i f Output deta i l ed [t] [i] < (Output [t] − (T 1−T 0) ∗ t im e l i n e [t]) and

Output deta i l ed [t] [i]>0:

i f Output deta i l ed [t] [i] > push back :

push back = Output deta i l ed [t] [i]

push back index = i

i f push back > 0 :

f o r t3 in range (0 , t) :

i f Output deta i l ed [t3] [push back index] < (Output [t3] −
(T 1 − T 0) ∗ t im e l i n e [t3]) :

push back = 0

i f push back > 0 :

move t i = T 1 − ramp up norms [push back index]

f o r t2 in range (1 , t ime s t ep s+1) :

Output [t2] = Output [t2] − Output deta i l ed [t2] [push back index]

Output deta i l ed [t2] [push back index] = 0

a c t u a l t i [push back index] = T 1 − ramp up norms [push back index]

f o r t2 in range (0 , t ime s t ep s+1) :

i f t im e l i n e [t2] > a c t u a l t i [push back index] and t ime l i n e [t2] <= T 1 :

Output [t2] += (t ime l i n e [t2] − a c t u a l t i [push back index]) ∗
capac i ty norms [push back index] / ramp up norms [

push back index]

Output deta i l ed [t2] [push back index] = (t ime l i n e [t2] −
a c t u a l t i [push back index]) ∗ capac ity norms [push back index

] / ramp up norms [push back index]

Listing 3: Python code extract: move relevant site back to initial start time

Now that sufficient power is generated at u1 and we have moved back any sites that are not

necessary to achieve this, we step forward in time to identify the next time-step where the

power generation is insufficient, t = uP . We repeat the same process as before; we consider all

of the sites where ti > uP−1 and identify the site where ti can be shifted to uP−1 at least cost.

We change this ti value and assess the new configuration, changing more ti values if necessary,

23

see sub-figures 11n to 11p. We repeat the process until sufficient power is generated at all

times between T0 and T1, see sub-figures 11q and 11r.

(a) Move site 2 forward. (b) Move site 18 forward. (c) Move site 4 forward.

(d) Move site 7 forward. (e) Move site 3 forward. (f) Move site 19 forward.

(g) Move site 9 forward. (h) Move site 1 forward. (i) Move site 10 forward.

(j) Move site 16 forward. (k) Move site 12 forward. (l) Move site 5 forward.

Figure 11: Step by step results when moving site start-up times.

24

(m) Move site 3 backward. (n) Move site 13 forward. (o) Move site 15 forward.

Figure 11: Step by step results when moving site start-up times.

(p) Move site 2 backward. (q) Move site 6 forward. (r) Move site 11 forward.

Figure 11: Step by step results when moving site start-up times (cont.).

25

2.3.3. Results

Figure 12: Final configuration.

Our results, based on the sample data given, show a generated power output that achieves

the target output throughout, as shown in Figure 12, while generating very little excess power,

ensuring no penalties are incurred. The power generated is broken down by site in Figure 13,

where we can see that many sites are started at T0, with a small number starting later to

achieve our solution.

This method uses a heuristic approach and moves the start time of some sites, based

on minimum additional cost, to ensure the target output is achieved throughout. Thereby,

we ensure no penalties are incurred. Good results are achieved for the sample data given,

with a total cost of e4,478, a ramp-up time of 50.24 minutes and an overall time of 64.15

minutes including the response and delay times. The method runs quickly and should scale

well. The processing time for the sample data supplied, using fifty time-steps, is less that

one-hundredth of a second.

26

Figure 13: Breakdown by site.

2.3.4. Algorithm variations

This algorithm is deterministic and will always produce the same output. The ti value to

move could be decided on using different criteria, for example:

i. the ti value that needs to be moved the least to contribute as required, this alternative

is already an option in the python file created;

ii. the ti value that has the least cost per MW;

iii. weighting the sites based on their location in the previous setup;

iv. the time a site takes to start ramping-up; and

v. the time a site takes ramping-up.

These could all produce different arrangements of site start-up times, while still ensuring

sufficient power is generated throughout.

27

2.4. Bin packing

2.4.1. Overview

This bin-packing algorithm is a simulated annealing approach to solving this problem in a

discrete-time framework. Some aspects of the algorithm are similar to the simulated annealing

approach to the direct problem described in Section 2.5. The main difference between the two

approaches is that the approach described in Section 2.5 treats the original problem directly

(taking advantage of functions for simulated annealing functionality available in Matlab),

while the approach described in this section takes advantage of the fact that the original

problem can be transformed into a bin-packing problem that is easier to solve.

The classical bin-packing problem involves packing a list of items of different sizes into the

smallest number of bins, each of which has a maximum capacity (Rao and Iyengar, 1994).

We propose a slight modification to the classical formulation of the bin-packing problem.

More specifically, recall that each power generator has a specific ramping profile (as shown

in Figure 14 (a) where the ramping profile is represented by the function f(x)). We note

that the rate of change of the ramping profile with respect to time, f ′(x)—shown in Figure

14 (b)—is zero everywhere except while the generator is ramping (at which point it is equal

to the ramping rate, i.e., Ci/τi). We let Bi (the block associated with each generator) be

represented by a rectangle of width τi and height Ci/τi. We then try and pack each block as

efficiently as possible into a bin of width T1 − T0 and a maximum height of
∑I

i=1Ci/τi.

(a) (b)

Figure 14: (a) Power ramping up versus time and (b) derivative of power ramping up over time.

We arrange the blocks in some arbitrary packing order and fit each block inside the

bin one at a time until they have all been packed. This specific bin-packing algorithm is

deterministic, however changing the packing order of the blocks can change the solution.

Since there are I generators, we can arrange the blocks in I! possible orders. As I increases,

it becomes computationally prohibitive to test every possible solution, therefore we choose

to apply an annealing process to search the parameter space more efficiently.

28

2.4.2. Method

The bin packing algorithm is designed as follows:

1. We begin by discretising the bin via an N × M rectangular mesh, i.e., T1 − T0 is

discretised into N equal segments, and
∑I

i=1Ci/τi is discretised into M equal segments.

2. Next, we let O be an ordered set containing each block in some arbitrary order.

3. The deterministic bin-packing process is as follows:

(a) We pick the first block in the ordered set O. This will be the first block that we

sort.

(b) We search the bin until we find a free space to place the current block that we are

trying to place. At which point, we place the block inside the bin. Note that the

search routine is as follows:

i. Begin the search at the position n = m = 1.

ii. Check if the bin is currently empty in the rectangular region given by n ∈
[n, n+ τi] and m ∈ [m,m+ Ci/τi]. If it does fit, the search is over.

iii. If n = N − τi, let m = m+ 1, n = 1, and return to step ii.

iv. If n < N − τi, let n = n+ 1, and return to step ii.

(c) If we have not yet placed each block in O, choose the next block in the ordered

set and return to step (b).

(d) Evaluate the cost function score associated with starting the generators using this

solution.

4. Pick a new candidate set, O′, at random from all neighbours of the existing set O.

One way to pick a neighbouring set is to randomly choose two elements in O, and

then reverse the order of these elements. Then repeat steps 3 (a) – (d). The solution

generated by O′ might be better or worse than the solution generated by O.

5. If O′ performs better than O, accept it as the new O.

6. If O′ performs worse than O, accept it with some probability. The probability of

accepting an inferior solution is a function of the temperature of the annealing process.

A higher temperature makes you more likely to accept O′.

7. Go back to step 4 and repeat many times, lowering the temperature a bit at each

iteration, until you get to a low temperature and arrive at your (hopefully global,

29

possibly local) minimum. If you are not sufficiently satisfied with the result, try the

process again, perhaps with a different temperature cooling schedule.

The key to the simulated annealing method is in step 6: we still sometimes accept a worse

solution, because it might be the stepping stone that gets us out of a local minimum and

ultimately closer to the global minimum. The temperature is higher at the beginning of the

annealing process, so that initially we accept more solutions. As the temperature decreases,

we decrease the likelihood of accepting bad solutions.

2.4.3. Algorithm variations

There are several reasonable variations to this algorithm.

• Näıve hill climbing: Similar to the simulated annealing approach except step 6 is

ignored. This can increase the likelihood of the solution converging at a local minimum

rather than a global minimum, however, this algorithm can also converge faster than

the simulated annealing algorithm.

• Alternative neighbour choice: In step 4 we suggested that one way to pick a

neighbouring set is to randomly choose two elements in O, and then reverse the order

of these elements. This is a reasonable way to choose a neighbouring set, however it is

not the only way to choose a neighbouring set. The number of elements to swap could

be a function of the temperature or number of generators.

2.4.4. Results bin packing

Figure 15 provides an illustrated demonstration of the bin-packing process. In Figure (a)

the blocks are sorted in some arbitrary order, ready to pack. We note that the height of the

bin is equal to the sum of the heights of the blocks and the width of the bin is equal to the

maximum block width (i.e., the width of the red block in position 9). In Figure (b) the first

block is packed and it is placed in the bottom left of the bin. We note that the first item

will always be placed in this position since the searching method always starts in the bottom

left of the bin and at the beginning of the process the bin is empty. In Figure (c) five blocks

have been stacked and the algorithm is trying to find a place for the red block in position 6,

and in figure (d) all of the blocks have been stacked.

30

(a) (b)

(c) (d)

Figure 15: Graphical example of bin-packing algorithm.

31

2.5. Simulated Annealing

As described in Section 2.4, simulated annealing is an iterated technique for finding an

optimal solution to a problem. At each iteration, a random modification is made to the

current guess of the optimal solution. If this leads to an improvement (a lower cost), the

modification is accepted and becomes the new guess of the optimal solution. If there is no

improvement (the modification leads to a solution with equal or higher cost), the modification

is accepted with probability p. This probability of acceptance when there is no improvement

is taken to depend on a variable, T , referred to as the temperature; higher values of T

correspond to higher values of p.

The key to simulated annealing is that the temperature is decreased over the course of

the search for an optimal solution. The high initial temperature means that there can be

large movements around the space of possible solutions in the early stages, and then as

the temperature decreases the guesses will move more consistently towards a minimum-cost

solution. The purpose of the temperature is to make the method unlikely to settle on a local

minimum; the exploration of the parameter space in the early stages makes it more likely for

a global minimum solution to be achieved.

A number of software packages exist for running simulated annealing. Typically, such

packages require a cost function (ideally one that is computationally efficient, since it will be

evaluated frequently over the course of the search for an optimal solution) and a domain in

which to seek solutions. The Matlab optimisation toolbox includes such a simulated annealing

function. One way of approaching the problem is simply to use simulated annealing directly

on the original problem, evaluating the cost based on the function J̃3.

It is straightforward to determine the domain on which solutions should be sought when

T0 and T1 are fixed at the outset. Given the total time to reach full power T1 and the earliest

time to begin ramping T0, there is only a limited range of notification times, di, that are

possible. Specifically, the fact that di + Ri + τi ≤ T1 and that di + Ri ≥ T0 implies that

di ∈ [T0−Ri, T1−Ri−τi]. If there are n sites, this gives us an n-dimensional hyperrectangle (an

n-orthotope) of possible solutions. Since the bounds of an n-orthotope are easily expressed

in Cartesian coordinates, the implementation of these bounds is straightforward.

In Appendix E, we give commented code for implementing simulated annealing for this

problem using Matlab’s optimisation toolbox. The important feature of this code that makes

it practical is that the code for evaluating the cost function has been written to be quick and

efficient. Example output of this process is shown in Figure 16.

Simulated annealing applied directly to the original problem as described here has a

random element. This is useful for the “equity” problem, since multiple runs of simulated

annealing will lead to different solutions. Simulated annealing also depends on the starting

32

Figure 16: An example of a solution for twenty sites obtained using simulated annealing directly applied to
the cost function J̃3.

point (although to a lesser extent than methods such as gradient descent that will move

directly to a local minimum). Hence, simulated annealing could be used as part of a multistep

process. A crude optimisation method could be used to obtain a good starting point for

simulated annealing, or (more likely to be useful), the output of simulated annealing could

be refined by using it as the starting point for a method such as gradient descent.

There are extensions to the simulated annealing problem that are yet to be considered

but could be done as further mathematical work. The main extension would be to consider

modifications to the definition of the cost function. The present work all depends on using

J̃3 as the cost function and taking T0 and T1 as fixed. Alternatives would include using J1 or

J2 as the cost function (which would simplify the problem), or performing the optimisation

of T0 and/or T1 as well as d. This modification, where T0 and T1 are not treated as fixed,

would be a substantial and interesting change to the problem, and could lead to new insights

into how to specify the best “virtual power plant” that will be equivalent to a given set of

sites with known properties.

33

2.6. Ramp Tracking Simulation

As discussed in the Introduction, an ideal virtual power plant (VPP) replicates the op-

eration of a single large power plant. A characteristic of ideal VPP operation is a linear and

constant ramp to generation capacity (C). In financial terms, ramping avoids penalty fines

by achieving contracted power capacity. On the other hand, excessive ramping, especially

at ramp commencement, incurs costs of unpaid power. Fines and cost of unpaid power are

discussed in the Introduction, with fines generally more expensive.

Given the risks of fines and costs, the Ramp tracking technique schedules VPP generators

for two goals: 1.) track an ideal VPP ramp, and 2.) reduce excessive ramping above the

ideal VPP ramp. Both goals are prioritised in early ramping in order to provide a margin of

safety from fines and limit unpaid power.

Ramp tracking does not guarantee the optimal solution but is operationally intuitive

and easier to code without expensive mathematical software. The implementation in code

resembles a time domain simulator by checking the ramp value at fixed time steps.

2.6.1. Methodology

The ramp tracking algorithm schedules the VPP generators to maintain a specified dif-

ference above the ideal ramp rate when possible. Three algorithm parameters determine the

scheduling of the VPP generators, led by the “Ideal VPP ramp time” (Table 5). Ideal VPP

ramp time is the preferred duration in minutes from the start of the first generator(s) ramp

to the completion of all generator ramps. Equation (18) expresses this parameter in notation

from the Introduction. The same parameter in equation (19) calculates the ideal ramp rate

in algorithm Phase 1. The algorithm phases are: 1) scheduling of first generators and 2)

scheduling of additional generators as Phase 1 generators complete ramping.

Table 5: Parameters of ramp tracking algorithm

Parameter Meaning Phase

Ideal VPP ramp time Ramp time of all VPP generators 1

minDiff
Minimum difference between actual and ideal

ramp before scheduling inactive generator
1 & 2

addGenDiff
Preferred difference between actual and ideal

ramp after scheduling inactive generator
2

VPP Ramp Time = T1 − T0 [mins] (18)

34

Ideal VPP Ramp Rate =
C

V PP RampTime
[MW/min] (19)

Figure 17: Ramp tracking algorithm comprising two phases and tests that schedule additional generators to
track ideal ramp rate

As displayed in Figure 17, Phase 1 calculates VPP ramp rate and orders the generators

by longest ramp duration. Subsequently the algorithm schedules the minimum number of

generators at 0 minutes that exceed the ideal VPP ramp rate. Finally, Phase 1 orders the

other inactive generators by their increasing ramp rate before entering a time step loop.

35

Phase 2 time steps are 0.1 minutes, matching the rounding level of the rampTime values

in the provided generator details. At each time step the algorithm tests the total VPP power

and, if necessary, the difference in VPP ramp rate and ideal ramp rate. The group of ramping

generators is unchanged until the difference between the actual ramp and ideal ramp falls

below an algorithm parameter. Such an event occurs as the Phase 1 generators complete

their individual ramps. The critical parameter is the minimum difference between actual and

ideal ramp, minDiff in Table 5.

One of the inactive generators is scheduled to now ramp at the current loop time step.

The scheduled generator is selected for its ramp rate that will produce a VPP ramp difference

greater than the parameter addGenDiff. If the addGenDiff value is impossible, the inactive

generator with the longest ramp time is selected.

The time steps increment until the VPP power reaches its maximum capacity (C). The

loop breaks and reports a complete generator schedule of ramp times and VPP power level

throughout the its ramp. The power level report enables calculation of the power difference

(Pdt) at each time step (t). The difference exists between a time step’s actual power (Pdt)

and its concurrent ideal power (Pidealt) due to the ideal VPP ramp (Eqn. 20). Summation

of purely positive or purely negative Pdt and scaling by time step size, converts the Pdt to

two energies in MWh. The energies are the areas of ramp differences plotted over time above

and below the ideal ramp, referred to as “over-ramp” (21) and “under-ramp” (22). Note that

0.1 is the time step in minutes.

Pdt = Pactt − Pidealt t: time step index [MW] (20)

Over-ramp =
∑

Pdt × 0.1× 1

60
where Pdt > 0 [MWh] (21)

Under-ramp =
∑

Pdt × 0.1× 1

60
where Pdt < 0 [MWh] (22)

2.6.2. Results

Combining two values of the three aforementioned parameters produces eight results

(Table 6). Ramps 3 and 4 both track an ideal 60 minute ramp duration. The latter ramp

displays two phase ramping due to increasing parameter minDiff from 0.02 to 0.1 (Figure 18,

Ramp 4). The VPP ramp diverges from the ideal ramp during both phases.

Initially thirteen generators start ramping, without additional generators until 33.6 mins.

A short dip occurs at 33.6 mins, when a second phase generator commences ramping. Increas-

ing parameter minRampDiff=0.1 causes two drawbacks: higher generator cost by diverging

from the ideal linear ramp and delayed ramp completion from 60.8 m to 64.3 mins.

36

Figure 18: Ramps 3 and 4 of ideal duration 60 mins and minDiff of 0.02 and 0.1 respectively (Table 6)

Where the ideal VPP ramp time is 60 mins, increasing the addGenDiff from an initial

0.3 to 0.4, reduces ramping overruns (Table 6). As already displayed in Figure 18, Ramp 3

completes in 60.8 minutes; overunning by only 0.8 minutes. As expected, reducing the ideal

VPP ramp time to 52.7 mins causes in larger overuns (Figure 19).

Figure 19: Ramps 5 and 7 of ideal duration 57.2 mins and addGenDiff of 0.3 and 0.4 respectively (Table 6)

37

In summary, the results favour a strategy of tracking the ideal ramp rate by sequencing

the generators by descending ramp time. Parameter addGenDiff values above 0.4 achieve

this intuitive sequence, when minDiff=0.02.

Table 6: Ramp tracking parameters and results, typical ideal time of 60 mins and minimum 52.7 mins

Ramp

id

Ideal ramp

time (mins)

minDiff

(MW/min)

addGenDiff

(MW/min)

Actual ramp

time (mins)

Over-

ramp

(MWh)

Under-ramp

(MWh)

1 60.0 0.02 0.30 65.75 0.56 -0.23

2 60.0 0.10 0.30 66.75 3.51 -0.12

3 60.0 0.02 0.40 60.79 0.70 0.00

4 60.0 0.10 0.40 64.25 5.26 -0.03

5 52.7 0.02 0.30 61.85 2.49 -0.22

6 52.7 0.10 0.30 58.14 3.18 -0.08

7 52.7 0.02 0.40 54.71 2.13 -0.01

8 52.7 0.10 0.40 58.81 4.68 -0.07

As expected, higher resolution fixed time steps increase computation time but achieve

lower generator cost and VPP ramp time. The system.time() function, available in R statis-

tics software (The R Foundation, 2018), reports the computation time using the provided

details of twenty generators. A one minute time step computes in 0.27 s; better scheduling

with a 0.1 minute time step still requires only 2.16 s. Computation times are measured on

a 3.80 GHz, 28 GB RAM desktop PC. While no parallel computation is implemented, the

“parallel” library function detectCores() finds 8 CPU cores.

2.6.3. Future Work

Future work would scale the number of VPP generators, for example, to sets one hundred

or even one thousand and compare computation times. Larger sets of VPP generators may

demonstrate more interesting variations in results due to parameters minDiff and addGenDiff.

The presented implementation of ramp tracking considers only the ramping characteristics

of the VPP generators. Its algorithm assumes sufficient delay (di) has already occurred for

the generator sites.

As a simulation, the ramp tracking technique enables user discretion (Lund et al., 2017). A

qualified user could increase VPP over-ramp above the ideal ramp to protect again generator

failure. Over-ramp reduces net costs where Eirgrid penalties exceed generator costs and

generators underperform their ramping. Thereby, a user would be better informed if the

38

algorithm converted the cost and fines caused by the over- and under-ramp in Table 6 to

financial values.

The current calculation of energy differences due to over- or under- ramping are simple

multiplications of a single power value by the 0.1 minute time step (21, 22). Numerical

integration using the Trapezoidal Rule may increase accuracy (Weisstein, 2018); although

any improvement is limited by the already small time step.

A R script implements the ramp tracking algorithm without expensive simulation soft-

ware. Base R libraries suffice, although the tested code called libraries: “magrittr”, “dplyr”

and “readr”. R’s “parallel” library resides in base packages, and provides the aforementioned

detectCores() function (Gordon, 2015).

An implementation of ramp tracking in python promises faster simulations.

3. Conclusion and future work

We have provided six different methods to tackle the problem of optimising the scheduling

of distributed generation to achieve linear aggregate response. The first method discussed

(Gradient Descent) is theoretically very interesting but is unlikely to provide a global mini-

mum due to the existence of many local minima. This, however, was exploited in Section 2.1

to address the equity challenge. Using the objective function J2, the gradient descent method

works very well and gives a number of different sensible optimal solutions. A disadvantage

of this method is that it does not provide sensible results when the objective function does

not have local optima, which is the situation with the objective function J3.

The second method discussed (Mixed Integer Linear Programming) finds an optimal

solution (subject to a time discretisation) due to the fact that it minimises the objective

functions (15) and (16). Fast solution are obtained for 20 generators. However, there are

questions to how well this approach will do with a large number of generators.

The four Heuristic Algorithms discussed work well with the objective function J3 and

provide good solutions with respect to the ‘eyeball norm’ (or quantitatively based on the

computed J̃3) very quickly. However, optimal solutions are unguaranteed. Their full potential

should be evident if we combined these methods with the two direct methods. In particular,

the simulated annealing method should combine well with the gradient descent method.

Just as other Heuristic Algorithms could be used to specify initial conditions for a simulated

annealing approach, the output of a simulated annealing method would work well as the

initial condition for a gradient descent method.

As for future work, we recommend to: (i) Evaluate quantitatively the results from the

heuristic and direct methods (also taking into account computational costs). (ii) Investigate

local minima. Do these solve the equity challenge? (a partial positive answer was found and

39

discussed for the Gradient Descent method). (iii) Combine techniques - for example, to take

an initial seed for Gradient Descent from a heuristic result. (iv) Study the scalability of each

method with respect to the number of sites.

References

Barzilai, J., Borwein, J., 1988. Two-point step size gradient methods. IMA Journal of Nu-

merical Analysis 8, 141–148.

Gordon, M., 2015. How-to go parallel in R basics + tips.

URL https://www.r-bloggers.com/how-to-go-parallel-in-r-basics-tips/

Lund, H., Arler, F., Østergaard, P. A., Hvelplund, F., Connolly, D., Karnøe, P., 2017. Simu-

lation versus Optimisation: Theoretical Positions in Energy Modelling. Energies 10 (7).

URL http://www.dx.doi.org/10.3390/en10070840

Rao, R., Iyengar, S., 1994. Bin-packing by simulated annealing. Computers and Mathematics

with Applications 27 (5), 71–82.

The R Foundation, 2018. R: The R Project for Statistical Computing.

URL http://www.r-project.org/

Weisstein, E. W., 2018. Trapezoidal Rule. From MathWorld - A Wolfram Web Resource.

URL http://mathworld.wolfram.com/TrapezoidalRule.html

40

https://www.r-bloggers.com/how-to-go-parallel-in-r-basics-tips/
http://www.dx.doi.org/10.3390/en10070840
http://www.r-project.org/
http://mathworld.wolfram.com/TrapezoidalRule.html

Appendix A. Sample data provided by Captured Carbon

Captured carbon provided sample data from 20 sites. The data from the i-th site consists

of: capacity Ci (in MW), response time Ri (in minutes), ramping time τi (in minutes) and

price in euro per unit MWh of energy γi.

The following table summarises these parameters.

Table A.7: Parameters provided by Captured Carbon.

Site

number

i

Capacity Ci

(MW)

Response

time Ri

(min)

Ramping

time τi

(min)

Price γi

(euro/MWh)

1 0.68 2.73 13.17 3.07227

2 3.16 6.13 49.61 2.93315

3 3.74 10.71 39.00 1.50213

4 1.68 6.91 34.51 1.35757

5 4.32 1.78 35.49 3.76508

6 3.89 11.34 28.52 4.24047

7 1.74 11.23 43.04 3.73992

8 4.92 9.00 15.14 2.85404

9 1.02 1.51 4.17 1.59351

10 4.80 9.48 33.20 2.46992

11 4.07 7.31 27.11 4.01328

12 3.66 13.69 33.50 3.89666

13 4.36 4.99 25.94 2.67428

14 2.42 7.21 50.21 3.71732

15 4.33 0.56 11.59 1.61575

16 1.74 5.32 6.59 3.02192

17 3.80 13.55 21.51 4.03933

18 0.62 8.22 27.74 2.31835

19 0.97 10.32 34.94 4.31203

20 3.40 13.94 25.76 3.84887

41

Appendix B. Calculation of the Hessian of objective function J2(ddd, T0, T1)

The Hessian of J2(ddd, T0, T1). Regarding the Hessian of J2, from equations (11)–(12) we

readily calculate the second derivatives

∂

∂di

∂

∂dj
J2(ddd, T0, T1) =

Cj
τj

∂

∂di

[∫ dj+Rj+τj

dj+Rj

[Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt

]
=

Cj
τj
δij [Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))]|

t=dj+Rj+τj
t=dj+Rj

+
Cj
τj

∫ dj+Rj+τj

dj+Rj

∂

∂di
[Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] dt , i, j = 1, . . . , n .

Now,

∂

∂di
[Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] = (1+K)

[
∂

∂di
E(ddd, T0, T1, t)

]
δ (E(ddd, T0, T1, t)) ,

where δ(E) is the Dirac delta distribution. But we know ∂
∂di
E(ddd, T0, T1, t) = −Ci

τi
f ′
(
t−di−Ri

τi

)
,

so

∂

∂di
[Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))] = −(1 +K)Ci

τi
f ′
(
t− di −Ri

τi

)
δ (E(ddd, T0, T1, t)) ,

which gives

∂

∂di

∂

∂dj
J2(ddd, T0, T1) =

Cj
τj
δij [Θ (E(ddd, T0, T1, t))−KΘ (−E(ddd, T0, T1, t))]|

t=dj+Rj+τj
t=dj+Rj

− (1 +K)CiCj
τiτj

∫ dj+Rj+τj

dj+Rj

f ′
(
t− di −Ri

τi

)
δ (E(ddd, T0, T1, t)) dt , i, j = 1, . . . , n .

Now, the latter integral can be simplified by first noticing that the support of f ′
(
t−di−Ri

τi

)
is

the interval [di+Ri, di+Ri+τi] where it takes the value 1. Defining Vk = [dk+Rk, dk+Rk+τk],

we get then,∫ dj+Rj+τj

dj+Rj

f ′
(
t− di −Ri

τi

)
δ (E(ddd, T0, T1, t)) dt =

∫
Vi∩Vj

δ (E(ddd, T0, T1, t)) dt .

Now, the Dirac delta singles out the zeros of E. There is a formula that holds for functions

with simple zeros: assume E(ddd, T0, T1, t) as a function of the variable t has simple zeros

42

zm, m = 1, . . . ,M . Then

δ(E(ddd, T0, T1, t)) =
M∑
m=1

δ(t− zm)∣∣ ∂
∂t
E(ddd, T0, T1, t)

∣∣
t=zm

.

From equation (10), it is straightforward to compute the derivative of E(ddd, T0, T1, t) with

respect to t. We get

∂

∂t
E(ddd, T0, T1, t) =

n∑
k=1

Ck
τk
f ′
(
t− dk −Rk

τk

)
− C

T1 − T0
f ′
(
t− T0
T1 − T0

)
.

These formulas establish that the Hessian is finite (although it may be discontinuous as a

function of the variables), thus validating the gradient descent method and its basic algorithm.

We will not perform the explicit calculation of these integrals because there are several

special cases that would need to be considered, such as: (i) when Vi or Vj is the first starting

ramping interval or the last ending ramping interval; (ii) when the time derivative is discon-

tinuous at one of the relevant zeroes of E (this can happen when the zero coincides with

either a starting point of a ramp or an ending point of a ramp).

Appendix C. Code for Gradient Descent Method

Below is a Mathematica Notebook for the Gradient Descent Method.

43

CODE WITH L1-TYPE COST FUNCTION AND FAST: GRADIENT DESCENT ALGORITHM THAT FIXES T0 AND T1

Written by Miguel D. Bustamante
University College Dublin, May 2019

In[1]:= ngen = 20

In[5]:= capacity = {0.68, 3.16, 3.74, 1.68, 4.32, 3.89, 1.74,
4.92, 1.02, 4.8, 4.07, 3.66, 4.36, 2.42, 4.33, 1.74, 3.8, 0.62, 0.97, 3.4}

In[6]:= rampup = {13.17, 49.61, 39.00, 34.51, 35.49, 28.52 , 43.04, 15.14,
4.17, 33.20, 27.11, 33.50, 25.94, 50.21, 11.59, 6.59, 21.51, 27.74, 34.94, 25.76}

In[7]:= notice = {2.73, 6.13, 10.71, 6.91, 1.78, 11.34, 11.23,
9, 1.51, 9.48, 7.31, 13.69, 4.99, 7.21, 0.56, 5.32, 13.55, 8.22, 10.32, 13.94}

In[8]:= prices = {184.3363397, 175.9889665, 90.12779155, 81.45440258, 225.9046999, 254.4279989,
224.3952205, 171.2422458, 95.61057852, 148.1954481, 240.7965139, 233.799561, 160.4570989,
223.0390969, 96.94509111, 181.3151872, 242.3598063, 139.1008322, 258.7217771, 230.9322294}/60

In[9]:= tstart[dvars_] := notice + dvars

In[10]:= tend[dvars_] := notice + rampup + dvars

In[11]:= framp[t_] := Piecewise[{{0, t ≤ 0}, {t, 0 < t ≤ 1}, {1, 1 < t}}]

In[12]:= cost[x_] := Piecewise[{{-1, x ≤ 0}, {kPenalty, x > 0}}]

In[13]:= costNew[x_] := Piecewise[{{-1, x ≤ 0}, {0, x > 0}}]

In[14]:= kPenalty = 0.1

In[16]:= Plot[framp[t], {t, -1, 2}]

In[17]:= Plot[cost[x], {x, -1, 1}]

Clear[T0fixed, T1fixed]

In[837]:= T0fixed[dvars_] := Min[notice + dvars]

In[838]:= T1fixed[dvars_] := Max[notice + rampup + dvars]

In[15]:= SetAttributes[framp, Listable]

Error function:

In[25]:= error[dvars_, T0_, T1_, t_] := capacity.framp[(t - dvars - notice)/rampup] - Total[capacity] framp[(t - T0)/(T1 - T0)]

Vertices and errors contain the important points (x,y) = (vertex, error) where the error function changes slope:

In[48]:= vertices[dvars_, T0_, T1_] := Sort[Join[tstart[dvars], tend[dvars], {T0, T1}]]

In[74]:= errors[dvars_, T0_, T1_] :=
Chop[Table[error[dvars, T0, T1, vertices[dvars, T0, T1][[ii]]], {ii, Length[vertices[dvars, T0, T1]]}]]

Zeros contain the times zn where the error function is zero: The end points are always zeros and the may be points in between:

In[210]:= zeros[dvars_, T0_, T1_] := Module[{verticesList, errorsList, zerosList},
Sort[Join[{vertices[dvars, T0, T1][[1]], vertices[dvars, T0, T1][[-1]]}, verticesList = vertices[dvars, T0, T1];

errorsList = errors[dvars, T0, T1];
zerosList = {};
Do[If[errorsList[[ii + 1]] errorsList[[ii]] < 0,

AppendTo[zerosList, (-errorsList[[ii + 1]] verticesList[[ii]] + errorsList[[ii]] verticesList[[ii + 1]])/

(errorsList[[ii]] - errorsList[[ii + 1]])]], {ii, 2, Length[verticesList] - 2}];
zerosList]]]

Calculation of cost function J2

In[834]:= J2[dvars_, T0_, T1_] := Module{verzererrList}, verzererrList =

Join[Transpose[{vertices[dvars, T0, T1], errors[dvars, T0, T1]}], Thread[{zeros[dvars, T0, T1], 0}]] // Union;

MapIf[# < 0, -kPenalty*#, #] &,
1

2
Table[(verzererrList[[ii + 1, 2]] + verzererrList[[ii, 2]])

(verzererrList[[ii + 1, 1]] - verzererrList[[ii, 1]]),

{ii, Length[verzererrList] - 1}] // Total - 0*dvars.(prices*capacity)/Total[prices]

Calculation of gradient of cost function J2

In[835]:= gradJ2[dvars_, T0_, T1_] := Module{zerosList, newVertexList, errorTemp}, zerosList = zeros[dvars, T0, T1];

Join-0*(prices*capacity)/Total[prices] -

capacity/rampup*TablenewVertexList = Join[{(dvars + notice)[[ii]], (dvars + notice + rampup)[[ii]]},

Select[zerosList, (dvars + notice)[[ii]] ≤ # ≤ (dvars + notice + rampup)[[ii]] &]] // Union // Sort;

SumerrorTemp = errordvars, T0, T1,
1

2
(newVertexList[[jj + 1]] + newVertexList[[jj]]);

(newVertexList[[jj + 1]] - newVertexList[[jj]]) (HeavisideTheta[errorTemp] -

kPenalty*HeavisideTheta[-errorTemp]), {jj, Length[newVertexList] - 1}, {ii, ngen},

Total[capacity]

(T1 - T0)2
* newVertexList = Join[{T0, T1}, Select[zerosList, T0 ≤ # ≤ T1 &]] // Union // Sort;

SumerrorTemp = errordvars, T0, T1,
1

2
(newVertexList[[jj + 1]] + newVertexList[[jj]]);

(newVertexList[[jj + 1]] - newVertexList[[jj]])
1

2
(newVertexList[[jj + 1]] + newVertexList[[jj]]) - T0

(HeavisideTheta[errorTemp] - kPenalty*HeavisideTheta[-errorTemp]), {jj, Length[newVertexList] - 1}

Must not do this (evaluating then replacing):

In[664]:= J2[dvarsTemp - α gradJ2Temp[[1 ;; -2]], T0temp, T1temp - α gradJ2Temp[[-1]]] /. α → 0.

Algorithm of gradient descent that does not change T1, only dvars are changed:

Initial and end times (fixed):

In[999]:= T0temp = T0fixed[0]; T1temp = T1fixed[0];

In[1186]:= T0temp = 0; T1temp = 60;

Testing one random initial seed:

Initial seed:

dvarsTemp = 50*Table[.5 - Random[], {i, ngen}]

Pre-step using line-search classical gradient method:

αmin = (ftemp = Interpolation[
Table[{α, J2[dvarsTemp - α gradJ2[dvarsTemp, T0temp, T1temp][[1 ;; -2]], T0temp, T1temp]}, {α, -5, 5., .5}]];

FindMinimum[{ftemp[α], -5 ≤ α ≤ 5}, {α, 0}][[2, 1, 2]]);
dvarsTempNew = dvarsTemp - αmin*gradJ2[dvarsTemp, T0temp, T1temp][[1 ;; -2]];

In[1001]:= Plot[{J2[dvarsTemp - α gradJ2[dvarsTemp, T0temp, T1temp][[1 ;; -2]], T0temp, T1temp], ftemp[α]},
{α, (-5 + αmin)/2, (5 + αmin)/2}, PlotStyle → {Blue, Red}]

Barzilai-Borwein gradient descent method:

2 Code_with_cost_function_J2_not_changing_T1.nb

In[1017]:= AbsoluteTimingniter = 100;

dvarsSeries = Table[Table[0, {igen, ngen}], {in, niter - 2}];
αSeriesNOT1 = Table[0, {in, niter - 2}];
PrependTo[αSeriesNOT1, αmin];
PrependTo[dvarsSeries, dvarsTempNew];
PrependTo[dvarsSeries, dvarsTemp];
gmTempOld = gradJ2[dvarsSeries[[1]], T0temp, T1temp][[1 ;; -2]];

DogmTempNew = gradJ2[dvarsSeries[[im]], T0temp, T1temp][[1 ;; -2]];

dgmTemp = gmTempNew - gmTempOld;

αSeriesNOT1[[im]] = 1.*
(dvarsSeries[[im]] - dvarsSeries[[im - 1]]).dgmTemp

Norm[dgmTemp]2
;

dvarsSeries[[im + 1]] = dvarsSeries[[im]] - αSeriesNOT1[[im]]*gmTempNew;

gmTempOld = gmTempNew, {im, 2, niter - 1}

In[1028]:= costPlot = ListPlot[Table[Total[prices]*J2[dvarsSeries[[iin]], T0temp, T1temp] -

1*dvarsSeries[[iin]].(prices*capacity) + 1*(prices*capacity).(T1temp - notice - 0.5 rampup),
{iin, niter}], AxesLabel → {"Iteration", "Cost (€)"}, ImageSize → Large];

Manipulate[{Show[Plot[Evaluate[error[dvarsSeries[[in]], T0temp, T1temp, t]],
{t, Min[vertices[dvarsSeries[[in]], T0temp, T1temp]], Max[vertices[dvarsSeries[[in]], T0temp, T1temp]]},
PlotRange → All, AxesLabel → {"Time", "Power Error at Iteration " <> ToString[in]}], ListPlot[Transpose[
{vertices[dvarsSeries[[in]], T0temp, T1temp], errors[dvarsSeries[[in]], T0temp, T1temp]}], PlotStyle → Red],

ListPlot[Thread[{zeros[dvarsSeries[[in]], T0temp, T1temp], 0}], PlotStyle → Green], ImageSize → Large],
Plot[Evaluate[{error[dvarsSeries[[in]], T0temp, T1temp, t] + Total[capacity] framp[(t - T0temp)/(T1temp - T0temp)],

Total[capacity] framp[(t - T0temp)/(T1temp - T0temp)]}],
{t, Min[vertices[dvarsSeries[[in]], T0temp, T1temp]], Max[vertices[dvarsSeries[[in]], T0temp, T1temp]]},
ImageSize → Large, AxesLabel → {"Time", "Power at Iteration " <> ToString[in]}], Show[costPlot,
ListPlot[{{in, Total[prices]*J2[dvarsSeries[[in]], T0temp, T1temp] - 1*dvarsSeries[[in]].(prices*capacity) +

1*(prices*capacity).(T1temp - notice - 0.5 rampup)}}, PlotStyle → Green]]}, {in, 1, niter, 1}]

Testing several initial seeds:

Initial seed table:

In[!]:= dvarsIniTable = Table[50*Table[.5 - Random[], {i, ngen}], {jj, 30}]

dvarsIniTable =

{{22.22119129790904`, 3.3780201611528087`, 4.883296245632668`, 18.63977956390988`, -7.3534207709472446`,
-11.683368764506419`, -9.968647732137036`, -11.85665042568087`, 0.49417700867071535`, -9.682040355497179`,
-7.6983753135243305`, -9.15892536004092`, -21.86817119596261`, 18.765774626822143`, -13.031063340237715`,
6.0110995142554104`, -20.409120467927583`, -15.593190336308915`, -1.4760985463690868`, 21.216247821483446`},

{5.038764047336325`, -8.866680644350922`, -4.409515337534592`, -17.084294345495994`, 7.817572749427285`,
12.755299194496267`, 15.70718841683274`, -10.724073909405874`, -9.829006479625468`, -0.5613320409973144`,
0.6758361489697801`, -23.867423483725002`, 14.676816511703816`, -15.879291685500135`, -16.62578853750589`,
10.29150187631592`, 11.544987707666426`, -9.645066312322282`, 21.405274802731824`, -20.71959763793949`},

{6.954108175594007`, -19.051875976013367`, -2.1186266508990914`, -16.93584545942294`, -23.08465587174232`,
14.814804668337555`, -22.7091113133645`, -24.851551113926945`, -5.902228621169603`, -22.940494526158712`,
-13.41629973019724`, 10.872522795478925`, -21.073222141544136`, 2.620837514838606`, 10.907864120832983`,
9.739946279203929`, -10.750038653247952`, -6.499870799661256`, 2.5336526583388723`, 24.448444402888008`},

{2.7049736390856225`, -21.854804487338974`, 6.128377855607045`, 20.168042040827498`, 20.750865463491618`,
22.197071488674393`, -16.752995493493867`, 12.103887500250435`, 18.835521335233935`, -17.61773317966317`,
-19.043884180129368`, 11.955438614177377`, -0.26225004359646253`, -19.67723865350446`, 19.372415550067874`,
-23.917084181301547`, -4.189027902052328`, 2.7019238316569356`, -16.53544857076511`, -8.657030460505478`},

{-18.438989248804372`, -15.798205368681806`, 5.930898770896017`, -8.105474863393486`, 3.8560371121100054`,
-18.943400881342832`, 24.802520915288973`, -3.2735169042209797`, 8.10517164861839`, -16.14047237001722`,
16.555516408782836`, 9.622595595528585`, 14.269650313384455`, -23.522739190354052`, 10.599400588912204`,
22.667156981351205`, -10.468099643019086`, 21.154499463150405`, 16.226985038844333`, 21.584241162652752`},

{18.720928259033244`, -6.547424368506532`, 7.762433609609443`, 5.241271623158231`, 12.159917507837617`,
-15.749218999824727`, -23.168465161286576`, -11.653253513448286`, -16.69611960427239`, -21.80581811848189`,
-22.970986076575546`, 16.620263390772692`, 0.19870874710922193`, 19.33465425153533`, -14.526502485358384`,
-18.002332204755888`, 10.929058433724768`, 17.857393441889386`, -0.12590307427058356`, -15.669489186107095`},

{-3.6028419232561504`, 21.70289397873898`, 8.647111886885082`, -12.25373034875985`, 2.676229817710607`,
3.250318347245515`, -24.11532172272436`, 7.504998028081921`, 15.516312309872992`, -6.000462652929761`,
24.053143438562216`, -5.841748458469792`, 7.212431914145381`, -9.194644534447871`, 22.024129515137762`,
2.5379881507575113`, -17.986276832963842`, -3.5292987859831983`, 11.550632000496144`, -4.459679644486597`},

{-3.915335266688608`, 3.6133077721274165`, -13.323464925233269`, -13.790190458379502`, 24.687506656567543`,
6.910413793388434`, 3.0294231878816467`, 23.463539890380346`, , ,

Code_with_cost_function_J2_not_changing_T1.nb 3

{-3.915335266688608`, 3.6133077721274165`, -13.323464925233269`, -13.790190458379502`, 24.687506656567543`,
6.910413793388434`, 3.0294231878816467`, 23.463539890380346`, -2.9887231611430645`, -21.33990455385708`,
2.1447449106060086`, -9.041458137701575`, 6.494964528983943`, 9.66055809907268`, 3.0916014720437923`,
21.800290320768216`, 24.282532614838566`, -6.144797366479448`, 6.067471956906031`, -5.737697829989297`},

{17.268809447802404`, 22.38450141950375`, 19.516839956409886`, 23.721981814497305`, -3.81585528550899`,
-6.228806352623667`, 7.840304881643156`, 12.512172272876807`, -3.5033619420765327`, 11.860779853987898`,
-20.18911830623849`, 14.048632382496459`, 24.485361219066533`, 8.20068440784498`, 2.666136783155501`,
-1.9099094798019634`, -7.009603309917411`, 23.540126308772297`, 24.57453531111171`, 1.2898001994298163`},

{-6.292135924755976`, 4.684923675251748`, -6.492936645794323`, -17.97250197058089`, 1.4390546274416187`,
7.300422255747999`, -1.0097766022042098`, -16.69448378507819`, -19.745090087049388`, -11.470771391628338`,
16.149918516152635`, -4.206656057955`, 8.758271855027141`, 1.668448754383764`, 11.339036822391124`,
6.744711559548541`, 9.27291063596061`, 18.467764346538786`, -16.32709996076438`, -16.34537896064949`},

{-8.717486054121975`, 19.92763803776649`, -15.901635271876085`, 7.364820839920691`, 22.574649870634`,
-9.757285637485257`, 15.591301373918236`, 0.33732281050158075`, -3.8644047568076214`, 7.9422921067667405`,
-8.398922023877548`, -7.9681934044202265`, -9.119314669758227`, -5.586936501604923`, 0.45115945996981877`,
21.238462653534768`, 7.122413475214628`, 17.744614744011315`, 14.112122637578695`, -10.50624890601377`},

{22.84950283925402`, 24.27685039747253`, 5.439222598343071`, -19.160869945364283`, 6.566988893375994`,
-20.65078764029396`, -3.6591421297808404`, -1.5256907852849722`, 8.992339022741994`, 14.106497997191303`,
5.749556496300917`, 23.13698640421345`, -12.143256220450388`, -18.83579410957544`, -10.85152147982153`,
6.105179808633676`, 21.976058449307843`, 11.751142392029482`, 13.69731906020865`, 9.866717155098906`},

{-10.14635502590679`, 19.006527648018167`, 24.585196422629956`, -4.627033938887321`, -7.995857865160804`,
19.72967725054564`, -5.854026175713117`, -10.466163993523036`, 10.437153241463202`, 15.3804648908396`,
22.805115954067727`, 16.059526791761936`, -23.55518578127879`, -23.7260331063517`, -7.9444405422331945`,
17.922540387548487`, 13.588070439171595`, 20.109761003223735`, -22.09291906241166`, -13.18263942108519`},

{16.612011989863756`, -16.641381388805744`, -10.79023812262031`, 1.9506434238159036`, 1.7583670157705429`,
-10.647909036823911`, -10.375434545250267`, -18.42232263729678`, -15.24577511906865`, -5.377586287369551`,
20.47859163046285`, 17.04384135622626`, -0.6829283605318537`, 4.241948821790848`, 22.673475676395125`,
-24.015685435535673`, -2.127742579253061`, 2.9679819281425517`, 5.6179162186283165`, -16.938225823084156`},

{9.28418698157534`, 7.8582209249188155`, 2.710835281039978`, 21.24441359800103`, 17.672174991711586`,
-0.5003976862754389`, -11.49892659633971`, -5.706229825814874`, -9.08619202405896`, -14.852488649451528`,
23.876507948910557`, -12.283907188518095`, -18.840416904990303`, 15.525097637918025`, -21.60208368155229`,
-4.327748544744359`, 6.842511455541548`, -13.716851183872825`, -19.27555935794742`, -5.312063109208687`},

{-16.02974596520539`, 8.315166887984624`, 0.10652442342426738`, -13.373837286124523`, -0.31393294678072614`,
-24.54305403693419`, 22.39568914238429`, -9.618250884125557`, 7.013892061507687`, 0.9573436493412496`,
8.894615738724`, 21.087978941689318`, -8.899915914433354`, -9.190167701207224`, 10.01810778981344`,
8.371886130207418`, -15.05949900944305`, 0.2847346608747525`, 6.620191471365732`, -12.300365325048224`},

{3.0979895350154023`, -10.998414155252423`, 0.8957508293131522`, 18.011697784160464`, -5.872264499779211`,
5.686418956762951`, -24.210773594111117`, 6.385535070284987`, 19.44166844700152`, 5.229472993697143`,
-21.606462736495402`, -8.996214045589458`, -12.572223614506168`, -20.72787065564411`, -5.501078475219401`,
-5.084192987278779`, 21.327692299927186`, 13.462297045563115`, 9.480813734967159`, 11.543920882513802`},

{11.387191309370237`, -11.822437615311637`, -22.139377736398576`, -1.1557137924379735`, -16.710798225645163`,
24.175976539940784`, 1.9648714342882734`, 5.832588423401564`, 14.161466274134044`, -6.5104424168221655`,
1.1756450283993884`, 24.44705335311658`, 19.719797827132524`, 13.260084589480691`, -2.2178922351052064`,
8.443267398706036`, 7.292021441638691`, 8.987955245124802`, -21.716813759885806`, -11.472539614015181`},

{10.964329141711504`, 20.525658199561686`, -6.197627494852965`, 1.9835395034710157`, 24.57713783234127`,
7.348095814873326`, -9.058249758454389`, -21.86074670409101`, 16.28793605798643`, 8.172119274932541`,
13.97687880725734`, -2.693335127492574`, -22.873530216147614`, -10.317438308245297`, -12.19876622114205`,
-2.1403884806091567`, -17.593328043280138`, 1.422477102274014`, 15.019126013963158`, 14.416344120684807`},

{0.11465051508117163`, 17.43452185714921`, 11.735939773848965`, 0.8888837346999912`, 14.150321373369668`,
21.908863657587524`, -7.066432731298066`, 23.905344231228977`, 14.573183541028401`, -10.4392321572858`,
-23.008182972843684`, 20.766090935319987`, 23.28524748304197`, 6.38864856778166`, -11.98506178010102`,
-1.5405739371874339`, 21.15877769918958`, -8.293913123973045`, -24.78629555895897`, -24.40018545657828`},

{13.752105742469723`, 15.283609773752943`, -14.805421572922128`, -13.816529577263086`, -11.36254477261145`,
22.84908791660373`, -1.5413613467710974`, 10.294586688036922`, -0.5128661459811168`, -24.059775740983795`,
-19.47492861547303`, 11.389242456807946`, 9.91395031299048`, 11.379456416302006`, -21.46674564262935`,
15.62315152148796`, 11.628702829948512`, -20.009192151479656`, 15.518316137471672`, -7.836274541324606`},

{15.469925130758927`, 13.28472097249339`, 15.304611696430639`, -8.436089084746323`, -23.28218061171079`,
23.00111119874045`, 5.110033269352771`, -19.619559507483235`, 13.08036416090066`, -24.84797671786328`,
-18.348605383876134`, -4.914146195520158`, -11.406769693118225`, 24.211799023120516`, -23.873676768403108`,
8.696611347671897`, 3.679279993891296`, -12.167657393181491`, 22.593068874226244`, 18.073459826183942`},

{17.050577163942783`, -17.158465241701837`, -17.925247263245424`, 0.9097343675085467`, -23.419347966816144`,
-5.443186214195228`, -8.229858959676067`, -15.65417654774513`, 24.86283264489465`, -3.444297412935682`,
11.660107770971164`, -21.034617040261892`, -13.217531516006009`, -3.5963206950724027`, 5.008713154847297`,
8.879529155258261`, 23.189238177112212`, -2.80811971819292`, 3.8823899232504013`, -24.817082192413636`},

{-5.490041816779084`, -15.640462325011429`, 6.289321049024157`, -17.89054201859758`, 2.4593810192781342`,
-23.48199708330959`, -0.7854316877304146`, 6.199723613893876`, 0.8787289860942793`, 6.961189130885634`,
-17.555572728054354`, -3.146099838360994`, 1.0158963411996318`, -14.594513456178687`, -4.215680499025515`,

, , 14.001807238893715`, 15.775606346127185`, 9.008988046642639`},

4 Code_with_cost_function_J2_not_changing_T1.nb

-17.555572728054354`, -3.146099838360994`, 1.0158963411996318`, -14.594513456178687`, -4.215680499025515`,
-7.1114827980991`, -10.766572142794356`, 14.001807238893715`, 15.775606346127185`, 9.008988046642639`},

{-8.95581031990657`, -8.190073042913365`, -13.106783577123215`, 8.826070239056275`, 21.534231496872515`,
-17.54961071790194`, 5.603895373852627`, 1.7166122576538516`, -5.92514952240562`, -19.067613634592345`,
-18.610672938416954`, 20.516888643759977`, 18.1961214915001`, -1.0288027654779763`, 23.944899789637393`,
-1.3370115178790276`, -7.819774849699529`, -11.43428930929929`, 3.1605802886629117`, -19.225528719779934`},

{-22.05320270690517`, -0.4360965481930046`, 12.384973942535723`, -3.2345167664225682`, 11.902607613001399`,
-17.246023505279638`, 0.4917575196589391`, 12.939412994521154`, 15.368376116128884`, -24.696412787377696`,
19.887862145806313`, -13.777199263132701`, -3.706474361465495`, 19.37120084721464`, 13.498535084223267`,
-9.294087906892672`, 3.097404147034408`, -4.599996387307382`, 14.55363529458587`, 17.042923610986353`},

{-14.082821003266066`, -18.165707078008086`, -13.606944994077041`, 11.268452330766287`, -17.029618296360894`,
7.270389470184916`, -0.9919189366127623`, -10.497030902811144`, -3.932225909362291`, -0.4835870245354479`,
23.516323543728294`, 1.5635561026677014`, 5.699397974508824`, -0.787174237157745`, -21.371538602078015`,
-9.659244634199604`, -15.594127664025686`, 4.84162491562761`, -9.870073686301279`, 24.63484327269307`},

{6.308468188939909`, -15.558378697065011`, 0.5762910191128512`, -17.408080338293285`, -4.608710807794026`,
-22.39267161905692`, -10.816763986810107`, -3.6765326690595734`, -12.579092511433137`, -4.663061089241838`,
15.175154949802655`, -18.17950176624843`, 16.353133397929152`, 20.820525935293606`, 16.65883140607436`,
5.256942131083872`, -14.34626457657967`, -3.392299827548645`, 13.03037000815237`, -10.083813234716526`},

{-23.752136912553983`, 16.766075256823743`, -2.0995563055463515`, -9.718656507409602`, -5.060605101493892`,
7.324453953888755`, 22.324152675340798`, -17.310576169116317`, 24.548105706300134`, 4.717125572945677`,
8.14091666215091`, 11.365956499943255`, 12.127198217733268`, -15.619813337812483`, 17.965761712348254`,
4.545458266191682`, 20.774064819804114`, -11.440339273106092`, -23.693069693726105`, 24.28851613510781`},

{10.12032939638378`, 16.951960554442554`, -11.723439701878474`, 9.372329369824337`, 8.872466308937769`,
-24.81411470238119`, 15.376116603667878`, -5.909014122766065`, -11.066928589568336`, -7.138568656269944`,
18.051963928327076`, -13.59843795364975`, -10.615034295868469`, 13.144305770784376`, -15.088952733823835`,
0.035605546406994315`, 2.2577674863982597`, 3.7641191085968613`, -8.05471444617209`, 20.49014728021531`}};

Pre-step uses line-search classical gradient method; all subsequent steps use the Barzilai-Borwein gradient descent method:

In[!]:= dvarsSeriesTable = {};
αSeriesTable = {};

DodvarsTemp = dvarsIniTable[[dini]];

αmin = (ftemp = Interpolation[
Table[{α, J2[dvarsTemp - α gradJ2[dvarsTemp, T0temp, T1temp][[1 ;; -2]], T0temp, T1temp]}, {α, -10, 10., .5}]];

FindMinimum[{ftemp[α], -10 ≤ α ≤ 10}, {α, 0}][[2, 1, 2]]);
dvarsTempNew = dvarsTemp - αmin*gradJ2[dvarsTemp, T0temp, T1temp][[1 ;; -2]];
niter = 200;
dvarsSeries = Table[Table[0, {igen, ngen}], {in, niter - 2}];
αSeriesNOT1 = Table[0, {in, niter - 2}];
PrependTo[αSeriesNOT1, αmin];
PrependTo[dvarsSeries, dvarsTempNew];
PrependTo[dvarsSeries, dvarsTemp];
gmTempOld = gradJ2[dvarsSeries[[1]], T0temp, T1temp][[1 ;; -2]];

DogmTempNew = gradJ2[dvarsSeries[[im]], T0temp, T1temp][[1 ;; -2]];

dgmTemp = gmTempNew - gmTempOld;

αSeriesNOT1[[im]] = 1.*
(dvarsSeries[[im]] - dvarsSeries[[im - 1]]).dgmTemp

Norm[dgmTemp]2
;

dvarsSeries[[im + 1]] = dvarsSeries[[im]] - αSeriesNOT1[[im]]*gmTempNew;

gmTempOld = gmTempNew, {im, 2, niter - 1};

AppendTo[dvarsSeriesTable, dvarsSeries];

AppendTo[αSeriesTable, αSeriesNOT1];, {dini, Length[dvarsIniTable]}

Making table of minimum costs throughout the different searches:

In[!]:= (mincostTable = Table[dvarsSeries = dvarsSeriesTable[[dini]];
{dini, Table[Total[prices]*J2[dvarsSeries[[iin]], T0temp, T1temp] - 0*dvarsSeries[[iin]].(prices*capacity) +

0*(prices*capacity).(Max[vertices[dvarsSeries[[iin]], T0temp, T1temp]] - notice - 0.5 rampup),
{iin, niter}] // Min}, {dini, Length[dvarsSeriesTable]}]) // ListPlot

Creating histogram of lowest costs found:

In[!]:= HistogrammincostTable[[All, 2]], 18,

PlotLabel → "Histogram of Minimum Cost (€) over 30 Local Optima",
BaseStyle -> {FontSize → 14}, PlotTheme → "Marketing"

Selecting those samples with low costs: must set up the threshold manually depending on the above plot:

Code_with_cost_function_J2_not_changing_T1.nb 5

In[!]:= threshold = 351; Select[mincostTable, #[[2]] < threshold &][[All, 1]]

Making histogram of times spent from 0 to maximum capacity:

In[!]:= Histogram[Table[Max[tend[dvarsSeriesTable[[dini, -1]]]] - Min[tstart[dvarsSeriesTable[[dini, -1]]]],
{dini, Select[mincostTable, #[[2]] < threshold &][[All, 1]]}], 20,

PlotRange → {{59.5, 80}, All}, PlotLabel → "Histogram of times from zero to maximum capacity",
BaseStyle -> {FontWeight -> Bold, FontSize → 14}, AxesLabel → {"Time \n (min)", "Count"}, ImageSize → Medium]

Making plots of histograms of starting times for each of the sites:

(WARNING: these plots are saved directly on the chosen directory. Uncomment in order to save.)

In[!]:= (*SetDirectory["/Volumes/GoogleDrive/My Drive/Captured Carbon/Report/Figs"]*)

In[!]:= (*siteTimes=Table[tstart[dvarsSeriesTable[[dini,-1]]]-Min[tstart[dvarsSeriesTable[[dini,-1]]]],
{dini,Select[mincostTable,#[[2]]<threshold&][[All,1]]}];

Do[filename="site"<>If[jj<10,"0",""]<>ToString[jj]<>"hist.pdf";
Export[filename,Histogram[siteTimes[[All,jj]],12,PlotLabel→"Start Times Site "<>ToString[jj],

BaseStyle->{FontSize→14},AxesLabel→{"Time \n (min)","Count"},ImageSize→Medium]],{jj,ngen}]*)

Cost curves for each of the seeds tried:

In[!]:= costPlotTable = Table[dvarsSeries = dvarsSeriesTable[[dini]];
ListPlot[Table[Total[prices]*J2[dvarsSeries[[iin]], T0temp, T1temp], {iin, niter}], AxesLabel → {"Iteration",

"Cost (€)"}, ImageSize → Large, BaseStyle -> {FontSize → 14}], {dini, 1, Length[dvarsSeriesTable], 1}]

Manipulate command showing, per sample seed, per iteration, the following: (i) power production error (with its vertices and zeroes), (ii) power production, and (iii)

cost curve and its convergence.

In[!]:= Manipulate[dvarsSeries = dvarsSeriesTable[[dini]];
costPlot = ListPlot[Table[Total[prices]*J2[dvarsSeries[[iin]], T0temp, T1temp] - 0*dvarsSeries[[iin]].(prices*

capacity) + 0*(prices*capacity).(Max[vertices[dvarsSeries[[iin]], T0temp, T1temp]] - notice - 0.5 rampup),
{iin, niter}], AxesLabel → {"Iteration", "Cost (€)"}, ImageSize → Large, BaseStyle -> {FontSize → 14}];

Manipulate[{Show[Plot[Evaluate[error[dvarsSeries[[in]], T0temp, T1temp, t]], {t, Min[vertices[
dvarsSeries[[in]], T0temp, T1temp]], Max[vertices[dvarsSeries[[in]], T0temp, T1temp]]}, PlotRange → All,

AxesLabel → {"Time", "Power Production Error (MW) at Iteration " <> ToString[in]}, BaseStyle -> {FontSize → 14}],
ListPlot[Transpose[{vertices[dvarsSeries[[in]], T0temp, T1temp], errors[dvarsSeries[[in]], T0temp, T1temp]}],
PlotStyle → Red], ListPlot[Thread[{zeros[dvarsSeries[[in]], T0temp, T1temp], 0}], PlotStyle → Green],

ImageSize → Large], ListPlot[{Table[{t, capacity.framp[(t - dvarsSeries[[in]] - notice)/rampup]}, {t, vertices[
dvarsSeries[[in]], T0temp, T1temp]}], Table[{t, Total[capacity] framp[(t - T0temp)/(T1temp - T0temp)]},

{t, vertices[dvarsSeries[[in]], T0temp, T1temp]}]}, Joined → {True, True}, PlotStyle → {Automatic, Dashed},
ImageSize → Large, PlotLabel → "Power Production at Iteration " <> ToString[in],
AxesLabel → {"Time \n (min)", "Power(MW)"}, BaseStyle -> {FontSize → 14}], Show[costPlot,
ListPlot[{{in, Total[prices]*J2[dvarsSeries[[in]], T0temp, T1temp] - 0*dvarsSeries[[in]].(prices*capacity) +

0*(prices*capacity).(Max[vertices[dvarsSeries[[in]], T0temp, T1temp]] - notice - 0.5 rampup)}},
PlotStyle → Green]]}, {in, 1, niter, 1}], {dini, 1, Length[dvarsSeriesTable], 1}]

6 Code_with_cost_function_J2_not_changing_T1.nb

Appendix D. Code for MILP

Appendix D.1. GAMS code for MILP

50

C:\Users\Administrator\Dropbox\Study Group 2018\CarbonCapture\Cost_commented.gms Tuesday 24 July 2018 12:28:44Page 1

 1 sets
 2 i s i t e s /i1*i20/
 3 t t i m e s t e p s /t1*t50/
 4
 5 Parameters
 6 C(i) Capacities,
 7 Gamma(i) Costs,
 8 Ramptime(i) Ramp time,
 9 R(i) Ramp rate;
 1 0
 1 1 *import data
 1 2 $call gdxxrw.exe inputs_CC.xlsx par=inputs rng='Sheet1'!a1:e21 MaxDupeErrors»
 =10
 1 3 parameter inputs
 1 4 $GDXIN inputs_CC.gdx
 1 5 $load inputs
 1 6 $GDXIN
 1 7 ;
 1 8
 1 9 *populate data
 2 0 C(i)=inputs(i,'dummy1');
 2 1 R(i)=inputs(i,'dummy2');
 2 2 Ramptime(i)=inputs(i,'dummy3');
 2 3 Gamma(i)=inputs(i,'dummy4');
 2 4
 2 5 *define binary variables
 2 6 Binary Variables
 2 7 b(i,t) =1 if generating at time t and zero otherwise
 2 8 b_tilda(i,t) =1 if generating at max capacity at time t and zero otherwise
 2 9 ;
 3 0
 3 1 Positive Variables
 3 2 gen(i,t) generation from site i at time t
 3 3 below(t) distance below line at time t
 3 4 upper(t) distance above line at time t
 3 5 ;
 3 6
 3 7 Variables
 3 8 o objective function value;
 3 9
 4 0 Equations
 4 1 O b j objective function equation
 4 2 Energy(i,t) energy constraint
 4 3 MaxC(i,t) maximum capacity constraint
 4 4 On(i,t) Once begining genearting cosntraint
 4 5 On2(i,t) Once at max capacity constraint
 4 6 Ramping(i) ramping time constraint
 4 7 Line(t) Line cosntarint
 4 8 ;
 4 9
 5 0 Obj.. o=e= sum((i,t),gamma(i)*gen(i,t))
 5 1 +(sum(i,gamma(i)/card(i)))*sum(t,upper(t)+10*below(t));
 5 2
 5 3 Energy(i,t).. gen(i,t)=e=gen(i,t-1)+R(i)*(b(i,t) -b_tilda(i,t));
 5 4 MaxC(i,t).. gen(i,t)=l=C(i);
 5 5 On(i,t).. b(i,t)=g=b(i,t-1);
 5 6 On2(i,t).. b_tilda(i,t)=g=b_tilda(i,t-1);
 5 7 Ramping(i).. Sum(t,b(i,t)-b_tilda(i,t))=e=floor(Ramptime(i));
 5 8 Line(t).. sum(i,gen(i,t))+below(t)-upper(t)=e=ord(t)*sum(i,C(i))/card(t);
 5 9
 6 0 *define model

C:\Users\Administrator\Dropbox\Study Group 2018\CarbonCapture\Cost_commented.gms Tuesday 24 July 2018 12:28:44Page 2

 6 1 Model M /all/
 6 2
 6 3 *solver options
 6 4 OPtion optcr=0;
 6 5 OPtion optca=0;
 6 6
 6 7 *solve model
 6 8 Solve M using mip minimising o;
 6 9
 7 0
 7 1

Appendix D.2. Python code for MILP

In the implementation in Python, the condition 17e was replaced with the equivalent set

of conditions

bi,t = bi,t−τi , ∀i,∀t ≥ τi (D.1)

bi,t = 0, ∀i, ∀t < τi, (D.2)

as this was more time efficient. There is no generation at time t = 0 for all generators.

geni,0 = 0, ∀i. (D.3)

Condition 17b was replaced with

geni,t = geni,t−1 +Ri

(
bi,t − bi,t

)
+ (Ci − floor(τi) ∗Ri)

(
bi,t − bi,t−1

)
, ∀i, t. (D.4)

The last term adds a small amount to geni,t when generator i is almost at full capacity,

but the addition of Ri would mean that geni,t > Ci. This is needed as time is measured in

minutes in the Python code, while in reality this is not the case.

import pandas as pd

Pulp package f o r MILP

from pulp import ∗
import numpy as np

import matp lo t l i b . pyplot as p l t

import time

data = pd . r ead c sv (”C: / Users /Susan/Documents/ S i tesData . csv ” , i nd ex c o l =0)

#Parameters

C = data . l o c [’ F ina l Expected Output ’] . astype (f l o a t) #Capacity

RR = data . l o c [’Ramp Rate : Up ’] . astype (f l o a t) #Ramp ra t e

P = data . l o c [’ Pr i c e ’] . astype (f l o a t) #Pr i ce

RT = data . l o c [’ Not ice Period ’] . astype (f l o a t) #Response Time

tau = C/RR #Ramp time

#Need to use c e i l i n g and f l o o r o f ramp time s i n c e we are us ing minutes but ramp time

from data i s in f r a c t i o n o f minutes .

t a u c e i l = np . c e i l (tau)

t a u f l o o r = np . f l o o r (tau)

#T = T1−T0 . In t h i s case T i s the l ong e s t ramp time .

T = max(np . c e i l (C/RR)) . astype (i n t)

53

T no rounding = max(C/RR)

Num gen = len (C) ; #Number o f g ene ra to r s

Pnew = np . t i l e (P,T+1) #used in co s t func t i on

K = 10 #Factor by which underproducing i s p ena l i s ed r e l a t i v e to overproducing

t0 = time . time ()

prob = LpProblem (”GeneratorSchedule ” , LpMinimize)

g en i nd i c e s = np . arange (0 , ((T+1)∗Num gen))

t ime i nd i c e s = np . arange (0 ,T+1)

#De f i n i t i o n o f v a r i a b l e s and c on s t r a i n t s on these v a r i a b l e s .

#0<=gen i , t<=C i

gen = LpVariable . d i c t s (”gen” , g en ind i c e s , 0)

f o r t in np . arange (0 ,T+1) :

f o r i in np . arange (0 ,Num gen) :

gen [t ∗Num gen+i] . lowBound = 0

gen [t ∗Num gen+i] . upBound = C[i]

#below t , above t >=0

below = LpVariable . d i c t s (”below” , t ime ind i c e s , 0)

above = LpVariable . d i c t s (”above” , t ime ind i c e s , 0)

#bstar t , bstop binary

b s t a r t = LpVariable . d i c t s (” b s t a r t ” , g en ind i c e s , cat=LpBinary)

bstop = LpVariable . d i c t s (” bstop” , g en ind i c e s , cat=LpBinary)

#Cost func t i on

prob +=sum ([gen [i]∗Pnew [i] f o r i in g en i nd i c e s]) + P.mean () ∗sum ([K∗below [i] + above [i]

f o r i in t ime i nd i c e s])

f o r i in np . arange (0 ,Num gen) :

#Need genera to r to stop ramping by time T

prob += bstop [(T) ∗Num gen + i] ==1

#No gene ra t i on at t=0

prob += bs ta r t [i]==0

f o r t in np . arange (0 , t a u f l o o r [i]+1) :

#Generator i can ’ t have stopped be f o r e time t au i

prob += bstop [t ∗Num gen + i] == 0

f o r t in np . arange (t a u f l o o r [i] ,T+1) :

#bs top t = b s t a r t (t−tau)

prob += bstop [t ∗Num gen+i] == bs ta r t [(t−t a u f l o o r [i]) ∗Num gen + i]

f o r t in np . arange (np . f l o o r (T no rounding−tau [i]) +1,T+1) :

#Generator i needs to s t a r t by time T−t a u i to be at f u l l capac i ty at time T

prob += bs ta r t [t ∗Num gen+i]==1

#Generation at time t

f o r i in np . arange (0 ,Num gen) :

f o r t in np . arange (1 ,T+1) :

prob += gen [t ∗Num gen + i] == gen [(t−1)∗Num gen + i] + RR[i] ∗ (b s t a r t [t ∗Num gen +

i]−bstop [t ∗Num gen + i]) +(C[i] − (t a u f l o o r [i]) ∗RR[i]) ∗(bstop [t ∗Num gen +

54

i]−bstop [(t−1)∗Num gen + i])

#bstar t , bstop 1 at t => 1 at t+1

f o r t in np . arange (1 ,T+1) :

f o r i in np . arange (0 ,Num gen) :

prob += bs ta r t [t ∗Num gen + i] >= bs ta r t [(t−1)∗Num gen + i]

prob += bstop [t ∗Num gen + i] >= bstop [(t−1)∗Num gen + i]

#gen + above + below i s l i n e a r

f o r t in np . arange (0 ,T+1) :

prob += sum ([gen [t ∗Num gen+i] f o r i in np . arange (0 ,Num gen)]) + below [t] − above [t]

== (t) ∗sum(C) /T

#Output o f each generato r i s 0 at t=0

f o r i in np . arange (0 ,Num gen) :

prob+= gen [i]==0

prob . writeLP (”GeneratorSchedule . lp ”)

prob . s o l v e ()

p r i n t (” Status : ” , LpStatus [prob . s t a tu s])

t1=time . time ()

t1−t0

#Get optimal parameter values , s t a r t t imes

gen opt = np . empty ([Num gen ,T+1])

b s t a r t op t = np . empty ([Num gen ,T+1])

bstop opt = np . empty ([Num gen ,T+1])

below opt = np . empty (T+1)

above opt = np . empty (T+1)

f o r t in np . arange (0 ,T+1) :

below opt [t] = below [t] . varValue

above opt [t] = above [t] . varValue

f o r i in np . arange (0 ,Num gen) :

b s t a r t op t [i , t] = bs t a r t [t ∗Num gen+i] . varValue

gen opt [i , t] = gen [t ∗Num gen+i] . varValue

bstop opt [i , t] = bstop [t ∗Num gen+i] . varValue

s t a r t t ime s = (T−np . sum(bs ta r t opt , ax i s=1)) . astype (i n t)

55

Appendix E. Matlab codes for cost calculation and direct simulated annealing

Appendix E.1. Matlab code for cost of a given choice of start times

This code takes a set of inputs include the times for starting ramping (i.e. di + Ri) for

each site and uses it to calculate the overall cost, J̃3 that must be minimised for an optimal

solution. This code can be used to compare results from different solution methods.

% costOfSchedule .m

% 26 June 2018

% Function to c a l c u l a t e co s t o f g iven schedu le

func t i on . . .

[to ta lCost , . . . Total co s t o f energy (in euros)

penal i sedEnergy , . . . Energy a s s o c i a t ed with power below promised value to e i r g r i d

(in MWmin)

eventTimes , . . . Times at which changes in power g rad i en t occur (u s e f u l f o r

p l o t t i n g)

powerOutputs] . . . Power outputs at g iven event t imes

= costOfSchedule (. . .

tStartRamps , . . . Times f o r s t a r t i n g ramp f o r each s i t e (in minutes)

rampRates , . . . Ramp ra t e f o r each s i t e (in MW/min)

f ina lPowers , . . . F ina l power outputs f o r each s i t e (in MW)

pricePerMwmin , . . . Pr i c e o f energy from s i t e s (in euros per MWmin)

penaltyPerMwmin , . . . Penalty f o r f a i l i n g to d e l i v e r power to e i r g r i d (in euros

per MWmin)

totalRampTime) . . . Total time f o r ramping system (in minutes)

% Number o f s i t e s in problem

numSites = numel (tStartRamps) ;

% Overa l l ramp ra t e

totalRampRate = sum(f ina lPower s) /totalRampTime ;

% Quick e r r o r checks

i f numel (rampRates) ˜= numSites

e r r o r (’ Vector inputs must a l l have numSites e lements ’) ;

end

i f numel (f ina lPower s) ˜= numSites

e r r o r (’ Vector inputs must a l l have numSites e lements ’) ;

end

i f numel (pricePerMwmin) ˜= numSites

e r r o r (’ Vector inputs must a l l have numSites e lements ’) ;

end

% Fin i sh t imes f o r d i f f e r e n t ramps

rampTimes = f ina lPower s . / rampRates ;

tFinishRamps = tStartRamps + rampTimes ;

% More quick e r r o r checks

i f any (tStartRamps < 0)

e r r o r (’ Negative time f o r s t a r t i n g ramp given ’) ;

end

56

% THIS HAS BEEN CREATING ISSUES WITH SIMULATED ANNEALING ALGORITHM

%i f any (tFinishRamps > totalRampTime)

% e r r o r (’Time f o r f i n i s h i n g a ramp i s g r e a t e r than t o t a l ramp time ’) ;

%end

% Create vec to r o f a l l t imes where events take place , d e l e t i n g t imes

% corre spond ing to repeated events .

eventTimes = so r t ([0 ; tStartRamps ; tFinishRamps ; totalRampTime]) ;

eventTimes (d i f f (eventTimes)==0) = [] ;

numEventTimes = numel (eventTimes) ;

% Create numEventTimes−by−numSites a r rays which i nd i c a t e whether ramping i s

% f in shed (finishedRampMatrix) or the time s i n c e ramping began in the case

% where ramping i s cu r r en t l y occur r ing (rampingMatrix) . Using these ,

% cons t ruc t a vec to r that conta in s the power output at a l l event t imes .

repeatedStartTimesCol = (tStartRamps∗ ones (1 , numEventTimes)) ’ ;

repeatedFinishTimesCol = (tFinishRamps∗ ones (1 , numEventTimes)) ’ ;

repeatedCurrTimesRow = eventTimes∗ ones (1 , numSites) ;

f inishedRampMatrix = (repeatedCurrTimesRow>=repeatedFinishTimesCol) ;

rampingMatrix = repeatedCurrTimesRow−repeatedStartTimesCol ;

rampingMatrix (rampingMatrix<0) = 0 ;

rampingMatrix (finishedRampMatrix) = 0 ;

% Vector o f l ength eventTimes conta in ing t o t a l power output at each time .

powerOutputs = rampingMatrix∗rampRates + finishedRampMatrix∗ f i na lPower s ;

% D i f f e r e n c e between i d e a l power output and ac tua l power output

powerDiscrepanc ie s = eventTimes∗ totalRampRate − powerOutputs ;

% gapC l a s s i f i c a t i o n r e f e r s to pa i r s o f ad jacent terms in

% powerDiscrepanc ie s . I f the se are both negat ive , they do not con t r i bu t e to

% the co s t o f the power output being l e s s than promised to e i r g r i d (c l a s s

% 0) ; i f one i s p o s i t i v e and the other i s negat ive , then some maths needs

% to be done to determine the t o t a l energy that i s l e s s than that

% promised to e i r g r i d (c l a s s 1 or 2) ; i f both are po s i t i v e , then the energy

% cont r i bu t i on l e s s than promised to e i r g r i d i s e a s i l y c a l c u l a t ed from the

% sum of the beg inning and ending power va lue s .

%

% For the t r i c k y case , we get energy = 0 .5 ∗ (timegap) ∗ (pos i t ivePower) ˆ2

% / (pos i t ivePower + | negativePower |) .

s ignsOfPowerDiscrepanc ie s = (powerDiscrepanc ies >0) ;

g a pC l a s s i f i c a t i o n = . . .

2∗ s ignsOfPowerDiscrepanc ie s (1 : numEventTimes−1) . . .

+ s ignsOfPowerDiscrepanc ie s (2 : end) ;

po s i t i v ePowerD i s c r epanc i e s = ze ro s (numEventTimes−1 ,1) ;

po s i t i v ePowerD i s c r epanc i e s (g a pC l a s s i f i c a t i o n==1) = . . .

powerDiscrepanc ie s ([f a l s e ; g a pC l a s s i f i c a t i o n ==1]) . ˆ2 . / . . .

(powerDiscrepanc ie s ([f a l s e ; g a pC l a s s i f i c a t i o n ==1]) − . . .

powerDiscrepanc ie s ([g a pC l a s s i f i c a t i o n==1; f a l s e])) ;

po s i t i v ePowerD i s c r epanc i e s (g a pC l a s s i f i c a t i o n==2) = . . .

powerDiscrepanc ie s ([g a pC l a s s i f i c a t i o n==2; f a l s e]) . ˆ2 . / . . .

(powerDiscrepanc ie s ([g a pC l a s s i f i c a t i o n==2; f a l s e]) − . . .

powerDiscrepanc ie s ([f a l s e ; g a pC l a s s i f i c a t i o n ==2])) ;

57

pos i t i v ePowerD i s c r epanc i e s (g a pC l a s s i f i c a t i o n==3) = . . .

powerDiscrepanc ie s ([g a pC l a s s i f i c a t i o n==3; f a l s e]) + . . .

powerDiscrepanc ie s ([f a l s e ; g a pC l a s s i f i c a t i o n ==3]) ;

% Energy that w i l l be pena l i s ed by e i r g r i d .

pena l i sedEnergy = (pos i t i vePowerDi sc r epanc i e s ’) ∗ d i f f (eventTimes) /2 ;

% Total co s t i n c l ud ing only terms that can vary with tStartRamps

to ta lCos t = penaltyPerMwmin∗ penal i sedEnergy − (pricePerMwmin ’) ∗(f ina lPower s .∗ tStartRamps

) ;

% True t o t a l co s t (i n c l ud ing standing co s t o f prov id ing the energy)

baseCost = 1/2∗(pricePerMwmin ’) ∗(f ina lPower s .∗ (2∗ totalRampTime−rampTimes)) ;

t o ta lCos t = baseCost + to ta lCos t ;

58

Appendix E.2. Matlab code for simulated annealing

This code describes the use of Matlab’s inbuilt simulated annealing functions to find an

optimal solution where we take T0 = maxi(Ri + τi)−maxi(τi) and T1 = maxi(Ri + τi). This

will give a heuristic solution that aims to have the minimal total time from notification to

complete power-up, and the minimum time spent powering up.

% scr iptS imulatedAnnea l ing .m

% 27 Jun 2018

% Sc r i p t m− f i l e to read data from SitesData . csv f i l e (made from top rows o f

% Excel spreadsheet sent by CapturedCarbon) , t r a n s l a t e in to a form usab le

% by Matlab opt im i sa t i on funct i ons , and then use Matlab ’ s i n b u i l t s imulated

% annea l ing to c a l c u l a t e an optimum so l u t i o n .

%

% An important output i s tota lCost , which g i v e s a euro amount that i n c l ud e s

% both the co s t o f us ing a l l o f the power gene ra to r s and the pena l ty co s t

% o f going below the power promised to e i r g r i d .

%% Parameter s p e c i f i c a t i o n

% Read data from SitesData . csv .

a l l S i t e sDa t a = csvread (’ S i tesData . csv ’ , 1 , 1) ;

% Rows o f a l l S i t e sDa t a

no t i c ePe r i od s = a l l S i t e sDa t a (1 , :) ’ ;

rampRates = a l l S i t e sDa t a (2 , :) ’ ;

f i na lPower s = a l l S i t e sDa t a (3 , :) ’ ;

pricePerMwh = a l l S i t e sDa t a (4 , :) ’ ;

% Input pena l ty per MWhour o f energy provided below power promised to

% e i r g r i d .

penaltyPerMwh = mean(pricePerMwh) ∗10 ;

% Trans la t ing data to more u s e f u l form

pricePerMwmin = pricePerMwh /60 ;

penaltyPerMwmin = penaltyPerMwh /60 ;

rampTimes = f ina lPower s . / rampRates ;

% Use the l ong e s t ramp time and sho r t e s t p o s s i b l e no t i c e per iod as the ramp

% time and no t i c e per iod f o r s e ek ing s o l u t i o n s .

totalRampTime = max(rampTimes) ;

t o t a lNo t i c ePe r i od = max(rampTimes+not i c ePe r i od s)−totalRampTime ;

%% Simulated annea l ing

% Vectors o f e a r l i e s t and l a t e s t s t a r t t imes f o r ramping . Note that a l l

% times here are measured from the s t a r t o f the f i r s t ramp time .

ear l iestRampStartTimes = max(z e ro s (s i z e (rampRates)) , . . .

no t i c ePer i ods−t o t a lNo t i c ePe r i od) ;

latestRampStartTimes = totalRampTime − rampTimes ;

i f any (ear l iestRampStartTimes > latestRampStartTimes)

e r r o r (’ There i s a s i t e f o r which no f e a s i b l e s o l u t i o n e x i s t s with in the c on s t r a i n t o f

g iven o v e r a l l ramp time and no t i c e per iod ’)

59

end

% Use midpoint f o r i n i t i a l gue s s e s

tStartRampsInit = (ear l iestRampStartTimes + latestRampStartTimes) /2 ;

% Create anonymous func t i on f o r the co s t a s s o c i a t ed with a given

% tStartRamps

costForRampStartTimes = @(t) costOfSchedule (t , rampRates , f ina lPowers , pricePerMwmin ,

penaltyPerMwmin , totalRampTime) ;

% Use Matlab ’ s s imulated annea l ing to f i nd an optimum

tStartRamps = simulannealbnd (costForRampStartTimes , tStartRampsInit ,

ear l iestRampStartTimes , latestRampStartTimes) ;

%% Process r e s u l t s

% Calcu la te t o t a l co s t o f g iven schedu le o f s t a r t i n g times , and amount o f

% energy that i s a s s o c i a t ed with f a i l i n g to meet power promised to e i r g r i d .

[tota lCost , . . . Total co s t o f energy (in euros)

penal i sedEnergy , . . . Energy a s s o c i a t ed with power below promised value to e i r g r i d

(in MWmin)

eventTimes , . . . Times at which changes in power g rad i en t occur (u s e f u l f o r

p l o t t i n g)

powerOutputs] . . . Power outputs at g iven event t imes

= costOfSchedule (. . .

tStartRamps , . . . Times f o r s t a r t i n g ramp f o r each s i t e (in minutes)

rampRates , . . . Ramp ra t e f o r each s i t e (in MW/min)

f ina lPowers , . . . F ina l power outputs f o r each s i t e (in MW)

pricePerMwmin , . . . Pr i c e o f energy from s i t e s (in euros per MWmin)

penaltyPerMwmin , . . . Penalty f o r f a i l i n g to d e l i v e r power to e i r g r i d (in euros

per MWmin)

totalRampTime) ; . . . Total time f o r ramping system (in minutes)

% Calcu la te minimum requ i r ed n o t i f i c a t i o n time to e i r g r i d .

%no t i f i c a t i o nToE i r g r i d = −min(tStartRamps − no t i c ePe r i od s) ;

n o t i f i c a t i o nToE i r g r i d = to ta lNo t i c ePe r i od ;

% Calcu la te t imes to no t i f y each s i t e to begin [measured from beginning o f

% n o t i f i c a t i o n to e i r g r i d]

t imesToNot i fyS i t e s = no t i f i c a t i o nToE i r g r i d + tStartRamps − no t i c ePe r i od s ;

%% Create f i g u r e f o r o v e r a l l power output

% Create f i g u r e to show power output

f i g u r e

hold on

p lo t (eventTimes+no t i f i c a t i onToE i r g r i d , powerOutputs , ’b ’) ;

p l o t ([0 n o t i f i c a t i o nToE i r g r i d totalRampTime+no t i f i c a t i o nToE i r g r i d] , [0 0 sum(f ina lPower s)

] , ’ r ’) ;

t i t l e (’Power output in blue and goa l power curve in red ’)

x l ab e l (’Time s i n c e s t a r t o f o v e r a l l n o t i f i c a t i o n per iod ’)

y l ab e l (’Power (MW) ’)

hold o f f

%% Create r e s u l t s and f i g u r e f o r cumulat ive power outputs

60

% Use fu l numbers and vec t o r s

tFinishRamps = tStartRamps + rampTimes ;

numEventTimes = numel (eventTimes) ;

numSites = numel (rampRates) ;

% Create numEventTimes−by−numSites a r rays which i nd i c a t e whether ramping i s

% f in shed (finishedRampMatrix) or the time s i n c e ramping began in the case

% where ramping i s cu r r en t l y occur r ing (rampingMatrix) .

repeatedStartTimesCol = (tStartRamps∗ ones (1 , numEventTimes)) ’ ;

repeatedFinishTimesCol = (tFinishRamps∗ ones (1 , numEventTimes)) ’ ;

repeatedCurrTimesRow = eventTimes∗ ones (1 , numSites) ;

f inishedRampMatrix = (repeatedCurrTimesRow>=repeatedFinishTimesCol) ;

rampingMatrix = repeatedCurrTimesRow−repeatedStartTimesCol ;

rampingMatrix (rampingMatrix<0) = 0 ;

rampingMatrix (finishedRampMatrix) = 0 ;

% Matrix g i v ing power output from each s i t e and cumulat ive power from s i t e s

powerPerSite = rampingMatrix∗diag (rampRates) + finishedRampMatrix∗diag (f ina lPower s) ;

cumulativePowerFromSites = cumsum(powerPerSite , 2) ;

% Figure f o r cumulat ive power

f i g u r e

hold on

p lo t (eventTimes+no t i f i c a t i onToE i r g r i d , cumulativePowerFromSites) ;

p l o t ([0 n o t i f i c a t i o nToE i r g r i d totalRampTime+no t i f i c a t i o nToE i r g r i d] , [0 0 sum(f ina lPower s)

] , ’ k−− ’) ;

t i t l e (’ Cumulative power outputs from d i f f e r e n t s i t e s , t a r g e t shown as dashed black l i n e ’

)

x l ab e l (’Time s i n c e s t a r t o f o v e r a l l n o t i f i c a t i o n per iod ’)

y l ab e l (’Power (MW) ’)

61

	Introduction
	Notation for a single site
	Behaviour of a collection of sites
	Objective functions
	Practical computation of the objective function
	Modelling Options

	Methods
	Gradient Descent Method
	Objective Functions
	Local Extrema
	Gradient Descent Algorithm: Barzilai-Borwein method
	Implementation and Results

	Mixed Integer Linear Programming
	Systematic Adjustment
	Overview
	Method
	Results
	Algorithm variations

	Bin packing
	Overview
	Method
	Algorithm variations
	Results bin packing

	Simulated Annealing
	Ramp Tracking Simulation
	Methodology
	Results
	Future Work

	Conclusion and future work
	Sample data provided by Captured Carbon
	Calculation of the Hessian of objective function J2(d- .4 , T0, T1)
	Code for Gradient Descent Method
	Code for MILP
	GAMS code for MILP
	Python code for MILP

	Matlab codes for cost calculation and direct simulated annealing
	Matlab code for cost of a given choice of start times
	Matlab code for simulated annealing

