Cumberbatch, E. and Cummings, L.J. and Ferguson, P. and Mercer, I. and Please, C.P. and Tilley, B. and Altalli, R. and Cao, L. and Chen, F. and Li, S. and Liang, H. and Liu, Y. and Miller, J. and Nguyen, L. and Salem, M. and Vu, P.D. and Watt, J. and Yang, Y. (2008) Do the Barker Codes End? [Study Group Report]
|
PDF
200kB |
Abstract
A Barker code is a binary code with k^th autocorrelation <= 1 for all nonzero k.
At the workshop, the Barker code group split into four non-disjoint subgroups:
- An "algebra group", who explored symmetries of the search space that preserve the autocorrelations' magnitude.
- A "computing group", who explored methods for quickly finding binary codes with very good autocorrelation properties.
- A "statistics group", who explored ways to quantify what has been empirically observed about autocorrelation in the search space S_2^N.
- A "continuous group", who explored a non-discrete analogue of the problem of finding sequences with good autocorrelations.
Item Type: | Study Group Report |
---|---|
Problem Sectors: | Information and communication technology |
Study Groups: | US Workshop on Mathematical Problems in Industry > 24th MPI [Worcester 16/6/2008 - 20/6/2008] |
Company Name: | Technology Service Corporation |
ID Code: | 220 |
Deposited By: | Dr Kamel Bentahar |
Deposited On: | 18 May 2009 10:21 |
Last Modified: | 29 May 2015 19:49 |
Repository Staff Only: item control page